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Abstract: In complex traffic environment scenarios, it is very important for
autonomous vehicles to accurately perceive the dynamic information of other
vehicles around the vehicle in advance. The accuracy of 3D object detection
will be affected by problems such as illumination changes, object occlusion,
and object detection distance. To this purpose, we face these challenges
by proposing a multimodal feature fusion network for 3D object detection
(MFF-Net). In this research, this paper first uses the spatial transformation
projection algorithm to map the image features into the feature space, so
that the image features are in the same spatial dimension when fused with
the point cloud features. Then, feature channel weighting is performed using
an adaptive expression augmentation fusion network to enhance important
network features, suppress useless features, and increase the directionality
of the network to features. Finally, this paper increases the probability of
false detection and missed detection in the non-maximum suppression algo-
rithm by increasing the one-dimensional threshold. So far, this paper has
constructed a complete 3D target detection network based on multimodal
feature fusion. The experimental results show that the proposed achieves
an average accuracy of 82.60% on the Karlsruhe Institute of Technology
and Toyota Technological Institute (KITTI) dataset, outperforming previous
state-of-the-art multimodal fusion networks. In Easy, Moderate, and hard
evaluation indicators, the accuracy rate of this paper reaches 90.96%, 81.46%,
and 75.39%. This shows that the MFF-Net network has good performance in
3D object detection.

Keywords: 3D object detection; multimodal fusion; neural network;
autonomous driving; attention mechanism

1 Introduction

Object detection provides the basic condition for autonomous vehicles, which can offer data
support for vehicle path planning and behavior decision-making. Autonomous vehicle requires
accurate location and detection of obstacles in space to avoid vehicle accidents in complex traffic
scenarios. Therefore, how to enable high-precision and high-efficiency object detection in different
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ways has attracted more and more attention from researchers. References [1–3] point out that object
detection of multimodal fusion performs well in complex traffic scenarios, which can make up for
the shortcomings of different information, and realize information complementation between various
sensors. Therefore, it has become a research hotspot for researchers.

The existing object detection algorithms mainly include: 1) 2D object detection; 2) 3D object
detection based on Light Detection and Ranging (LIDAR) point cloud; 3) 3D object detection based
on multimodal fusion. Where, 2D object detection technology is mainly divided into two categories:
one is an object detection algorithm based on candidate region extraction, such as Regions with
Convolutional Neural Network (CNN) features (R-CNN) [4], Fast R-CNN [5], Faster R-CNN [6],
etc. Transforming the object detection problem into a binary classification problem, it improves object
detection accuracy through the excellent classification performance of the object detection algorithm
against the data set. The other is an object detection algorithm based on regression, such as the
you only look once (YOLO) series [7–9] algorithm, which integrates the object classification and
localization problems in the detection into the same network for processing. Thus, training supports
object classification, localization, and optimization of the network loss function. 2D object detection
can make full use of rich visual information, but it is not sensitive to object distance information and
cannot achieve accurate object positioning.

There are three categories of 3D object detection algorithms based on the LIDAR point cloud: the
first category is to voxelized the original point cloud, convert it into voxelized data, and input it into
the network for object detection; The second category is to transform the original point cloud into a
2D image through coordinate transformation and input it into the network for object detection; the
third category is to directly perform feature extraction on the original point cloud and perform object
detection. In [10,11], the raw point cloud is first voxelized. Then the voxelized features are learned,
and finally, the 3D object bounding box is output. Pointpillars [12], first converts the original point
cloud into a sparse pseudo image and then uses a 2D object detection algorithm to perform feature
extraction and detection on the pseudo image and generate a regression 3D object bounding box.
PointRCNN [13], first detects the original point cloud rapidly based on the predicted point cloud tag,
and generates a 3D object bounding box from top to bottom. However, the information detected by the
object detection algorithm of a single LIDAR sensor is too solitary to make up for its shortcomings.

There are three categories of 3D object detection algorithms based on multimodal fusion. The first
category is to extract features from LIDAR point clouds and camera images, and then input them into
the same network for object classification and regression, which is called pre-fusion. In pre-fusion, the
modalities are interconnected to achieve a common perception through feature sharing. In AVOD
[14], first inputs the original point cloud bird’s eye view (BEV) of the LIDAR and camera image, then
generates the corresponding feature map through the feature extraction network and then uses region
proposal network (RPN) [6] to generate candidate region. The feature map is fused according to the
candidate region score, and finally, the classification and regression results are output. References
[15,16] propose a continuous convolution method to fuse BEV and image features, which projects
the BEV pixels into 3D space, then maps the projection points to the image features to generate
the corresponding BEV image features, and finally generates a 3D bounding box by combining BEV
image features with camera image features. References [17,18] supports the fusion of features by adding
Squeeze-and-excitation networks (SENet) [19] to the pre-fusion network. First, the point cloud front
view (FV), BEV, and image are input, and features of each channel are extracted through three feature
extraction networks, then the multi-view features are input to the attention mechanism module for
fusion, then different weights are assigned based on the importance of the multi-view features, and
finally, the fused points are re-voxelized to generate the final object detection result. The network has
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good robustness, which indicates that SENet [19] addition can effectively suppress invalid features and
enhance effective features.

