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Abstract: The advancements in technology have substantially grown the size
of image data. Traditional image encryption algorithms have limited capabil-
ities to deal with the emerging challenges in big data, including compression
and noise toleration. An image encryption method that is based on chaotic
maps and orthogonal matrix is proposed in this study. The proposed scheme is
built on the intriguing characteristics of an orthogonal matrix. Gram Schmidt
disperses the values of pixels in a plaintext image by generating a random
orthogonal matrix using logistic chaotic map. Following the diffusion process,
a block-wise random permutation of the data is performed using multi-chaos.
The proposed scheme provides sufficient security and resilience to JPEG
compression and channel noise through a series of experiments and security
evaluations. It enables Partial Encryption (PE) for faster processing as well as
complete encryption for increased security. The higher values of the number of
pixels change rates and unified average change intensity confirm the security
of the encryption scheme. In contrast to other schemes, the proposed approach
can perform full and partial encryption depending on security requirements.
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1 Introduction

Nowadays, the Internet offers a simple and low-cost means of transmitting and receiving real-
time information. Threats to digital information technology have increased over the past decade
because of the Internet’s heterogeneity. Security is a crucial issue in the communication process
to secure multimedia content from unauthorized copying, usage, and alteration. Many encryption
techniques have been created by specialists and scholars to give security and protection to multimedia
materials. Because the fundamental properties of digital images differ from those of text, academics
are proposing new approaches in place of established cryptographic procedures. The majority of
proposed methods are pixel permutation-based and hence inadequately guard against well-known
cryptographic attacks [1,2]. A tight association between chaos and encryption has been investigated in
recent years. Chaotic systems differ from conventional algorithms in terms of sensitivity to beginning
circumstances, non-periodicity, non-convergence, and pseudo-randomness [3]. As a result of these
characteristics, chaotic systems may readily be utilized to develop image encryption approaches that
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surpass existing algorithms [4]. Typically, the chaos-based encryption method for images involves two
crucial stages: chaotic pixel shuffling for confusion and chaotic pixel value changes for dispersion [5].

Matthew presented the first efficient chaos-based cryptographic encryption technique in 1989 [6].
Fridrich [7] utilized a two-dimensional baker map to encrypt and randomize a N × N image. The
researcher emphasized the connection between discretized chaos and cryptography. To improve the
encryption speed and enhance the security level, Mao et al. [8] extended the 2D baker map into a 3D
chaotic map. According to researchers, the 3D map can achieve 2–3 times quicker processing than
a two-dimensional map. Mazloom et al. [9] presented a unique technique of Connected Nonlinear
Chaotic Map (CNCM) to solve the disadvantages of chaotic one-dimensional maps. The proposed
technique is considered to be more advanced and secure, mainly due to the coupling nature of the
Chaotic Neuron Cellular Network (CNCM) and the utilization of a 240-bit secret key. Authors
in paper [10] utilized 2 chaotic maps for encrypting images. Zhang et al. [11] broke the algorithm
proposed in [10] due to the shortcomings of the permutation approach, which cannot break the bit
planes. Researchers enhanced the original image encryption scheme’s overall security. In the encryption
approach proposed by Seyedzadeh et al. [12], a 2D piecewise nonlinear chaotic map is linked to
obtain improved values for a range of security parameters, such as entropy, Number of Pixel Change
Rate (NPCR), and Unified Average Changing Intensity (UACI). To alleviate the shortcomings of the
logistic map, various writers developed spatiotemporal chaotic maps for image encryption [13,14]. The
technique presented in these papers may be widely implemented in various image encryption systems
to improve security. Wang et al. [15] presented the concept of block encryption as a result of dynamic
patterns generated by a large number of chaotic maps. The final ciphertext is constructed by employing
random sequences, shifting operations, and Exclusive-OR as well as a few rounds. The approach is used
to minimize the correlation of the R, G, and B components of a color image. Wang et al. [16] developed
a novel technique to address the shortcomings of a Cat Map. Despite the various image encryption
techniques that have been developed, many researchers still strive to enhance security while achieving
faster processing times. To our understanding, no approach has been reported to date that addresses
both encryption and noise resistance simultaneously. The problem statement highlights the challenge
of dealing with the noisy effects and compression during the encryption process.

