
This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided
the original work is properly cited.

echT PressScience

DOI: 10.32604/cmc.2023.038362
Article

Visualization for Explanation of Deep Learning-Based Defect Detection
Model Using Class Activation Map

Hyunkyu Shin1, Yonghan Ahn2, Mihwa Song3, Heungbae Gil3, Jungsik Choi4,* and Sanghyo Lee5,*

1Center for AI Technology in Construction, Hanyang University ERICA, Ansan, 15588, Korea
2School of Architecture and Architectural Engineering, Hanyang University ERICA, Ansan, 15588, Korea

3ICT Convergence Research Division, Korea Expressway Corporation Research Institute, Hwaseong, 18489, Korea
4Department of Architecture, College of Engineering, Kangwon National University, Samcheok, 25913, Korea

5Division of Smart Convergence Engineering, Hanyang University ERICA, Ansan, 15588, Korea

*Corresponding Authors: Jungsik Choi. Email: jungsikchoi@kangwon.ac.kr; Sanghyo Lee.
Email: mir0903@hanyang.ac.kr

Received: 09 December 2022; Accepted: 13 February 2023

Abstract: Recently, convolutional neural network (CNN)-based visual inspec-
tion has been developed to detect defects on building surfaces automatically.
The CNN model demonstrates remarkable accuracy in image data analysis;
however, the predicted results have uncertainty in providing accurate informa-
tion to users because of the “black box” problem in the deep learning model.
Therefore, this study proposes a visual explanation method to overcome the
uncertainty limitation of CNN-based defect identification. The visual repre-
sentative gradient-weights class activation mapping (Grad-CAM) method is
adopted to provide visually explainable information. A visualizing evaluation
index is proposed to quantitatively analyze visual representations; this index
reflects a rough estimate of the concordance rate between the visualized heat
map and intended defects. In addition, an ablation study, adopting three-
branch combinations with the VGG16, is implemented to identify perfor-
mance variations by visualizing predicted results. Experiments reveal that
the proposed model, combined with hybrid pooling, batch normalization,
and multi-attention modules, achieves the best performance with an accuracy
of 97.77%, corresponding to an improvement of 2.49% compared with the
baseline model. Consequently, this study demonstrates that reliable results
from an automatic defect classification model can be provided to an inspector
through the visual representation of the predicted results using CNN models.
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1 Introduction

Buildings typically deteriorate as they age owing to external environmental factors and inadequate
maintenance. Thus, periodic building condition assessment is crucial for preventing deterioration and
preserving the health of building structures. Through periodic inspection, maintenance work can be
planned based on the current state of building conditions to decelerate building degradation [1,2].
Visual inspection, vital for assessing building conditions, aims to check the exterior conditions of
building structures to ensure sustainable maintenance [3,4]. Hence, the types of defects that affecting
building conditions must be accurately identified with adequate explanations. However, traditional
methods, which are human-oriented periodic visual inspections, require considerable human resources
and time. Thus, thoroughly investigating the exterior defects of structures in large buildings and
inaccessible environments is challenging using the traditional approach [5].

The convolutional neural network (CNN)-based visual inspection method is widely used to
investigate surface defects in concrete structures. Recently, several studies have been conducted
to develop alternative methods that can automatically recognize damaged information in images
using artificial intelligence techniques. Recent studies using deep learning-based image analysis have
demonstrated that the CNN model performs remarkably [6–8]. Multiple studies have reported that
the CNN model is a suitable methodology for extracting the various characteristics of structural
surfaces from image data. However, the deep learning-based classification model has limitations in
providing convincing results when dealing with images, such as compounded defects. The deep learning
model only presents predicted results based on probabilistic inference with unknown classification
grounds; thus, identifying whether the damage classification result is accurate without the grounds
of the output result is challenging. Improper feature extraction during the inference process leads to
unintended defect prediction and incorrect building conditions assessment. Consequently, trusting
the model’s output results is challenging. Furthermore, the results derived from the CNN-based
defect detection models cannot be validated when the ground truth of the model is not provided.
Thus, its application for evaluating the condition of building structures presents limitations. To apply
the artificial intelligence technology to the automatic diagnosis of building conditions and ensure
the credibility of the output information, the results of the CNN-based model must be interpreted
accurately.

