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Abstract: On-demand availability and resource elasticity features of Cloud
computing have attracted the focus of various research domains. Mobile
cloud computing is one of these domains where complex computation tasks
are offloaded to the cloud resources to augment mobile devices’ cognitive
capacity. However, the flexible provisioning of cloud resources is hindered by
uncertain offloading workloads and significant setup time of cloud virtual
machines (VMs). Furthermore, any delays at the cloud end would further
aggravate the miseries of real-time tasks. To resolve these issues, this paper
proposes an auto-scaling framework (ACF) that strives to maintain the quality
of service (QoS) for the end users as per the service level agreement (SLA)
negotiated assurance level for service availability. In addition, it also provides
an innovative solution for dealing with the VM startup overheads without
truncating the running tasks. Unlike the waiting cost and service cost tradeoff-
based systems or threshold-rule-based systems, it does not require strict tuning
in the waiting costs or in the threshold rules for enhancing the QoS. We
explored the design space of the ACF system with the CloudSim simulator.
The extensive sets of experiments demonstrate the effectiveness of the ACF
system in terms of good reduction in energy dissipation at the mobile devices
and improvement in the QoS. At the same time, the proposed ACF system
also reduces the monetary costs of the service providers.

Keywords: Auto-scaling; computation offloading; mobile cloud computing;
quality of service; service level agreement

1 Introduction

Due to ubiquitous availability, mobile devices have become a universal interface for daily activities.
However, it is still challenging to perform complex computation tasks on mobile devices due to the
limited computation and battery resources [1]. Mobile cloud computing (MCC) has been envisioned as
the potential solution for alleviating the resource limitations of mobile devices [2]. The key premise of
MCC resources is that these resources can be acquired and released as per requirement, i.e., these
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resources are available in an on-demand fashion [3]. In addition, the elasticity feature (i.e., auto-
scaling) of cloud computing enables the cloud service providers (CSPs) to increase and decrease the
resources as per the arriving offloading workloads [3]. Consequently, it aids in the optimum utilization
of precious computing resources. However, auto-scaling brings new challenges for CSPs because
offloading demands are dynamic and infrequent [4]. In addition, cloud resources take significant setup
time, e.g., 150 s [5]. Therefore, the efficacy of auto-scaling solutions can influence the service level
agreement (SLA) and quality of service (QoS). Consequently, the performance of the offloaded tasks
would also degrade because offloading tasks need a quick response [6].

Understanding the implications of resource management becomes more critical when applications
involve humans with uncertain actions as client-side users. Therefore, strict workload estimation
mechanisms like time series forecasting [7] or machine learning [8] can suffer due to the significant
setup time of new cloud virtual machines (VMs). Moreover, computation offloading involves data
transmission over unreliable wireless networks that are generally controlled by third-party operators,
e.g., Vodafone, AT&T, etc. Under such circumstances, any delays at the CSP end would further
aggravate the miseries of the real-time tasks. However, the state-of-the-art MCC auto-scaling solutions
rely on response time [4,8] or threshold rules [9,10], or the tradeoff between waiting costs and leasing
costs [6]. Since MCC involves data transmission over unreliable wireless networks, CSPs cannot be
sued for the violation in response time due to wireless network delays. At the same time, threshold-
rule-based systems require application-specific manual tunings [11]. Similarly, the success of the
tradeoff between waiting costs and service costs-based systems relies on the strictness of waiting
costs. Moreover, such systems also require negotiation of waiting time, after which penalties would
be imposed on the CSPs. Setting optimum waiting time is a tedious task as some smaller offloaded
tasks can save energy if not delayed. Moreover, the optimum task waiting time can still elapse because
of the data transmission over unreliable wireless networks.

To resolve these issues, this paper proposes an auto-scaling framework (ACF) that contributes to
the following:

• An auto-scaling solution that strives to minimize the delays at the CSP end as per SLA
negotiated QoS assurance level for the availability of service.

• An innovative solution for overcoming the VM startup overheads without truncation of running
tasks.

• A series of experiments are conducted to compare the performance of the proposed ACF with
different auto-scaling solutions.

We evaluated the proposed ACF system with CloudSim Simulator [12]. The experimental results
reflect the efficacy of the ACF system over the tradeoff between waiting costs and leasing costs-based
systems, threshold-rule-based systems, and response-time-based systems in terms of better energy
savings at significantly lower monetary prices. In addition, it also minimizes delayed tasks and SLA
violations.