The second category allows interaction between different feature layers based on pre-fusion to
generate more accurate detection results, which is called deep fusion. In MV3D [20], as a classic deep
fusion network, extracts FV, BEV, and RGB (Red, Green, and Blue) image features then uses RPN [6]
to generate candidate regions for BEV and then maps the candidate regions to FV and RGB images,
respectively, performs regions of interest (ROI) pooling on each view feature. The fused features are
used for the classification and regression of the final fully connected layer, but when the network
projects the point cloud to different views, information loss will occur and affect the detection accuracy.
3D-CVF [21] proposes a two-stage in-depth fusion method to reduce information loss. In the first
stage, automatic calibration feature projection is used to convert planar features into three-dimensional
spatial features, and then the two features are fused through an adaptive gated network. In the second
stage, ROI is refined for the fusion features, and finally, network detection is completed. The algorithm
can fuse 2D images from multiple perspectives. The network has rich fusion features and high detection
accuracy. However, due to network structure limitations, compared with the end-to-end algorithm, the
detection speed is slow. References [22,23] proposed a cross-modal deep feature learning framework
for brain tumor segmentation tasks. Reference [22] Designed a modality-aware feature embedding
mechanism to infer important weights for modal data during network learning. Reference [23] mainly
consists of two learning processes: the cross-modal feature transformation process and the cross-modal
feature fusion process, which aims to learn rich feature representation data and fuse knowledge from
different modal data by transferring knowledge across different modalities. The proposal of these two
deep fusion methods provides great potential for the application of multimodal fusion in the field of
medical segmentation.

The third category is to perform object detection on the LIDAR point cloud and image separately,
and fuse the output object detection results [24–26], which is known as post-fusion [27]. Introduces a
new vision measurement model to visually determine the object category and shape, which enhances
the data association and motion classification performance amid LIDAR point cloud and image
fusion. However, in complex scenarios, visual distance is prone to big errors, resulting in decreased
accuracy after fusion. References [28,29] use the CNN to fuse the features extracted from LIDAR
point cloud with the image feature extraction network, apply ROI pooling to candidate regions after
convolution, and finally output the classification results of 2D object detection. It achieves semantic
consistency between visual classification detection and LIDAR point cloud distance detection, but 3D
detection performance is not verified.

Despite certain success in the above object detection algorithms, there are still the following
limitations: 1) It is difficult for a single sensor to respond to complex traffic environment perception
information, cameras cannot capture accurate depth information, and LIDARs cannot access infor-
mation such as color and texture. Also, the detection accuracy still needs to be further improved.
2) From the Karlsruhe Institute of Technology and Toyota Technological Institute (KITTI) [30]
rankings of the open-source data set in object detection, it can be seen that most of the existing pre-
fusion networks and deep-fusion networks are inherently complex and difficult to achieve real-time
performance, showing unsatisfactory real-time application effects. 3) The post-fusion method, which
performs object detection on different data before fusion, has relatively flexible fusion methods but
is rarely studied at present. With limited applications, it is rarely applied to vehicle object detection in
traffic scenarios.
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In response to the above problems, under the premise of guaranteeing real-time performance in
the environmental perception system, this paper proposes Multimodal Feature Fusion Network for
3D Object Detection (MFF-Net) to improve the 3D object detection accuracy and reduce the false
detection rate. Specifically, the main contributions of this paper are as follows:

(1) This paper proposes a Spatial Transform Projection (STP) method to project 2D image features
to 3D point cloud BEV features.

(2) An Adaptive Expressive Enhancement (AEE) fusion network is constructed to focus on
important features and suppress unnecessary features.

(3) An adaptive non-maximum suppression (A-NMS) algorithm with better performance is
proposed.

(4) Extensive experiments on large-scale datasets KITTI [30] and nuTonomy scenes (nuScenes)
[31] show that the method has high detection efficiency and accurate detection performance.

2 Methodology

This paper aims to build a multi-modal fusion 3D vehicle object detection network with good
real-time performance and high accuracy. 3D-CVF [21] is selected as the backbone network. Space
Transformation Projection (STP) algorithm, Adaptive Expressiveness Enhancement (AEE) fusion
network, and Adaptive Non-Maximum Suppression (A-NMS) bounding box removal method are
taken for network improvement.

The improved network structure is shown in Fig. 1. First, 2D image and 3D point cloud are
input into respective feature extraction networks to extract camera image features and LIDAR point
cloud features. Because of the different features and distribution characteristics of camera images and
LIDAR point clouds, Using the STP algorithm to map camera image features to camera BEV features
with a high degree of correspondence with LIDAR point cloud BEV features. Then, the camera
BEV feature and LIDAR BEV feature are cascaded and input into the AEE fusion network with
the ability to improve feature directivity. According to the channel attention mechanism SENet [19],
each feature channel is assigned different weights based on its importance to enhance the important
features of each channel in the cascaded LIDAR-Camera, while useless features are suppressed. Then,
the cascaded LIDAR-Camera fusion features are input to the detection output network. Here, the
region proposal network (RPN) [6] is first used to generate the corresponding region of interest (ROI)
box on the cascade feature, which is then input to the 3D fusion network of interest for further
fusion. The image plus the shallow features of the LIDAR point cloud is also an input for better
fusion accuracy. For Convolutional Neural Networks (CNN), different depths correspond to different
levels of semantic features. Shallow networks with high resolution learn more detailed features; deep
networks with low resolution learn more semantic features and lose location information. Accordingly,
by combining shallow features and deep features, shortcomings in the separate processing of the two
can be compensated. Finally, the A-NMS algorithm is used to filter out an unimportant bounding
boxes and perform 3D object detection at the same time.