Problem statement is discussed with the help of example. This article addresses two critical issues:
the effects of noise and compression. Fig. 1a displays the original Cameraman image, while Figs. 1b to
1d show the distorted images for different signal-to-noise ratio (SNR) values. It can be seen clearly in
Fig. 1 that image quality diminishes with decreasing SNR. The primary concern is whether it is possible
to recover the original plaintext image if a encoded image is distorted by channel noise. Encrypting
the Cameraman image and transporting it via an AWGN channel with SNR values varying from
30 to 10 is the best way to demonstrate these effects. It is clear from Fig. 2 that accurate decryption
is impossible. It is because only 16 bytes or 44 blocks are used by the 128-bit advanced encryption
standard (AES) algorithm at one time. If a single pixel value in a 44-block encrypted AES image is
altered by one bit, the entire 44-block cannot be properly decoded. As a result, if the pixel values
change during transmission, AES cannot decrypt the original image. One should examine whether
the original unencrypted image can still be retrieved after compressing an encrypted image. It has
been previously stated that traditional encryption methods are not appropriate for use in compressed
scenarios or channels with noise.
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Figure 1: The impact of noise is shown in Fig. 1, where (a) represents the original Cameraman image,
(b) represents AWGN with SNR of 30 dB, (c) represents AWGN with SNR of 20 dB, and (d) represents
AWGN with SNR of 10 dB
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Figure 2: The impact of noise is shown in Fig. 1, where Fig. 2a represents the original Cameraman
image, Fig. 2b represents the encrypted image. Fig. 2c shows the encrypted image affected by AWGN
with SNR ranging from 10 dB to 30 dB. Fig. 2d represents the decrypted

2 Preliminaries

Our suggested system is built around three primary components: chaotic maps, orthogonal
matrices, and discrete cosine transform (DCT). In this section, we will study chaotic maps and DCT to
have a better grasp of the suggested system. Using a logistic map as an illustration of a chaotic map’s
power is essential to illustrate the concept. The DCT, which may be employed in the PE process, is also
explained in the next section.

2.1 Chaotic Maps

An insect population model was devised by scientist May in 1976 [17]. There is a relationship
between the discrete logistic map, which is the suggested scheme’s discrete version, and the logistic
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equation. Because of this, iterative maps and difference equations are two terms typically used to
describe the discrete insect population scheme. The discrete representation of a 1 − D logistic map is
mathematically described as:

zn+1 = μzn (1 − zn) (1)

where z0 ∈ (0, 1) and μ ∈ (0, 4) are the logistic map’s starting values. When the values of μ are 3
and 4 the logistic map exhibits oscillatory behavior for the iteration greater than 1. A basic question
is what range of μ can be utilized for encryption purposes. In it has been demonstrated that when
3.57 ≤ μ ≤ 4 is reached, the Logistic map enters a state of chaos and shows extremely complicated
behavior. Authors in Ref. [18] introduced an Improved Sine-Tangent (IST map as a novel technique
for image encryption. The map is mathematically defined as follows:

yn+1 = sin
(
α tan

(
3 yn

2 − 1.5
))

(2)

where yn ∈ (−1, 1) is the output of the nth iteration, α ∈ (0, 1) is the control parameter. We employ
one-dimensional PWLCM to randomly dilute an image. A skew tent map is a common example of a
1-D PWLCM. Mathematically skew tent map f : [0, 1 ]→[ 0, 1] can expressed as [19]:

zn+1 = f (zn, λ) =
{

zn
λ

, if zn ∈ [0, λ]
1−zn
1−λ

, if zn ∈ (λ, 1]
(3)

where Znε [0, 1] is the initial state of 1D-PWLCM, and λ ε (0, 1] is the control parameter.

2.2 Discrete Cosine Transform

The time complexity of a cryptosystem can be reduced through the use of PE. Increasing
computing effectiveness can be obtained by encrypting only a fraction of multimedia material. While
performing PE, many academics focus on the lower frequency coefficients rather than the higher
frequency ones. Consider the case where ψ denotes the DCT of a plaintext image. DCT and inverse
DCT are denoted by the following equations:

ψ (u, v) = 2√
n × n

� (u) � (v)
n−1∑
x=0

n−1∑
y=0

P (x, y) cos
[
(2y + 1) uπ

2n

]
× cos

[
(2x + 1) vπ

2n

]
(4)