The rest of the paper is organized as follows: Section 2 overviews the related research. Section 3
discusses the background of computation offloading. Section 4 presents the problem statement.
Section 5 presents the design details of the proposed system. Section 6 elaborates on the experimental
setup and results. Finally, Section 7 concludes the paper.
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2 Related Work

Resource management decisions are a response to the performance degradation of the offloaded
tasks at the CSP end. Since computation offloading from mobile devices involves unpredictable
wireless networks, the research community has proposed a wide variety of mechanisms to tackle
this issue. Some argue for using resources from proximate cloud platforms like edge computing [13],
cloudlets [14], ad-hoc virtual clouds [15], or fog computing [16] for minimizing the long-term wide
area network latencies of cloud computing. However, the proximate clouds generally have limited
computing resources [17]. Therefore, these systems also need to lease computational resources from
distant clouds, i.e., auto-scaling is still required in the proximate clouds to reduce leasing costs and deal
with infrequent offloading tasks. Similarly, with remote cloud resources, auto-scaling can minimize the
CSP’s costs under infrequent offloading tasks [7]. Hence, auto resource management as per the arriving
workloads is imperative irrespective of the remote platforms used for offloading the computation
from mobile devices. Furthermore, the significance of queuing delays at the CSP end has also been
highlighted by [6]. Hence this section reviews the contemporary research that focuses on minimizing
the delays at the CSP end in proximate clouds and distant clouds.

In proximate clouds, Reference [18] employs an admission control for the overwhelming offload-
ing tasks. Chamola et al. [19] advocate balancing the workload between lightly and heavily loaded edge
clouds. However, it would require frequent redistribution of running tasks. Meanwhile, Ma et al. [17]
employ collaboration between edge clouds and distant clouds for dealing with the overwhelming
offloading tasks. In addition, this framework proposes an optimization framework for scheduling
the tasks between edge and leased cloud resources assuming that the arriving workload is known in
advance. Hence some sort of resource management is imperative in proximate clouds. The key premise
of ACF is that it can be employed at the proximate clouds for timely procurement of computational
resources from the distant clouds as well as within proximate clouds.

The distant cloud auto-scaling systems can be classified into three broad categories: threshold-
rule-based systems [5,6,20 – 23], response-time-based systems [4,7,8], and a tradeoff between different
parameters [5,6,24]. Threshold-rule-based systems fix upper utilization (UpTh) and lower utilization
(LowTh) for increasing or decreasing the number of running VM instances. The framework discussed
in [9] used UpTh as 70% and LowTh as 30%. Similarly, [10] used UpTh as 75% and LowTh as 50%. The
study discussed in [20] used UpTh as 80% and LowTh as 20% in M/M/s queuing systems with a focus
on optimum utilization of the leasing interval of VMs. Meanwhile, [21] used an M/M/s/k queuing
system with LowTh at 80%. Some different variants of threshold-rule-based systems are proposed
in [22,23]. In [22], auto-scaling decisions are carried out after a pre-defined number of tasks, e.g.,
after 150 tasks. After executing the pre-defined number of tasks, the auto-scaling decisions are again
carried out using threshold rules. Meanwhile, [23] used upper UpTh as 75%. Unlike other threshold-
rule-based systems, it employs classification of the workload and increases/decreases the number of
running VMs when significant changes in the workload are observed. However, such systems can suffer
from sudden workload changes. So, threshold-rule-based systems are application specific and require
a lot of manual tunings for adapting to the QoS requirements [11].

Response-time-based systems need pre-negotiation on the maximum execution time at the CSP
end. System [4] exploits user-specified demands on response time for increasing or decreasing the num-
ber of running VM instances. Moreno-Vozmediano et al. [8] advocate machine learning mechanisms
for workload prediction and employ the M/M/s queuing system for maintaining the VMs as per the
negotiated response time. Similarly, Singh et al. [7] combined threshold rules and queuing theory to
maintain the auto-scaling system’s required response time. However, in the MCC environment, data
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transmission occurs over unreliable wireless networks, so CSPs cannot be sued for the violation in
response time due to network delays. Moreover, there would be delays at the CSP end due to the
granted relaxations in the response time.