2.1 Space Transformation Projection (STP) Algorithm

Given, because of the inconsistent feature space in multi-modal fusion, this paper combines matrix
transformation with Back Propagation (BP) neural network [32] to solve the problem that the feature
map is differently expressed in the camera coordinate system and the world coordinate system during
camera image and LIDAR point cloud fusion. This algorithm can guarantee that the two different
features are fused without losing information, thus improving 3D object detection accuracy. MV3D
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[20] projects point cloud data to a two-dimensional plane from a specific perspective and then fuses
data from different visual angles to complete the cognitive task. This method will lose geometric
structure information and accuracy when projecting from a BEV perspective, and the final experiment
results suggest that MV3D [20] is relatively applicable to large objects. However, this method does not
make full use of the 3D spatial information of the point cloud, and it is still difficult to accurately
detect objects with rich local features.

Figure 1: Overview of the proposed MFF-Net method. After each backbone network process, the point
cloud and the image respectively, the spatial sransform projection (STP) algorithm is used to convert
the image features into the features in the BEV. Then, the camera and LiDAR features are fused using
the adaptive expressive enhancement (AEE) fusion network. Finally, the fusion network based on RoI
pooling (It can generate fixed-size feature maps from LIDAR feature maps and image feature maps)
is used to predict the detection output network after the scheme is refined. See Figs. 2 and 5 for more
description of the involved STP algorithm and AEE fusion network

To further cope with the problem that the data information collected by the camera and the
LIDAR sensor in the multi-modal fusion has different space feature distribution. This paper proposes
the STP algorithm, as shown in Fig. 2. The STP algorithm is composed of space transformation
projection and BP neural network model.
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Figure 2: STP algorithm: First, given the object pixel points on the point cloud BEV, extract the K
nearest LIDAR points (step 1); Then, project the 3D points onto the camera image plane (step 2);
Retrieve the corresponding image features (step 3); Finally, this paper feed the image features and
continuous geometric offset into the BP neural network to generate the features of the object pixel
(step 4)

The main idea of deep parametric continuous convolution [33] is to use a multilayer perceptron as
the parameterized kernel function of the continuous convolution, and the parameter kernel function
connects the entire continuous domain. Whereas, the costly continuous convolution can be weighted
over a limited number of adjacent points. According to the different weights of each adjacent object
and its relative geometric offset from the object, the parameter continuous convolution formula is as
follows:

hj =
∑

j

MLP
(
xi − xj

) · fj (1)

where j indexes the neighborhood of the point i, fj is the input feature, and xj is the continuous
coordinate associated with the point. The Multilayer Perceptron (MLP) computes the convolution
weights for each adjacent point.

The STP algorithm proposed in this paper first exploits the input camera image feature map and a
set of LIDAR points. The goal of the STP algorithm is to build a dense BEV feature map, where each
discrete pixel contains features generated from the camera image. Then, this dense feature map can be
easily fused with the BEV feature map extracted from LIDAR. One difficulty with image BEV fusion
is that not all discrete pixels on the BEV space are observable in the camera. To solve this problem,
each object pixel in the dense map uses Euclidean distance on the 2D BEV plane to find its closest
LIDAR points. Finally, this paper utilizes a BP neural network to fuse the information from these K
closest points (in the experiment, setting the value of K to 10.) to insert the unobserved features of the
object pixel. The input of the BP neural network consists of two parts: first, the corresponding image
features are extracted by projecting the raw LIDAR points onto the image plane. Bilinear interpolation
is used to obtain image features at consecutive coordinates.

The 3D neighbor offsets between original LIDAR points and object pixels are encoded on a dense
BEV feature map to model LIDAR point dependencies. Overall, each object pixel provides input to
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the BP neural network [32]. For each object pixel, the BP neural network outputs feature by summing
the BP neural network outputs of all adjacent pixels. The formula is as follows:

hi =
∑

j

BP
(
concat

[
fj, xj − xi

])
(2)

where fj is the input image feature for the point j, xj −xi are the 3D offsets from neighboring point j to
an object i, and concat(·) is the concatenation of multiple vectors. In practice, this paper uses a 3-layer
perceptron, where each layer has hidden features.

The STP algorithm can solve the problem of inconsistency between image and point cloud feature
space, and further, enrich the network feature information by splicing and fusion in the feature
mapping channel. Mapping image and point cloud features to the same spatial features is expected
to further improve the accuracy of the network.

2.2 Adaptive Expressiveness Enhancement (AEE) Fusion Network

In practical object detection scenarios, existing networks sometimes fail to focus on or miss
important object features. To this end, based on the STP algorithm designed in Section 2.1, In
this paper, an Adaptive Expressive Enhancement (AEE) fusion network is adopted to enhance the
expressive power of different features, focusing on important features while suppressing unnecessary
features. The specific process is shown in Fig. 5. Because the squeeze-and-excitation (SE) module
proposed in Squeeze-and-excitation networks (SENet) [19] is often used for feature extraction in the
image domain, this paper explores the application of the attention mechanism in the SE module for
multimodal fusion, and Constructed the AEE fusion network. The SE module is shown in Fig. 3.

Figure 3: Schematic diagram of SE module: In the Fig., Fsq (‘•’) represents the squeeze operation, Fex
(•, W) represents the excitation operation, and Fscale (‘•’) represents the feature recalibration

The SE module in Fig. 3 processes the feature map derived from the convolution and obtains a
one-dimensional vector equal to the number of channels as the evaluation score for each channel.
Then, the score is assigned to the corresponding channel to derive the output result. According to
Fig. 3, the attention mechanism is specifically implemented as follows: Given an input X, its number of
feature channels is C1. After a series of convolution transformations, a feature with C feature channels
is obtained. Finally, three operations are performed to recalibrate the features obtained earlier.