One way to interpret the prediction results of the CNN model is to visualize activated feature maps.
In recent years, gradient-weights class activation mapping (Grad-CAM) [9] has been used extensively
as a visualization method to ensure the reliability of predicted results. For instance, Kim et al. [10]
used Grad-CAM to understand a steel frame damage detection model intuitively. Liu et al. [11] and
Wang et al. [12] used it to highlight cracks and damaged ceilings, respectively. Guo et al. [13] used it
to visualize multi-defect classification results, including cracks, blistering, biological growth, spalling,
delamination, and peeling. The Grad-CAM visualization approach enables end users to understand
the prediction results of the CNN models. Thus, Grad-CAM was used in this study as the visual
explanation method to address the limitation of uncertainty in the results of CNN-based defect
identification; it presents the activated regions relevant to the predicted results using the gradient
information. In addition, herein, an evaluation method for the coincidence between ground truth
annotated defects and the results generated by visualization approaches was proposed. The proposed
approach can verify deep-learning results by providing visual information to the CNN-based concrete
damage classification prediction results. Moreover, it can provide reliable information to inspectors
for assessing the appearance of concrete structures. This study contributes to visualizing multi-defects
identification using the Grad-CAM approach. Subsequently, an ablation study adopting three-branch
combinations to the CNN model with visualizing results and performance variation was performed.
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Finally, a visualization evaluation index was proposed for the quantitative assessment of defect areas
based on the visualized feature maps of the CNN model.

2 Literature Review

To maintain structural safety and health, the identification and detection of defects on the
surface of a structure play a crucial role in regular building inspections. Therefore, defects must be
accurately detected and reliable information must be collected to assess building conditions. Computer
vision-based inspection approaches using deep learning methods have improved the efficiency and
quality of visual inspection. Hence, numerous studies have focused on the automatic detection of
defects on concrete surfaces, such as crack detection [14–19] and multi-damage detection [20–22]. For
instance, Lei et al. [14] and Yu et al. [15] developed a vision-based concrete crack-detection model,
and Zang et al. [16] improved the accuracy of the crack-detection model by applying a progressive
loss function in the training phase. Yu et al. [17] proposed an optimized CNN model to improve
the accuracy of crack detection in concrete structures. Ali et al. [18] evaluated the performance of
several convolutional neural networks and proposed a customized CNN with the best performance
for crack detection. Moreover, Kim et al. [19] proposed a CNN-based crack detection model that
reduced the computational cost and efficiently trained a deep learning model to detect crack damage.
In terms of multi-damage classification and detection, Shin et al. [20] proposed an automatic damage
recognition model for multi-damage classification, and Jiang et al. [21] conducted experiments using
a deep-learning approach to classify various defects, including cracks, spots, rebar exposure, and
spalling damage. Dong et al. [22] proposed multiple defect detection methods for diagnosing tunnel
lining damage, such as cracks, spalling, and damage containing both cracks and spalling. Recent
research demonstrated that deep learning models can automatically classify and detect several types
of damage with satisfactory performance [19–22]. However, most studies focused on proving that the
deep learning model accurately recognizes damage. These studies had shortcomings in explaining the
results of the prediction; essentially, when the model presents an unexpected output, they offered no
explanation for the unexpected outcomes. Additionally, they did not clarify how the model predicts
the outcome accurately. Consequently, even if a high-accuracy model is presented to the user, the user’s
complete trust in the deep learning model is limited.

To overcome these limitations, visualization techniques, which can identify the reliability of CNN-
based model results using gradient feature vectors, have been developed to intuitively understand the
localization of intended defects. For instance, Simonyan et al. [23] computed the partial location of an
object using weakly supervised class saliency maps to visualize a large-scale visual recognition dataset
classification. Babiker et al. [24] visualized the VGG16 network predictions and compared them with
those of other interpretation approaches. Selvaraju et al. [9] proposed the Grad-CAM visualization
method using gradient weight, emphasizing the location of the expected portions of the target image
with heatmaps. Grad-CAM has the benefit that it does not need to reform the integrating layers
with visual feature mapping. Therefore, in this study, Grad-CAM was adopted to visualize defect
identification.