Ferber et al. [5] employed a tradeoff between service costs and insufficient VMs and decided
to keep 10% extra VMs. Similarly, Mei et al. [24] used a tradeoff between server speed and server
size for maximizing the profit according to the required service level for the SLA negotiated waiting
time. Meanwhile, the work discussed in [6] exploits a tradeoff between service and waiting costs for
maintaining the VMs as per arriving workloads. However, tradeoff-based systems also require strict
tunings in waiting times and waiting costs. Hence, queuing delays at the CSP end would degrade the
performance of the mobile devices. In contrast, the ACF system strives to minimize queuing delays
the real-time tasks according to the SLA negotiated service assurance level without manually tuning
the waiting costs or threshold rules. Table 1 compares some of the works in the literature considering
their auto-scaling techniques for handling unpredictable offloading workloads.

Table 1: Related works on auto-scaling systems

Work Objective Technique Proactive Optimum
utilization of VM
leasing interval

Suitable for
real-time
applications

[4] Minimize service
costs

Response time No Yes No

[5] Minimize service
costs

Tradeoff between
service costs and
insufficient VMs

No No No

[6] Minimize total costs Tradeoff between
service costs and
waiting costs

Yes Yes No

[7] Minimize service
costs

Response time and
threshold-rule

Yes Yes No

[8] Minimize service
costs

Response time Yes No No

[9] Maximize VMs
utilization

Threshold-rule No Yes No

[10] Minimize service
costs

Threshold-rule No No No

[20] Maximize VMs
utilization

Threshold-rule Yes Yes No

[21] Minimize SLA
violations

Threshold-rule Yes No No

[22] Minimize service
costs

Threshold-rule Yes No No

[23] Maximize service
availability

Threshold-rule Yes No No

(Continued)
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Table 1: Continued
Work Objective Technique Proactive Optimum

utilization of VM
leasing interval

Suitable for
real-time
applications

[24] Maximize profit Tradeoff between
server speed and
server size

No Yes No

Our
work

Maximize service
availability

Minimize nonzero
waiting tasks

Yes Yes Yes

3 Computation Offloading Background

Several researchers have highlighted that computation offloading is beneficial when the local
execution energy/time of a task is higher than the cloud execution energy/time [25]. However, queuing
delays at the CSP end can increase the energy dissipation of the mobile devices because mobile devices
would dissipate the idle CPU energy (Pm

idle) and display energy (Pm
disp) during the waiting time at the CSP

end. Furthermore, turning on the power saving mode (PSM) would increase the data transmission time
[26]. Therefore, some mechanisms are needed to regulate the CSPs to ensure minimal delays for the
offloaded tasks. Table 2 presents the list of notations used in this paper.

Table 2: Description of notations

Symbol Description Symbol Description

Sm
F Processing speed of mobile device Tq

i Waiting time suffered by the ith the task
SVM

F Processing speed of virtual machine
(VM)

α Probability of nonzero delay at cloud

Pm
comp Power dissipation by mobile device

during computation
Wq (0) Probability of zero delay at cloud

Pm
comm Power dissipation by mobile device

during communication
Tq Overall waiting time in cloud system

Pm
idle Power dissipation by mobile device

during idle
S Number of running VMs

Pm
disp Power dissipation by mobile device

display
λ Task arrival rate

Pm
w Power dissipation by mobile device

during waiting
μ Task service rate

TTr
i Transmission time of the ith the task P0 Probability of empty cloud system

TVM
i Execution time of the ith the task

on VM
β Smoothing factor

Tq
i Waiting time the of ith the task on VM ψ Leasing rate of VMs

TL
i Execution time of the ith the task on

mobile device
A Penalty rate on delayed tasks

TR
i Overall remote execution time of the ith

the task
K Number of tasks in the cloud system

(Continued)
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Table 2: Continued
Symbol Description Symbol Description

EL
i Overall remote execution energy of the

ith the task
D SLA negotiated waiting time

EL
i Overall local (mobile device) execution

energy of the ith the task
WlVM

i Number of instruction in the ith the task

We have considered a sample computation offloading model to show the effects of queuing
delays on the performance of offloaded tasks. Let the mobile device be denoted by a 5-tuple
M = {Sm