The specific implementation process of the AEE fusion network is shown in Fig. 4. The input
feature layer size is H × W × C. In the squeeze operation, through the Max Pooling operation, the
candidate size becomes 1 × 1. In the excitation operation, the first fully connected layer is used to
reduce the number of channels too C/r, r is the zoom factor used to reduce the number of channels
and thereby the amount of calculation. In this paper, a large number of experiments prove that the
effect is optimal when r = 16. If the ReLU activation function is used, the feature dimension remains
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unchanged. The second fully connected layer is used for dimensionality, and the number of channels
is changed back to C; the Sigmoid function is used to output the weight of each channel; Finally, its
feature recalibration is used to multiply the weight with the original corresponding channel to obtain
the weighted feature layer.

Figure 4: SE module implementation process

In summary, the AEE fusion network formed by adding the SE module is shown in Fig. 5. The
AEE fusion network firstly cascades the point cloud BEV features extracted by the feature extraction
network and the image features after STP algorithm to obtain the cascaded LIDAR-Camera features;
then through the weighting operation of AEE fusion network, the LIDAR-Camera fusion features
with different weights are output. Experiments in this paper indicate that the number of features is the
highest when the number of channels C is 96. At this time, adding the SE module can get the largest
feature layer receptive field, which helps to output fusion features with different weights. Based on
abundant experiments, the SE module parameter reduction has the optimal effect when it is set to 16.

Figure 5: AEE fusion network architecture. First, this paper concatenates camera features and lidar
features to obtain concatenated LIDAR-camera features. Then, this paper feeds the obtained cascaded
features into the AEE fusion networks for operations such as squeezing, max-pooling, excitation, and
feature recalibration. Finally, LIDAR-camera fusion features with different weights are output
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2.3 Adaptive Non-Maximum Suppression (A-NMS) Algorithm

To further improve the accuracy of the object detection algorithm for the entire fusion network,
it is necessary to delete a large number of overlapping boxes generated by RPN. Therefore, based on
the AEE fusion network designed in Section 2.2, this paper further optimizes the network by adding
the A-NMS module.

Non-Maximum Suppression (NMS) [34] is a commonly used method for determining candidate
regions in object detection tasks. First, it ranks all bounding boxes according to their scores. The
bounding box with the highest score is selected, and all other bounding boxes that significantly overlap
with the bounding box with the highest score are suppressed using a predefined threshold. This process
is recursively applied to the remaining bounding boxes and computes the Intersection over Union
(IOU) with other candidate regions, where IOU is the ratio of the intersection and union between the
Predicted box and the True box. When the IOU is greater than a certain threshold, it is suppressed to
achieve the purpose of determining the optimal candidate area. The formula of the NMS algorithm
is as follows:

Si =
{

si, IoU(M, bi) < Nt

0, IoU(M, bi) ≥ Nt

(3)

where Si is the score of the candidate region after comparative calculation, si is the initial score of the
candidate region, M is the candidate region with the highest score, bi is the current candidate region,
IoU(M, bi) is the IOU between M and bi, Nt is the set threshold.

Through the NMS [34] algorithm, candidate regions in the image that is more in line with the
actual object location and size are preserved. However, in 3D object detection, multiple objects in
the image may have varying degrees of occlusion. When handling candidate regions in this case, the
candidate regions of multiple objects will be suppressed due to the excessive IOU. As a result, some
objects may be missed. To solve this problem, Soft-NMS [35] based on [34] attenuates the detection
scores of all other objects into a weight-penalized continuous function that overlaps the bounding box
with the maximum score. The calculation formula is as follows:

Si =
{

si, IoU(M, bi) < Nt

si × (1 − IoU(M, bi)), IoU(M, bi) ≥ Nt

(4)

Although Soft-NMS [35] algorithm reduces missed detection of the NMS [34] algorithm in multi-
object detection, there are still some shortcomings. In actual application, there is a gradually increasing
probability of repeated detection and object misclassification in the Soft-NMS algorithm.

Aiming at the problems of Soft-NMS [35], this paper proposes an Adaptive Non-Maximum Sup-
pression (A-NMS) algorithm. The A-NMS algorithm adds a one-dimensional threshold Ni based on
the Soft-NMS algorithm, and Nt < Ni. If the intersection ratio between the candidate region bi and the
highest scoring candidate region M is IoU(M, bi) > Ni, it is directly suppressed; if Nt ≤ IoU(M, bi) ≤
Ni, a penalty is given to the candidate region. The weight of the rate is combined with the original
score as a penalty factor; if IoU(M, bi) < Nt, it means that the overlap area between bi and M is small,
no suppression is required, keeping the original score. The mathematical expression of the A-NMS
algorithm is as follows:

Si =

⎧⎪⎨
⎪⎩

si, IoU(M, bi) < Nt

si × (1 − IoU(M, bi)), Nt < IoU(M, bi) < Ni

0, IoU(M, bi) > Ni

(5)
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The A-NMS algorithm proposed in this paper combines the advantages of NMS [34] and Soft-
NMS [35] algorithms and adds a one-dimensional threshold. This two-dimensional threshold method
can reduce the probability of missed and false detection of objects in the candidate region where
IoU(M, bi) is smaller than Ni.

So far, this paper has successfully constructed Multimodal Feature Fusion Network for 3D
object detection (MFF-Net). Specifically, the STP algorithm is first embedded after the image feature
extraction network, so that the features extracted by the image feature extraction network and the point
cloud features are better fused; Then, an AEE fusion network is embedded after the LIDAR-camera
cascade feature, so that the network pays more attention to the important features of the object; Finally,
the A-NMS algorithm is used to remove a large number of overlapping bounding boxes to improve
the detection accuracy of the 3D object of the overall network.