Liu et al. [11] proposed a UNet-based visual explanation model to interpret the crack detection
model using Grad-CAM. They demonstrated a transparent UNet-based model combining several
encoder networks, such as VGG, ResNet, DenseNet, EfficientNet, InceptionNet, and MobileNet, for
crack detection. The results revealed that the model combined with the VGG model performs the
best in terms of prediction and explanation. However, only crack detection was implemented, and
other defects were not considered. Guo et al. [13] adopted Grad-CAM to visualize the learned features
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of the proposed model with various defects, such as peeling, cracks, and delamination. The visual
expression highlights the target object in the images with the classification of defect types. Although
these approaches demonstrate that the visualization method can explain convolution-based networks,
they do not have a quantitative evaluation of visualizing the output of the approach. In addition,
comparing the variation between customized CNN models that are refined using various branches,
such as attention networks, has limits. Thus, to achieve both visualizing predicted defects according to
several refined models and quantitative evaluation of the results, a weakly visualizing evaluation index
(VEI) and several refined VGG16 models that explain the regions of defect features using Grad-CAM
are proposed.

3 Methods

This study explored several classification models based on the concrete multi-damage recognition
model proposed in a previous study [20] and applied a visualization method to identify representative
features in concrete damage images. To explain the results of the trained model, the Grad-CAM
visualization technique [9] was applied to the extracted feature maps of each model. In addition,
the effect of additional layers on performance was examined by investigating the behavior of the
feature maps based on the modules attached to the CNN model through visualization. An ablation
study was conducted using various alternative models to verify the performance of the trained model.
Additionally, the changes in performance and feature maps were examined by visualizing the results
of each experiment.

3.1 Visualization of Damage Recognition

The feature map visualization technique Grad-CAM [9] was used to visualize the damage recogni-
tion results from the CNN-based prediction models and confirm the reliability of the results. Because
convolutional features in the CNN model contain spatial information, the regions of interest for
features can be determined by visualizing the gradient information. Grad-CAM visualization explains
feature extraction by establishing appropriate prediction interpretability from a neural network.

Fig. 1 shows examples of how gradient information determines the damage class. The represen-
tative neurons or features are the most influential in decision-making when recognizing input image
data. Grad-CAM can supplement the explanatory interpretation of automated decisions.

To obtain a class discriminative localization map, representative feature maps were extracted from
the pre-trained weights for the target damage class. Subsequently these feature maps were spatially
pooled using gradient information to obtain the weight (ac

k), for each class, as shown in Eq. (1) where
ac

k indicates the gradient values returned to the convolution layer in the backpropagation phase, Z
is the number of pixels in the feature maps, yc is the output value of the convolution layer, and Ak

ij

represents the kth convolution feature map.

ac
k = 1

Z

∑
i

∑
j

δyc

δAk
ij

. (1)

After the calculated ac
k is multiplied by the feature map Ak, it is inputted to the rectified linear unit

activation function in Eq. (2) [25] to obtain an activated map that visualizes the important features
of the convolution layer. Compared with the previous class activation-mapping method [26], the
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abovementioned method is applicable to various models because it is not restricted in terms of the
form and position of the layer.

Lc
Grad−CAM = ReLU

(∑
k

ac
kA

k

)
. (2)

Figure 1: Example of Grad-CAM output based on prediction results

Fig. 2 shows the visualization process of the extracted feature maps using gradients and the
heatmap method. Fig. 3 shows the feature extraction and visualization of the operation process
from the concrete damage recognition model. The first step is to generate an input dataset for
training the CNN model. Subsequently, several models combined with auxiliary layers, such as batch
normalization (BN), hybrid pooling (HP) layers, and attention modules, are explored. Next, the trained
model predicts concrete multi-defects and transfers them to the Grad-CAM visualization engine. In
Grad-CAM implementation, activated feature maps are extracted from the optimized CNN model.
Subsequently, a heatmap is used to visualize the focused regions of defects on the feature map. The
results show a rough visualization of the heatmap of the convolutional feature map. Finally, the
visualized map is evaluated using the VEI calculator.

3.2 Ablation Study

An ablation study identifies the contributions of various strategies that affect model performance
by removing the layers or modules used in the proposed method. The convolution-based concrete
multi-damage recognition neural network [20] used in this study contains various auxiliary layers and
modules, such as the BN layer, HP layer, and attention network modules. Whether all three strategies
directly improve the deep convolutional neural network or whether the proposed model correctly
detects concrete damage from the images is currently unknown. To demonstrate the effectiveness of
the various strategies, several experiments were conducted herein using a concrete damage-recognition
model. The following section describes the experimental setup and presents the test results.
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Figure 2: Schematic of visualization method

Figure 3: Feature extraction and visualizing operation process from concrete damage-recognition
model

4 Implementation
4.1 Dataset

This section describes the data acquisition procedure used to establish the dataset of concrete
damage images. First, the target classes were defined based on the type of damage on the surface of
deteriorated concrete structures. Data categories must be established to develop an automatic concrete
damage classification and recognition model. Next, a concrete damage database was generated using
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images of various types of damage obtained using an unmanned aerial vehicle (resolution, 5472 ×
3648) and digital cameras (resolution, 4032 × 3024). Subsequently, the amount of image data was
increased using a data-augmentation technique to prevent overfitting during training and improve
the performance and accuracy of the model. Finally, the dataset was segmented into training and
validation data to train the model, and test data were used to verify the performance of the optimized
model.