P (x, y) = 2√
n × n

� (u) � (v)
n−1∑
x=0

n−1∑
y=0

ψ (u, v) cos
[
(2y + 1) uπ

2n

]
× cos

[
(2x + 1) vπ

2n

]
(5)

where n × n is the size of image and �(u) and � (v) can be written:

� (u) = � (v) =
{

1√
2

for u
v
= 0

1 otherwise

3 Proposed Scheme

This section divides the proposed system into two parts: image encryption through a chaos-based
[20] orthogonal matrix and the whole encryption/decryption procedure. The Gram–Schmidt method
is used to build an orthogonal matrix in the proposed technique. This algorithm takes a random matrix
as input and produces an orthogonal matrix as output. Singular Value Decomposition (SVD) [21] is
another approach for orthogonal matrix production that may potentially be employed. However, this
algorithm has been preferred for orthogonal matrix generation because of its complexity.
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3.1 Orthogonal Matrix for Image Encryption

Suppopse, we have n × n orthogonal matrix Q, which can be expressed by Q =
{→

q1,
→
q2,

→
q3, . . . ,

→
qn

}
,

where
→
qi ∈ R

n, ∀i : 1 ≤ i ≤ n. The symbol Rn denotes an indefinitely large collection of vectors,
where every

→
qi has n components.

R
n ⇒

⎡
⎢⎢⎢⎢⎢⎢⎣

a1

a2

.

.

.
an

⎤
⎥⎥⎥⎥⎥⎥⎦ , ai ∈ R, ∀i : 1 ≤ i ≤ n

Each vector in Q is perpendicular and linearly independent of the others, forming the basis for
the subspace covered by Q. When all of the vectors in matrix Q are normalized, Q is referred to as an
orthonormal set. If

→
q denotes the column vector in R

n and ||·|| denotes the Euclidean distance of any
vector, then Q is an orthonormal set if and only if ‖→

qi‖ = √
a2

1 + a2
2 + · · · + a2

n = 1, ∀i : 1 ≤ i ≤ n. The
fundamental features of orthogonal matrices are summarized in [22] and is represented as follows:

1. Q−1 = QT

2.
∣∣∣∣∣∣→

x
∣∣∣∣∣∣ =

∣∣∣∣∣∣Q →
x
∣∣∣∣∣∣

3. QTQ = QQT = I = identiy matrix

where
→
x shows the column vector in R

n while T represents the transposition operator. Decryption
relies on the fact that an orthogonal matrix’s inverse and transpose are always equal, and this property
shows how orthogonal matrices exhibit both of these features. By utilizing Property-1, it is possible
to find the inverse of an orthogonal matrix with little processing. As stated in Property-2, the length
of

→
x stays constant when pre-multiplied by an orthogonal matrix. Property 3 may be advantageous

for decryption purposes. Assume that P and Q are both n × n in size. Eqs. (6) and (7) provide the
fundamental encryption and decryption, respectively:

C = QP (6)

P = Q−1C (7)

where C is a n × n -dimensional ciphertext image. Because the orthogonal matrix’s inverse is always
present, the image encrypted using the suggested fundamental encryption may be decoded. We
demonstrate in the following statements that the orthogonal matrix is a necessary component of an
image encryption technique.

Proposition 1

When Q is an orthogonal matrix, accurate decryption of the P is always possible.

Proof

Eq. (7) can be written as:

P = Q−1C = QTC = QTQP︸ ︷︷ ︸
I

= IP (8)

When a matrix P is multiplied by the identity matrix I , the values of matrix P stay unaltered. Eq. (8)
demonstrates that decryption of the image is always achievable. When the relevant characteristics
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of orthogonal matrix Q are used, the decryption transformation may be calculated easily. The
fundamental image encryption described in Eq. (6) can be modified so that the intruder obtains no
information about the image. Reiterating Eq. (6) will produce this type of diffusion. The use of several
orthogonal matrices raises the ciphertext C’s complexity to guard against statistical and differential
attacks. By iterating the chaos map, many orthogonal matrices are created using the Gram–Schmidt
process. Eq. (6) may be iterated mathematically as follows:

CN = QN · · ·
C2︷ ︸︸ ︷

Q2Q1P︸︷︷︸
C1

(9)

where C1, C2 and CN , respectively represent the ciphertext after the first, second, and Nth iterations,
where C1, C2 and CN , is the ciphertext after 1st, 2nd and Nth iterations, respectively.