2.4 Network Loss Function

The loss function of MFF-Net in this paper consists of two parts: The first part is the loss function
between the 3D candidate box and the ground-truth box generated by the region proposal network
(RPN), and the second part is the detection loss function of the output network. The mathematical
expression is as follows:

Lloss = Lcls−rpn + Lloc−rpn + Lcls−pre + Lloc−pre (6)

where Lcls−rpn represents the classification error of the RPN, Lloc−rpn represents the position regression
error of the RPN, Lcls−pre represents the classification prediction error of the final network output, and
Lloc−pre represents the position regression error of the final network output.

Object detection classification error: The classification task is to classify the objects in the area
and determine whether it is an object, which involves a binary classification problem. Therefore,
this paper selects the sparse SoftMax [36] and cross-entropy function [37] commonly used in binary
classification as the error calculation function in the classification task. In this paper, two parts demand
classification: the RPN part and the detection output part. The error functions of the two are the same.
The loss function calculation process includes two parts: (1) SoftMax calculation of the input, with
calculation formula shown in (7), which is responsible for normalizing the input classification results;
(2) cross-entropy loss calculation, as shown in formula (8).

Si = eai∑n

i−1eai
(7)

Lcls = −
n∑

i−1

yi log Si (8)

where ai is the predicted classification score, yi is the true value of the label, and eai is the exponential
function value of the predicted score.

Object detection coordinates regression error: The RPN predicts the difference
(
dx, dy, dz, dw, dl, dh

)
between the label truth box and the initial position box, which respectively represents the difference
between the predicted label, the initial position box center coordinate, and the length, width, and
height. At this time, the regression calculation box is the calculated real difference (d∗

x , d∗
y , d∗

z , d∗
w, d∗

l , d∗
h )

between the initial position box and the label, which is expressed as the real coordinate and size
difference between the initial position box and the label. The relationship between the initial position
box and the label truth box is shown in Fig. 6.
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Figure 6: The relationship between the initial position box and the label truth box

The initial box is a candidate box with different sizes generated by the RPN at each pixel position
of the feature map using the convolution kernel. The regression calculation box is the box position
after regression calculation of the predicted (dx, dy, dz, dw, dl, dh) on the initial box and the label truth
box is the object position information in the label.

The position of the final detection output part of the network regresses to the eight-point
coordinates of the 3D box, and the label at this time indicates the eight-point coordinates of the 3D
candidate box obtained after calculation based on the first prediction.

Both the two-position regression parts use smoothL1 the function [38] as the error term, and the
formula is as follows:

Lloc =
∑

smoothL1(Locpre − Gt) (9)

where Locpre indicates the predicted value, Gt indicates the label information, and the smoothL1 function
calculation is shown as follows:

smoothL1 =
{

0.5x2, |x| < 1
|x| − 0.5, otherwise

(10)

3 Experiment

To verify the effectiveness of MFF-Net, experimental evaluations are performed based on the
Karlsruhe Institute of Technology and Toyota Technological Institute (KITTI) [30] and nuTonomy
scenes (nuScenes) [31] datasets.

3.1 Experimental Environment

The experimental environment of this paper is shown in Table 1.

3.2 KITTI DataSet

The training, validation set, and testing of the network are based on the KITTI [30] dataset. The
collection platform of this dataset consists of 2 gray-scale images, 2 color cameras, 1 LIDAR, 4 optical
lenses, and a GPS navigation system to provide multiple sensor data. In the object detection dataset,
there are a total of 14,999 data, of which 7,481 data are divided into training sets and the rest are
divided into test sets. Considering that the data in the test set has no published label files. To complete
the network model effect evaluation, the training set with label files is divided according to the unified
classification standard of the KITTI dataset. According to the ratio of 1:1, 3471 pieces of data in the
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scenario data of 7481 training sets are divided into training sets, and the rest are used as validation sets
for the evaluation of model data. In the network evaluation stage, the KITTI dataset officially divides
the network evaluation indexes into three levels: Easy, Moderate, and Hard according to the degree of
object occlusion and truncation.

Table 1: Experimental environment

Development environment Environment configuration

CPU I7–10700
GPU GeForce RTX 3060
Operating system Ubuntu18.04
Development language Python3.7.5
Third-party library Pytorch1.8.0

3.3 nuScenes DataSet

The nuTonomy scenes (nuScenes) [31] dataset is the first large-scale multi-scene 3D object
detection dataset to provide a full set of sensor data for autonomous vehicles, with more than 1000
scenes collected in two cities, Singapore and Boston. The data collected in this dataset includes 6 multi-
view cameras, 32-line LiDAR, 5 mmWave radars, and GPS and IMU. It provides object annotation
results within 360 degrees of the desired 10 classes of objects. Compared to the KITTI [30] dataset, it
contains more than 7 times more object annotations. The dataset consists of a training set of 28,130
frames, a validation set of 6019 frames, and a test set of 6008 frames. This paper follows the official
dataset split [31], using 28130 frames, 6019 frames, and 150 frames for training, validation, and testing,
respectively.

3.4 2D and 3D Feature Extraction Network Details

In the image feature extraction network, this paper uses MobileNetv2 [39] as the basic convo-
lutional layer. To prevent the network from training the network parameters of the image feature
extractor in the beginning, the model uses the first few layers of parameters of the already trained
MobileNetv2 as the initial convolution kernel value of the image feature extractor to save training
time. The network uses the stochastic gradient descent method as the optimization function to guide
the network training toward the descent direction of the loss function.