In this study, the types of defects on the concrete surface (i.e., cracks, leakages, peeling-out,
and rebar exposure), including the nondamaged type, were defined. A total of 1981 high-resolution
images were collected using an unmanned aerial vehicle and digital camera. The datasets were set
to a ratio of 1430 to 355 (the training and validation data together constituted approximately 90%
of the total dataset), whereas the remaining 196 images (10%) were used as a test dataset. The high-
resolution image was resized to a minimum-resolution image (64 × 64), which was adopted by the
VGG16 model to reduce the computational cost. For better training and performance of the CNN,
a data augmentation strategy, such as horizontal and vertical flipping, rotation invariance, random
brightness, and image cropping, was applied [27]. However, for the test dataset, only horizontal
flipping with random cropping was applied because the test dataset must be set in an equivalent form to
the actual environment. The augmented training, validation, and test datasets for the concrete defects
are presented in Table 1.

Table 1: Number of concrete damage images obtained via data augmentation

Types C0 C1 C2 C3 C4 Total

Raw dataset 412 530 563 268 208 1,981
Train dataset 297 382 406 194 151 1,430
Val dataset 74 95 101 48 37 355
Test dataset 41 53 56 26 20 196
Train dataset _DA 16,000 16,000 16,000 16,000 16,000 80,000
Val dataset _DA 4,000 4,000 4,000 4,000 4,000 20,000
Test dataset _DA 2,380 3,000 3,019 1,435 1,086 10,920
Note: C0: Non-damage, C1: Cracks, C2: Peeling-out, C3: Rebar exposure, C4: Leakages, DA: Data augmentation.

4.2 Experimental Setting

This section describes the experimental settings for investigating the results of several models
connected to the branches using various strategies. For this portion of the study, a CNN model based
on the VGG16 [28] was used as the baseline model. First, simple auxiliary layer-combined models
[20] including BN, HP, single attention (AT_S), and multi-attention modules (AT_M) were examined
using a 64 × 64 image dataset. All the training stages adopted the same data augmentation strategies.
The optimizer used in the training process was an adaptive moment estimation with a learning rate of
10−4 [29]. Network training was implemented for 440 K iterations with 10 K epochs, and the trained
weights were recorded at 0.5, 1, 2, and 10 K epochs. The best performance weights were obtained by
monitoring the lowest validation loss.
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4.3 Performance Metrics

The following four metrics were used to assess the model performance.

Accuracy = True Positive + True Negative
Total Samples

, (3)

Precision = True Positive
True Positive + False Positive

, (4)

Recall = True Positive
True Positive + False Negative

, (5)

F1 − Score = 2 · Precision · Recall
Precision + Recall

, (6)

where “true positive” implies that the actual and predicted positive values match, and “true negative”
implies that the actual and predicted negative values match; essentially, they indicate the number of
correctly predicted classes that constitute the entire class. For the assessment of the visual result map,
a weak VEI was proposed, as shown in Eq. (7).

VEI =
∑

i

∑
j
Vij/

∑
i

∑
j
Gij (7)

This formula calculates the index by comparing the segmented labeled ground truth (Gij) and heat
maps from the visual result maps (Vij). The defect on the ground truth (Gij) is labeled as one, and the
background is labeled as zero. Thus, the background of the image is excluded from calculating the
index, and the labeled damage and heatmap are compared pixelwise, according to Eq. (8).