F , Pm
comp, Pm

comm, Pm
idle, Pm

disp} where Sm
F is the processing capacity of a mobile device (in a million

instructions per second), Pm
comp is the power consumption by the mobile device during local execution,

and Pm
comm is the power consumption by the mobile device during communication. Assume that TR

i and
TL

i are the cloud computation times and local computation times for the ith the task, respectively, then
the computation can be offloaded when cloud energy dissipation for the ith the task of a mobile Job
(ER

i ) is lesser than the local energy dissipation (EL
i ), i.e.:

ER
i < EL

i (1)

Local execution energy EL
i can be estimated as:

EL
i = TL

i × (
Pm

comp + Pm
disp

)
(2)

If TTr
i , TVM

i , and Tq
i are the transmission time of the input/output data over the wireless network,

execution time on cloud VMs, and waiting time for getting the VMs, respectively, then ER
i can be

estimated as:

ER
i = TTr

i

(
Pm

comm + Pm
idle + Pm

disp

) + TVM
i

(
Pm

idle + Pm
disp

) + Tq
i

(
Pm

idle + Pm
disp

)
(3)

4 Problem Statement

Let an MCC service provider be modeled as an M/M/s queuing system. It tenants identical VMs
from infrastructure as a service (IaaS) provider. Let λ be the task arrival rate, μ be the task service rate,
and α be SLA negotiated QoS assurance level for nonzero delay at the CSP end. Incoming tasks are
served on a first-come, first-serve order. Tasks not served are buffered and delayed with no assumption
on the limit of backlogged tasks buffer size. Since queuing delays at the CSP end would increase the
energy dissipation at the mobile devices, therefore the fundamental objective of the ACF system is to
maintain VMs according to the SLA negotiated QoS assurance level for the nonzero delay, i.e.:

1 − Wq (0) ≤ α (4)

where Wq(0) is the probability of zero wait time at the CSP end. To find Wq(0), let Tq represents the
waiting time in the queue in the steady state. Then,

Wq (0) = Pr
{
Tq = 0

} = Pr {< s − 1 in system} (5)

=
s−1∑
n=0

pn = P0

s−1∑
n=0

λn

μn � n
(6)
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where pn is the probability of n number of tasks in the system, i.e.:

Pn =

⎧⎪⎪⎨
⎪⎪⎩

λn

μn � n
P0 (0 ≤ n < s)

λn

sn−sμn � s
P0 (n ≥ s)

(7)

Here P0 is the probability that the system is idle. Since the sum of probabilities is 1, therefore P0

can be determined as:

P0 =
(

s−1∑
n=0

λn

μn � n
+

∞∑
n=s

λn

sn−sμn � s

)−1

(8)

Now the sum of infinite series in Eq. (8) would be:
∞∑

n=s

λn

sn−sμn � s
= λs

μs � s
1

(1 − ρ)
(9)

where, ρ = λ/sμ is the traffic intensity. So, the probability of an idle system would become:

P0 =
(

s−1∑
n=0

λn

μn � n
+ λs

μs � s (1 − ρ)

)−1

(10)

After rearranging the above equation, we get:
s−1∑
n=0

λn

μn � n
= 1

P0

− λs

μs � s (1 − ρ)
(11)

This gives

Wq (0) = P0

(
1
P0

− λs

μs � s (1 − ρ)

)
= 1 − λsPo

μs � s (1 − ρ)
(12)

5 Design Details

This section details the proposed auto-scaling mechanism by following the MAPE-K (i.e.,
Monitor, Analyze, Plan and Execute over a shared knowledge base) architecture [27]. All these entities
perform their Job during each clock interval and form a close loop together, as depicted in Fig. 1. One
key feature of this architecture is that it provides a systematic way of organizing the different entities
of the cloud system.

5.1 Monitor

In this phase, ACF continuously monitors the low-level parameters like the number of tasks
arrival, the execution time of tasks, and the number of delayed tasks. This information is shared with
the knowledge base for analysis and planning phases.

5.2 Analysis

In this phase, ACF estimates the average service rate (μ) of tasks during a clock interval and the
total task arrived during a clock interval (λ). Using this information, it predicts the task arrival rate for
the next clock interval (λt+1

p ) based on the predicted λt
p and observed arrival rates λt

0 of offloading tasks
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in the previous clock interval using EWMA (Exponential Weighted Mean Moving Average) technique,
i.e.:

λt+1
p = βλt

o + (1 − β) λt
p (13)

Meanwhile, we have used the mean square error estimation method to update the smoothing factor
periodically (β) value.