In the LIDAR point cloud feature extraction network, the predecessors often used projection,
mathematical statistics, and direct convolution to preprocess the point cloud data. However, the
projection method will cause original data information loss. The PointNet [40] with a 1 × 3 convolution
kernel only uses about a thousand points in actual training, which is unsuitable for object detection
in a traffic environment. Therefore, this paper does not use the above two methods for point cloud
preprocessing but designs the input feature learning layer of the point cloud according to the PointNet
direct coordinate convolution. The original data coordinate information is calculated to derive the
input feature map. Then, Convolutional Neural Network (CNN) is used to complete the feature
extraction of the point cloud.

The point cloud feature extraction network first uses three-dimensional convolution to perform
three 3D convolutions on the input 10 × 400 × 352 × 128 sparse feature data. The feature map with
a height of 10 is down-sampled three times to obtain a 2 × 400 × 352 × 64 feature map. Then, the
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feature map is reshaped to transform into a 400 × 352 × 128 two-dimensional multi-channel feature
map. Finally, using 2D convolution and deconvolution operations, down-sampling is performed by 8
times and then up-sampling by 4 times to output a feature map with a resolution of 200 × 176 × 512.

3.5 Evaluation Index

The evaluation indexes are the general 3D object detection evaluation index: Precision (P), Recall
rate (R), Average Precision (AP), and mean Average Precision (mAP):

P = TP
TP + FP

(11)

R = TP
TP + FN

(12)

where True Positive (TP) represents a truly positive example, False Positive (FP) represents a false
positive example, and False Negative (FN) represents a false negative example.

In this paper, the R is divided into 11 points (0.0, 0.1, 0.2 . . . , 1.0). To evaluate the network
model from several aspects, the average accuracy rate is generally selected as the judgment index in the
object detection task. The AP in the object detection task has a different definition from conventional
mathematical statistics. In the network model, the recall rate is the abscissa and the accuracy is the
ordinate, and the Precision-Recall (P-R) curve can be drawn. The area enclosed by the P-R curve and
the coordinate axis is the AP value.

On the validation set, this paper makes statistics of the predicted value and the actual true value.
When setting different classification thresholds, the bounding box IOU and the classification score
threshold are used as variables to calculate the R and accuracy of the validation set. The P-R curve
of the model is plotted on the validation set to calculate the network AP. The trained network model
is used to predict the divided validation set and based on the predicted output classification scores
and bounding box coordinates, the predicted results are compared to the labels using the evaluation
algorithm. Different IOU thresholds are set to calculate TP, FP, and FN under different thresholds,
and plot the recall and accuracy of 2D and 3D object detection on the P-R coordinate system. The
results are shown in Fig. 7.

Figure 7: (Continued)
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Figure 7: P-R Curve. (a–c) are the 3D P-R curves of the 3D object detection results of the KITTI
validation set of cars, pedestrians, and cyclists, respectively. (d–f) are the P-R curves of 2D object
detection after projecting the 3D bounding box to the 2D bounding box

The Easy, Moderate, and Hard in Fig. 7 are divided according to the size of the pixel value
occupied by the object and the degree of occlusion. The area enclosed by the P-R curve is calculated
to obtain the average network accuracy. As shown in Table 2, which includes the average accuracy of
2D and 3D object detection.

Table 2: Network model evaluation AP (%)

Benchmark 3D detection AP (%) 2D detection AP (%)

Easy Moderate Hard Easy Moderate Hard

Car 90.96 81.46 75.39 94.67 91.36 84.11
Pedestrian 58.68 49.49 45.72 63.53 54.03 51.89
Cyclist 77.48 62.28 50.55 87.25 77.26 71.05

3.6 Network Training Parameters

On the KITTI [30] dataset, the MFF-Net training parameters are set as follows: Mini-batch is
used in the training set to reduce the calculation amount, and the batch size is set to 6. 0.00256 is used
as the initial network learning rate on the training set. The learning rate of the 800th generation and the
850th generation is reduced to 0.1 times of the original, to avoid the large learning rate of the network in
the later stage, which leads to the loss of excessive vibration during training, and the slow convergence
speed of the network in the later stage. To ensure the fairness of the comparative experiments, the
training parameters of the baseline network 3D-CVF [21] and the addition of the STP algorithm and
AEE fusion network are consistent with the training parameters of the MFF-Net network. In the RPN
stage, since a large number of regions in a traffic scenario belong to the background, far more negative
samples are generated than positive samples. Therefore, in the candidate region stage, the network
performs batch processing and selects 128 samples at a time. The positive and negative samples are
selected at a ratio of 1:3 as the input of the second-stage network. For the nuScenes [31] dataset, this
paper uses the same learning rate as in the KITTI dataset to train the network, and the batch size is
set to 2. Due to the class imbalance problem in the nuScenes dataset, this paper adopts the method of
DS sampling [41] to alleviate this problem.
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3.7 KITTI Test Results and Analysis

To verify the effectiveness of the STP algorithm, AEE fusion network, and A-NMS algorithm,
the ablation experiment are designed for different network modules and all ablation experiments are
implemented based on the KITTI [30] data set.

Table 3 shows the object test results of the original baseline 3D-CVF [21] network, STP algorithm,
AEE fusion network, and A-NMS algorithm on the KITTI validation set. A detailed comparison is
made on the performance of each network, including network detection accuracy and speed. The test
data is specifically analyzed as follows:

(1) As shown in Table 3, the average detection accuracy (mAP) of the STP algorithm on the
KITTI dataset is 80.32%, which is 0.3% higher than the baseline network 3D-CVF. The
STP algorithm changes the cross-projection transformation method of the baseline network
3D-CVF and integrates the STP algorithm. The experimental data confirm that the STP
algorithm transforms the 2D image feature into a point cloud BEV feature. This method
enables better correspondence between the two features, which can improve the accuracy of
object detection. At the same time, compared with 3D-CVF, the detection speed after adding
the STP algorithm is only reduced by about 0.8 ms, and the network still has a faster detection
speed. The experimental results show that the STP algorithm only increases a small amount of
computation while improving the detection accuracy of 3D-CVF.