Vij =
{

Hij if fij = 0
0 if fij �= 0

, fij = Hij − Gij, (8)

Hij =
{

1 if m > 0.5
0 otherwise

∀m ∈ ĥi,j, 0 ≤ m ≤ 1, (9)

ĥij = hi,j − hmin

hmax − hmin

, (10)

where Hij is the binarized heat map, which is the result of aggregating the weight values of the model.
The binary heatmap function (Hij) is established according to Eq. (9) after performing normalization,

as shown in Eq. (10), wherein ĥij denotes the normalized visualized intensity of the heatmap. The
symbolic information is summarized below. Herein, Hij was used as an indicator to identify how
accurately the visual map looked at the damaged location.

hi,j: Visualized intensity of a pixel in the heatmap

ĥij: Normalized hi,j

Hij: Heatmap binary function

Vij: Correctly visualized pixels in labeled pixels

Gij: Ground truth of labeled pixels
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5 Results and Discussion
5.1 Results of Ablation Experiments

Table 2 summarizes the test accuracies based on the best performance weights. Compared with
the baseline VGG16 model, the proposed models demonstrated improvements, except for some
networks. The VGG16_HP model, which alternated from the max-pooling layer to the HP layer,
exhibited performance improvement. The average pooling layer was speculated to prevent feature
elimination via max-pooling operations. Conversely, the BN-applied models improved the accuracy
and afforded faster convergence to optimization compared with the other models. As indicated in
the table, the BN + HP model performed better than the baseline VGG16 model. By contrast, the
combination of the HP and attention network block performed worse than the baseline model. The
performance was speculated to decrease because the average pooling applied to the HP conflicted
with the attention network based on the representative features. Hence, a BN layer was added to
the concrete damage recognition model to reduce the weight variance during the training process,
from which the best performance was achieved. Based on the above results, a method to increase the
accuracy of the concrete recognition model using CNN architecture by applying various auxiliary
methods was investigated. An attention mechanism was applied to learn the features extracted from
an image intensively. The proposed model was excellent for identifying the representative features of
damaged images. Fig. 4 presents the confusion matrix for the best-performing model.

Table 2: Best performances for all epochs based on experimental results

Models Loss Accuracy Precision Recall F1-score

VGG16 (Baseline) 0.3528 0.9528 0.9535 0.9523 0.9529
VGG16+AT_S 0.9529 0.9495 0.9503 0.9495 0.9499
VGG16+AT_M 0.4492 0.9522 0.9525 0.9523 0.9524
VGG16+BN 0.1560 0.9663 0.9670 0.9661 0.9665
VGG16+HP 0.2160 0.9603 0.9610 0.9601 0.9605
VGG16+BN+HP 0.2502 0.9682 0.9682 0.9680 0.9681
VGG16+BN+AT_S 0.3146 0.9598 0.9597 0.9596 0.9597
VGG16+BN+AT_M 0.2597 0.9643 0.9645 0.9643 0.9644
VGG16+HP+AT_S 0.4546 0.9355 0.9365 0.9350 0.9357
VGG16+HP+AT_M 0.3409 0.9447 0.9455 0.9443 0.9449
VGG16+BN+HP+AT_S 0.3006 0.9585 0.9588 0.9584 0.9586
VGG16+BN+HP+AT_M (Proposed) 0.1598 0.9777 0.9780 0.9774 0.9777
Note: HP comprises the max and average concatenated pooling layer and convolution layer. HP_1 implies HP, except for the convolution
layer (i.e., only max and average concatenated pooling). HP_2 implies HP except for the average pooling layer; it only adds the 1 × 1
convolution layer after the max-pooling layer in the VGG16 model.

5.2 Visualization for Explaining Defect Detection

To demonstrate whether the extracted feature maps can help in distinguishing between damage
classes, Grad-CAM visualization was performed using pre-trained weight variables. Fig. 5 shows
the visualization results and VEI of the features extracted from the concrete damage recognition
model. The heat map expressed based on Grad-CAM provided the basis for the prediction results.
Evidently, for the models with an accuracy exceeding 0.96, feature maps were generated at the damage
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location shown in the image, thus indicating accurate prediction results. The VEI could assess the
coincidence of the defect area between the ground truth, which is the expected result, and the visual
representative map.

Figure 4: Confusion matrix of the experimental results from the best performance model

However, when the heat maps of the models (VGG16, VGG+AT_S, and VGG16+HP) exhibited
misclassification in the peeling-out image, that is, Fig. 5c, a fine line was focused instead of peeling out
to predict the cracks. Model VGG16+AT_M was misjudged as leakage owing to the vertical feature
map of the image. By visualizing the experimental results of the model by combining various modules,
the model in which BN was applied was confirmed to activate the damaged area more significantly.
Moreover, compared with the single-attention module, when multi-attention was applied, the features
were more evenly distributed and analyzed for multiple damage types.

The visualization results can be divided into four types: good prediction and good visual
representation (Type A), good prediction but bad visual representation (Type B), wrong prediction and
bad visual representation (Type C), and wrong prediction but good visual representation (Type D).