Knowledge 
Base

Analysi

Plan

Execute

Monitor

Figure 1: MAPE-K loop [27]

Algorithm 1: Proposed Auto-Scaling Scheme
1 procedure Instance_estimator (λt+1

p , μ, s, α)
2 temp = s; //running VMs
3 compute traffic intensity ρ = λt+1

p /sμ
4 if (ρ > 1)
5 then increase VMs until (ρ < 1)
6 else s = s/2;
7 if (ρ > 1)
8 then increase VMs until (ρ < 1)
9 end if

10 end else
11 Compute Z = 1 − Wq(0) according to Eq. (4)
12 if (α < Z) then
13 while (α < Z) do
14 s++;
15 Compute Z = 1 − Wq(0) according to Eq. (4)
16 end while
17 end if
18 if (s > temp) then
19 start (s – temp) VMs;
20 end if
21 else
22 annotate (temp – s) VMs as hibernated.

(Continued)
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Algorithm 1: Continued
23 stop(temp – s) VMs when leasing time quantum completing
24 end else
25 end procedure

5.3 Planning

In this phase, the proposed auto-scaling mechanism is used for updating the number of running
VMs as per SLA negotiated QoS assurance level (α) for availability. The pseudo-code for this scaling
mechanism is depicted in Algorithm 1. Inputs to this algorithm are predicted task arrival rate (λt+1

p ),
mean service rate (μ), the number of running VM instances, and required QoS assurance level (α).
First, it computes the traffic intensity in line 3. Subsequently, it checks whether the system is stable. If
the system is unstable, it increases the VMs count until traffic intensity is less than 1 (lines 4 and 5). If
the system is already stable, it decreases the VMs count to half and stabilizes the system again (lines
6–10). The intuition of this alternate phase is to check whether the VMs requirement has decreased for
the current clock interval. Next, it computes the QoS assurance level with the stabilized VMs count
(line 11). If the QoS requirement is not met with the stabilized system VMs, it increases the VMs count
until the required QoS requirements are met (lines 12–17). Subsequently, it checks whether the new
VMs requirement is higher than the existing VMs, then places an order to start new VMs (lines 18–20).
If the available VMs are more than the required, it first annotates the surplus VMs as hibernated and
does not immediately stop them. However, if the leasing time quantum of a hibernated VM is nearing
completion, it proceeds to shut down the surplus VMs (lines 21–24).

5.4 Execution

Rather than immediately shutting down the surplus VMs, ACF provides an innovative scheduler
for optimizing VMs leasing time quanta. Algorithm 2 depicts the pseudo-code of the scheduler. Unlike
[20], the key premise of the proposed scheduler is that it does not remove the running tasks from the
surplus VMs. In addition, if a hibernated VM is required in the system, it withdraws the VM with
maximum remaining leasing time quanta (lines 5–8). This arrangement aids in the identification of
VMs that need to be shut down because only hibernated VMs need to be shut down. Furthermore, it
also avoids the continuous profiling of leasing time quanta of the surplus VMs.

Algorithm 2: Scheduler
1 procedure SCHEDULER (Task t, vmslist)
2 boolean VMAvailable = false;
3 Search for a free non-hibernated VM and allocate it
4 set VMAvailable = true;
5 else if (VMAvailable == false)
6 Draw a hibernated VM with the highest remaining leasing time quanta and allocate it
7 set VMAvailable = true;
8 end else if
9 else
10 pendingList.addLast(t);
11 end else
12 end procedure
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6 Experimental Setup and Results

We evaluated the performance of ACF using the CloudSim simulator [12]. The experimental
scenario is as follows: the MCC service provider leases VMs from infrastructure as a service provider
and provides software services to mobile users. The auto-scaling mechanism of ACF operates at the
MCC end and ensures the availability of VMs as per the SLA negotiated availability level (α). In
other words, ACF takes care of under-provisioning as well as over-provisioning at the MCC service
provider end.