(2) It can be seen from Table 3 that the simultaneous addition of the STP algorithm and the AEE
fusion network reflects the attention to important features and the suppression of unnecessary
features. The average accuracy of 3D object detection on the KITTI dataset is 81.72%, which
is higher than that of only adding the STP algorithm. With an increase of 1.4%, the detection
speed is only reduced by about 0.5 ms, and real-time detection can still be guaranteed.

(3) To remove a large number of unnecessary overlapping bounding boxes extracted by the RPN
during the 3D object detection, this paper proposes MFF-Net, which has an average 3D object
detection accuracy of 82.60% on the KITTI dataset. Compared with the 3D-CVF baseline
model, the performance improves by 2.58%.

Table 3: Performance comparison after adding each module

Method Modality STP AEE A-NMS Runtime (ms) 3D detection mAP (%) 3D detection AP (%)
Easy Moderate Hard

3D-CVF LIDAR + RGB 78.0 80.02 88.69 78.65 72.73
MFF-Net LIDAR + RGB √ 78.8 80.32 88.93 78.89 73.16√ √ 79.3 81.72 90.06 80.64 74.45√ √ √ 80.0 82.60 90.96 81.46 75.39

The above experimental results show that the modules added in this network design can learn the
correlation between channels and screen out the attention for the channels. Although the calculation
amount is slightly increased, it does not affect the real-time detection, and the obtained results are
obtained. With relatively high detection accuracy, with the development of network hardware, the
real-time performance will be further improved.

Table 4 shows the experimental comparison between the baseline network and the 3D object
detection networks currently popular in the various KITTI dataset lists. In single-modal detection,
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this paper selected VoxelNet [10], PointRCNN [13], SECOND [42], PointPillars [12], and STD [43]
networks; In multimodal fusion network, this paper selected PointPainting [2], MV3D [20], AVOD [14],
F-PointNet [44] and 3D-CVF [21] networks. According to Table 4, The MFF-Net network proposed
in this paper has obvious advantages compared with other networks. Although it is slower than some
networks in detection speed, it achieves an average accuracy of 90.96%, 80.97%, and 75.39% on the
three important evaluation indicators Easy, Moderate, and Hard. Compared with the average accuracy
of the baseline 3D-CVF network on the Easy, Moderate, and Hard evaluation metrics, the accuracy
of MFF-Net is improved by 2.27%, 2.81%, and 2.66%, respectively.

Table 4: Comparison of different algorithms for the KITTI validation set

Method Modality Runtime (ms) 3D AP (%)

AP (Easy) AP (Moderate) AP (Hard)

VoxelNet [10] LIDAR 220 77.36 65.33 57.64
PointRCNN [13] LIDAR 100 87.41 75.29 68.20
SECOND [42] LIDAR 50 83.41 73.31 66.21
PointPillars [12] LIDAR 16.8 82.40 75.12 67.25
STD [43] LIDAR 80 87.89 79.86 74.65

Point Painting [2] LIDAR&Image 103 82.10 74.86 67.01
MV3D [20] LIDAR&Image 240 71.12 62.24 55.34
AVOD [14] LIDAR&Image 80 77.30 68.38 63.80
F-PointNet [44] LIDAR&Image 168 81.23 70.44 62.13
3D-CVF [21] LIDAR&Image 78 88.69 78.65 72.73

MFF-Net LIDAR&Image 80 90.96 81.46 75.39

Table 5 presents an experimental comparison between MFF-Net and the 2D object detection
accuracy measured on the KITTI [30] dataset using you only look once (YOLO) V4 [45] and YOLO
V5 [46]. As can be seen in Table 5, the MFF-Net network has clear advantages over other 2D object
detection networks. Although the detection speed is slower than that of the YOLO V4 [45] and YOLO
V5 [46] networks, the MFF-Net network achieves 94.67%, 91.36%, and 84.11% average accuracies
on three important evaluation metrics, respectively. The average accuracy in the Easy, Moderate, and
Hard evaluation indicators is higher than that of YOLO V4 [45] and YOLO V5 [46].

Table 5: Results compared with different 2D object detection algorithms on the KITTI validation set

Method Modality Runtime (ms) 2D AP (%)

AP (Easy) AP (Moderate) AP (Hard)

YOLO V4 [45] Image 28 91.84 89.37 77.56
YOLO V5 [46] Image 36 92.41 90.49 79.82

MFF-Net LIDAR&Image 80 94.67 91.36 84.11
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3.8 nuScenes Test Results and Analysis

This paper also tests MFF-Net on the nuScenes [31] dataset to validate the performance obtained
by multimodal fusion. To this end, this paper compares the proposed MFF-Net network with a
baseline network whose structure is the same as MFF-Net, except that the camera results are not
used. For the fairness of the comparison, this paper also applies the DS sampling strategy to the
baseline network. To compare the experimental results, this paper also adds the performance of Second
[42], PointPillar [12], PMPNet [47], CVCNet [48], and HotSpotNet [49]. Table 6 also provides the
average precision AP of 10 classes, mAP, and nuScenes detection score (NDS) implemented by several
other popular 3D object detection networks at this stage. As can be seen from Table 6, in the metrics
of mAP and NDS, the performance of MFF-Net is improved by 5.5% and 6.2% over the baseline
network in terms of mAP and NDS evaluation metrics, respectively. The method proposed in this
paper consistently outperforms baseline networks in terms of AP for all classes. Compared with other
methods in Table 6, MMF-Net also shows better performance.