In the case of Type A, the heap map shape was formed in the part where the damage appeared, and
an accurate prediction result was displayed. In the case of cracks and leakages, evidently, the heat map
was formed according to the location and shape of cracks and leakages. Peeling and rebar exposure
were emphasized throughout the damaged area.

By contrast, for Type B, although the model predicted the correct result, the location of the heat
map was concentrated in the background rather than in the location of the damage. This could be
interpreted as a case in which the model cannot extract meaningful features from the image because
of insufficient learning but randomly outputs the correct answer. Thus, the results from Type B
were described as a “random answer”. This “random answer” state renders difficulty in achieving
repeatability in the model output when analyzing images similar to the corresponding type; therefore,
sufficient model training is required.

Type C exhibited incorrect predictions and poor visual representation. Evidently from Fig. 6h, the
heat map was extracted vertically along the line, which can be considered a case of misunderstanding
leakage.

By contrast, as in Type D, the intended correct answer was peeling-out; however, it was a case
where the model found microcracks in the image, extracted features accurately, and predicted cracks.
Moreover, even if the correct answer is different from the model developer’s intended answer, that is,
even if an incorrect answer was extracted, if the other types displayed on the image are accurately
predicted, this can provide helpful information to the user. Consequently, using the visual technique,



CMC, 2023, vol.75, no.3 4763

the manners in which the model analyzes and predicts the results, and explores the intended target in
the image according to the performance change were confirmed.

Figure 5: Extracted representative features in concrete damage images obtained using the Grad-CAM
visualization method. Blue label indicates a match between true and predicted damage types, whereas
red label indicates that the predicted results differ from the true damage type. VEI is the visual
evaluation index
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Figure 6: Four types of visualization results

6 Conclusions

In recent decades, numerous efforts have been made for the efficient visual inspection of old
buildings. Several methods have been proposed for inspecting the exterior of buildings using image
information. In particular, deep learning-based damage analysis, which specializes in image analysis,
has laid the foundation for automatically performing existing human-based tasks. However, deep
learning-based image analysis has limitations in obtaining complete trust from users because the model
does not provide a basis for the predicted results. This implies that the analysis process of the deep-
learning model is limited in providing explanations to users because it consists of the “black box.”
Therefore, to solve this problem, this study explored a way to provide explanatory properties to deep
learning models using visualization techniques and presented the basis of model prediction results to
users.

In this study, various CNN models that can automatically classify concrete damage types were
investigated. Four types of damage (cracks, peeling-out, rebar exposure, and leakages) were established
and the VGG16 was set as the baseline model. Subsequently, an ablation study was conducted to
examine the performance change of the refined models based on the connection of various additional
modules. Three different modules (BN, HP, and attention) were used in the experiments. Various
modules were applied to the baseline model, and the corresponding changes in performance were
analyzed. Evidently, the model combined with the HP, BN, and multi-attention modules achieved the
best performance, with an accuracy of 97.77%, corresponding to an improvement of 2.49% compared
with the baseline model.

The Grad-CAM visualization technique was applied to visually confirm the performance change
of the model through the ablation study. The expression of the feature map using visual techniques
was presented as a heat map to visualize the pattern of the type of intended defect. In addition, the
VEI was proposed to assess the visual map coincidence with the defect area. This index can estimate
the approximate visual map precision for the target objects in the visualization model. Evidently, the
better the model performance, the more the number of heat maps generated in the damaged area;
whereas the lower the model performance, the more the number of misclassifications and feature map
patterns or locations expressed in a form different from the intended damage. Notably, heat maps were
not generated in several cases despite accurate classification results. Although this did not affect the
model performance, these cases signify the need for a visually representative map for the reliability of
the deep learning-based models.

This study has some limitations that should be addressed in future work. First, to interpret
the deep-learning results using visualization techniques, the image size used in this study was 64 ×
64 pixels. However, as the model deepens, the size of the feature map becomes smaller; therefore,
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visualization and interpretation limits existed. Second, the variety of image resolutions was less;
thus, more experiments using several image sizes must be conducted in future work. In addition,
because the type of deep learning model used was based on VGG, comparison with other models was
challenging. In future research, visualization techniques must be applied to more diverse models, such
as ResNet, Inception, EfficientNet, and GAN-based deep learning models. Additionally, a method
must be explored to analyze the feature map in more detail using a method to analyze a larger image.
An alternative method is to increase the size of the analyzed image by using the upsampling technique
applied to the segmentation model and conducting a study to express the feature map visually.
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