6.1 Experimental Setup

In this system, 2.5 GHz dual-core VMs are leased on per-hour time quanta with a $0.145 price,
similar to Amazon [28]. Each leased VM serves mobile users on a space-shared policy. In addition, we
also fixed the upload data rate (80 Kbps) and download data rate (130 Kbps) because the objective of
ACF is to highlight the implications of queuing delays on the performance of mobile devices. Similarly,
we have not considered the queuing delays in the computation offloading decisions of tasks at the
mobile devices because the queuing delays occur due to the adoption of improper auto-scaling policies
at the CSP end. The performance of the ACF system is compared with the following state-of-the-art
auto-scaling systems:

• DBCOF (Demand Based Computation Offloading Framework) [6]: It is based on the tradeoff
between leasing costs (LC) and waiting costs (WC) that minimizes the expected total costs
(TC), i.e.,
Min E (TC) = E (LC) + E (WC) (14)

where
E (LC) = � × s (15)

and
E (WC) = A × K (16)

The variables ψ , s, A, and K specify the leasing rate of VMs for an interval, the number
of running VM instances, the waiting cost of a delayed task, and the total number of tasks in
the M/M/s queuing system, respectively. So, if Tq is the waiting time in the system, and D is the
SLA negotiated maximum waiting time after which penalties would be imposed on the MCC
service provider, then the waiting cost of a delayed task can be computed as per the following:

A = �

D
+

y∑
i=2

� × i (17)

where

y =
⌈

Tq

D

⌉
(18)

For fair comparisons, we have also incorporated the waiting cost function of DBCOF in ACF.
At the same time, we also incorporated the hibernated VMs solution of ACF in DBCOF.

• ACF(OP): It is a static variant of the ACF system that assumes peak offloading workloads are
known in advance and does not use any auto-scaling mechanism.

• Threshold-rule-based system [20]: It needs rules for the upper utilization threshold and lower
utilization threshold for carrying out auto-scaling decisions.
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• Response-time-based system [7]: It mandates some pre-negotiation on the maximum execution
time at the CSP end. For this work, response time is kept as the sum of execution time at the
CSP end and SLA negotiated waiting time.

During the evaluations, we used the VM execution time and mobile execution time results of the
bubble sort application. These results are abstracted from DBCOF [6] and are depicted in Fig. 2. If
SVM

F is the processing speed of cloud VMs, then the execution time of the ith the task can be mapped
into the CloudSim task’s workload (wlVM

i ) by using:

wlVM
i = TVM

i × SVM
F (19)
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Figure 2: Execution time of bubble sort on mobile device and remote VM [6]

In addition, we kept the configuration of the mobile device as a 1.2 GHz CPU. The power
consumption stats of the mobile device are obtained using the PowerTutor tool [29] and listed in
Table 3. Jobs arrival follows the Poisson distribution with a mean of 5 Jobs during the busy hours
(i.e., from 8:00 AM to 8:00 PM) and 2.5 Jobs during the non-busy hours (i.e., from 8:00 PM to 8:00
AM). Each Job consists of 5 offloadable tasks connected by the linear topology. We used 10 mobile
devices during simulations.

Table 3: Parameters of the device profile

Symbol Estimated value

Pm
comp 400 mW

Pm
disp 900 mW

Pm
comm 750 mW

Pm
idle 50 mW

We collected the following metrics during the evaluation:

• Energy Savings: It is the ratio of the mobile devices’ energy consumption during local execution
and remote execution.

• Monetary costs: These comprise the leasing costs of VMs along with waiting costs.
• Utilization rate: It is the share of the time the VMs were serving tasks during running hours.
• SLA violation rate: For a fair comparison with other systems, we have considered the percentage

of tasks whose waiting time surpassed the SLA negotiated waiting time (D) as the SLA violation
rate. During the experiments, we kept D as 2 s. In addition, we also considered the percentage of
tasks that suffered nonzero waiting time as an SLA violation because it is the intended objective



5796 CMC, 2023, vol.75, no.3

of ACF. The SLA negotiated QoS assurance level for zero waiting (α) is kept at 0.01%, which
is near zero.