Table 6: This paper compares the performance with other methods on the nuScenes validation set.
This paper trains the model on the nuScenes training set and evaluates it on the nuScenes validation
set. The performance of other methods is obtained by copying their official code. The bold font in the
table indicates the performance of the best-performing method in this column

Class Car Ped. Bicycle Bus Trailer Barrier Motor. C.V. Truck T.C. mAP NDS

Second [42] 67.3 57.6 1.0 33.5 5.4 27.5 15.2 1.4 22.8 23.7 25.5 34.7
PointPillars [12] 68.4 59.7 1.1 28.2 23.4 38.9 27.4 4.1 23.0 30.8 30.5 39.8
PMPNet [47] 76.7 72.5 7.9 44.1 39.1 42.8 37.7 17.1 30.6 54.8 42.3 49.1
CVCNet [48] 78.7 77.8 29.4 40.6 46.4 67.9 53.1 18.6 41.1 60.6 51.4 58.3
HotSpotNet [49] 79.2 78.3 33.6 51.4 49.3 68.6 60.5 20.3 47.9 69.0 55.8 62.0
LiDAR-only baseline 78.2 70.7 30.5 52.6 42.1 59.7 54.8 17.6 43.2 56.9 50.6 57.4
MFF-net 82.6 78.5 34.8 55.9 47.4 67.4 59.7 22.3 48.9 63.8 56.1 63.6

It should be noted that the STP algorithm designed in this paper can make the obtained BEV
image features closer to the point cloud BEV features. By using the AEE fusion network, each feature
channel is given a different weight to increase the important model features and suppress unimportant
features, thereby enhancing feature directivity. In particular, when identifying some occluded and
truncated vehicle objects, it can fully extract insignificant features for judgment, which greatly reduces
the missed detection rate in vehicle detection. By adding the A-NMS algorithm and optimizing
the Soft-NMS [32] algorithm, the 3D object bounding box is more accurate, which increases the
probability of false detection of occluded and truncated vehicles. The above experiments reveal that the
built MFF-Net network can effectively improve the network detection accuracy while still maintaining
the real-time detection speed. Therefore, the network is more suitable for 3D object detection in the
autonomous driving scenario.

The visual test results of this algorithm are shown in Figs. 8∼12. The KITTI validation set images
and point cloud data are selected to test the vehicle object detection effect of the MFF-Net network
in different complex scenarios. The following is the demonstration and analysis of missed and false
vehicle object detection result under different illumination, different degrees of occlusion, and different
detection distances.
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Figure 8: Test results under different lighting conditions

Figure 9: Detection results in the urban street scenario
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Figure 10: Detection results when a complex and dense vehicle scenario is severely occluded

Figure 11: Object detection results under different distances

Figure 12: Test results under missed detection
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Fig. 8 shows the 3D object detection results of the network MFF-Net in the case of drastic changes
in the illumination of the road scene. In Fig., the top is the point cloud detection result, the green
3D bounding box is the vehicle detection bounding box of the network in this paper, the yellow 3D
bounding box is a pedestrian on a bicycle, and the blue 3D bounding box is a pedestrian. For better
visualization, the detected 3D boxes are projected into the image below, resulting in 2D bounding boxes
in green, yellow, and blue, respectively. It can be seen that in the case of shadows and insufficient
illumination, as shown in Figs. 8a and 8f, the strong road light and strong road reflection light are
shown in Figs. 8b–8e, the network designed in this paper still has good detection results, which proves
that the network model has strong adaptability to illumination changes. And the network also has a
certain ability to detect small objects such as pedestrians and bicycles.

Figs. 9∼10 shows the 3D object detection results under different degrees of occlusion. It can be
seen that the network model designed in this paper has good detection results in the cases of slight
occlusion in Figs. 9a and 9b, and severe occlusion in complex and dense vehicle scenes in Figs. 10a
and 10b. Therefore, the model proposed in this paper is more suitable for 3D object detection in a
variety of complex real traffic scenes.

Fig. 11 shows the object detection results at different distances. It can be seen that the network
has robust 3D object detection capabilities at different distances.

Fig. 12 shows the missed detection of the MFF-Net network proposed in this paper in the road
scene. For Figs. 12a and 12b, the vehicle in the red box in the lower image is omitted. The possible
reason for the missed detection is that the network’s 3D object detection performance under complex
traffic environments and high-density occlusion needs to be further improved. Therefore, in the actual
complex traffic environment scene, how to reduce missed detection and further improve the accuracy
of 3D object detection will still be the focus of future research in this paper.

4 Conclusion

This paper proposes a multimodal feature fusion method for 3D object detection. First, this
paper transforms the image feature map into image bird’s-eye view features that highly correspond
to point cloud bird’s eye view features, to better concatenate image features and point cloud features.
An attention mechanism is then used to increase the expressiveness of different features, focusing on
important features while suppressing unnecessary features. Finally, to further improve the accuracy
of the object detection algorithm in the entire fusion network, this paper proposes an adaptive non-
maximum suppression (A-NMS) method to remove a large number of overlapping bounding boxes
generated during the network detection process. Experimental results show that the MFF-Net method
can well improve 3D object detection performance compared to previous state-of-the-art methods on
3D object detection benchmarks on nuScenes and KITTI datasets.
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