6.2 Experimental Results

The expected energy savings with ACF, DBCOF, ACF(OP), threshold-rule-based systems, and
response-time-based systems are 3.568X, 3.537X, 3.576X, 3.513X, and 3.509, respectively. As the
energy savings difference between all systems is marginal, we plotted the ACF and DBCOF in Fig. 3.
Meanwhile, the key difference prevails in the monetary costs. The monetary costs incurred by the
ACF, DBCOF, ACF(OP), threshold-rule-based systems, and response-time-based systems are $35.66,
$37.17, $52.2, $43.05, and $45.12, respectively.
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Figure 3: Energy savings by ACF and DBCOF with D as 2 s

Fig. 4 shows the results of monetary costs with all the systems. It is the lesser number of delayed
tasks in the ACF system, due to which it spends 4.06% lesser monetary costs than DBCOF and saves
0.87% extra energy savings compared to DBCOF. Similarly, the ACF system spends 26.52% less on
monetary costs than the response-time-based systems. In addition, the ACF system also achieves
1.65% extra energy savings over response-time-based systems because these systems keep a minimum
number of VMs for the SLA-negotiated response time. The energy savings in ACF(OP) is highest
because it is based on the assumption that the peak workload arrival rate is known in advance.
Meanwhile, threshold-rule-based systems forced us to try different combinations for upper and lower
CPU utilization. Finally, we achieved the best results in terms of energy savings for a lower CPU
utilization rate of 30% and an upper CPU utilization rate of 50%.
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Figure 4: Monetary costs spent by each system with D as 2 s

The utilization rate in ACF, DBCOF, ACF(OP), threshold-rule-based systems, and response-time-
based systems are 35.6%, 40.8%, 22.1%, 42.4%, and 46.12%, respectively. Meanwhile, SLA violations
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in ACF, DBCOF, threshold-rule-based, and response-time-based systems are 0.64%, 1.61%, 2.39%,
and 4.21%, respectively. Utilization and SLA violation rates of all systems are depicted in Fig. 5. To
demonstrate the efficacy of the proposed system ACF over DBCOF, we have also plotted the SLA
violations of both systems over the day in Fig. 6. The SLA violations in ACF are low because it deploys
a slightly higher number of VMs. Fig. 7 depicts how ACF manages the acquisition of VMs over the
day. At the same time, the percentage of tasks that suffered nonzero delays in ACF, DBCOF, threshold-
rule-based, and response-time-based systems are 1.34%, 2.76%, 3.86%, and 6.23%, respectively. Fig. 8
depicts the percentage of tasks that suffered nonzero delays.
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Figure 5: Utilization and SLA violations in each system with D as 2 s
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Figure 6: SLA violations over the day with D as 2 s

To demonstrate how DBCOF gets impacted by the SLA negotiated waiting times, we decreased
D from 2 to 1 s. Now the expected energy savings with ACF and DBCOF are 3.568X and 3.567X,
respectively. The energy savings in the DBCOF system increased because of the increase in the severity
of the waiting costs. At the same time, the monetary cost expenditure in DBCOF rises sharply. The
monetary costs spent by ACF and DBCOF systems are $41.83 and $47.79, respectively, i.e., the ACF
system spends 12.77% less than the DBCOF system and achieves nearly the same energy savings. Hence
the success of the tradeoff between waiting costs and leasing costs-based system relies on the severity
of waiting costs for the SLA negotiated waiting time. Fig. 9 depicts the monetary costs of both systems.
In addition, the percentage of tasks that suffered nonzero waiting time in the ACF system is still lesser
than the DBCOF system. The percentage of tasks that suffered nonzero waiting in the ACF system is
1.34%, and the percentage of tasks that suffered nonzero waiting in the DBCOF system is 2.05%.
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Figure 9: Monetary costs when D is 1 s

7 Conclusions and Future Work

In this work, the problem of real-time execution requirement of mobile tasks in a mobile cloud
computing environment is addressed with an auto-scaling solution that strives to minimize the delayed
tasks without manual tunings in the waiting costs or threshold rules. This paper contributed to the two
key points. First, it provided an auto-scaling solution that maximizes the service availability per SLA
negotiated assurance level. Second, it provided an innovative solution for optimizing the leasing time
quanta of VMs during the scale-down phases without removing the running tasks from the surplus
VMs which are completing their leasing time quanta. Consequently, this arrangement reduced the
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monetary costs of CSPs due to reduced SLA violations. In addition, it also increased energy savings
on mobile devices due to a lesser number of delayed tasks. The series of experiments vindicate the
efficacy of the proposed system.

As part of future work, we plan to extend this framework to consider the provisioning of adaptive
extra VMs for dealing with the VM startup overheads. In addition, we plan to incorporate the hybrid
leasing plans of VMs, i.e., an optimal combination of reserved and on-demand VMs because reserved
are available at discounted rates according to the usage hours.
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