Proposition 2

The decryption is still achievable despite the fact that the image P has been pre-multiplied by even
more than an orthogonal matrix:

P = Q−1
1 Q−1

2 · · · Q−1
N C

P = QT
1 QT

2 · · · QT
NQN︸ ︷︷ ︸

I

· · · Q2Q1P

P = QT
1 QT

2 Q2︸ ︷︷ ︸
I

· · · Q1P

P = QT
1 Q1︸ ︷︷ ︸
I

P

3.2 The Proposed Algorithm

The proposed work steps are discussed in this section, with a focus on the approach for PE which
is depicted in Fig. 3. Let P0 be the iput image. Details step of the proposed work is given below.

1. DCT of Pi is taken, then partition DCT to get φi.
2. Iterating the Logistic map to get random values.
3. The Gram–Schmidt procedure is used to generate an orthogonal matrix using the random

values obtained in step 2.
4. Perform the multiplication of φi with orthogonal matrix to get φ i.
5. Replace φi with φ i to get ψ i.
6. Calculate the inverse DCT of ψ i to get Pi.
7. Convert Pi into blocks of size B × B.
8. Iterate the IST using the initial control parameters and randomly permute the blocks using

random uses obtained through IST. To add an additional permutation layer, iterate 1D-
PWLCM and permute the blocks using random values.

Grayscale images should use pixel values ranging from 0 to 255. To produce the final ciphertext
C, the permuted blocks are quantized and scaled to maintain the pixel values between 0 and 255.
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Figure 3: Block diagram of the proposed technique

4 Experimental Results

Results from our experiments are presented in this section to highlight the method’s fundamental
characteristics. It has a high PSNR of decrypted output due to noise resilience and compressed sensing.
The experiments are carried out on a variety of photographs kept in our database. Both the frequency
and spatial domains of these images are encrypted. For the sake of consistency, all images in this
article are 256 × 256 pixels in size. However, the proposed approach is adaptable to different sizes. To
demonstrate the utility of our suggested technique, Figs. 4 and 5 illustrate the results for partial and
complete encryption, respectively. These findings show that neither entire nor PE photos provide any
meaningful details about the original image. Full encryption, on the other hand, encrypts the entire
piece of text; hence, it seems identical to PE. Since just a tiny portion of the data is encrypted, PE takes
less time to encrypt and decode than full encryption, as discussed in Section 5.
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Figure 4: Encryption using N = 4, B = 16 and K = 128. (a) Plaintext Cameraman image. (b) Encrypted
Cameraman image. (c) Plaintext newton image. (d) Encrypted newton image

Figure 5: Encryption with N = 4 and B = 16 and K = 256. (a) Encrypted Cameraman image. (b)
Encrypted newton image
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4.1 Robustness to Noise

When signals are sent via an AWGN (also known as channel noise), they are typically distorted.
Even when the original picture is corrupted by AWGN, traditional decryption techniques are unable
to recover it. Fig. 6 shows the impact of AWGN at an SNR of 40 dB on decoded images received.
As demonstrated in Fig. 6, the recovered images have a high PSNR and are perceptually comparable
to the original images. PSNR values for our suggested strategy at various SNR levels are shown in
Table 1. As seen in the figure, Table 1 indicates that the presented system provides noise-tolerating
flexibility while retaining an acceptable high PSNR even at low SNR levels.

Figure 6: The outcome of applying JPEG compression with a Quality Factor set to 100. (a) Original
Cameraman image (b) decryption result (PSNR = 40.06 dB). (c) Newton image (d) decryption result
(PSNR = 37.74 dB)
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Table 1: PSNR (dB) values for changing SNR (dB)

SNR Lena Peppers image Babbon image Barbara image

40 31.63 29.80 31.83 30.90
35 26.33 26.42 27.01 26.84
30 21.85 21.14 22.10 23.44
25 17.13 16.18 17.81 16.32
20 14.22 12.17 12.70 12.21
15 10.20 9.20 10.05 8.22

4.2 Robustness to Compression

Bitmap files store plaintext images and have a size of 65 KB. The method explained in this section
can be used to encrypt an image and save it as a Bitmap file without any additional compression. This
approach utilizes quantization and scaling, resulting in the encrypted images having the same size as
the plaintext images 65 KB. Even though the encrypted data has been compressed, encrypted files
of original size can still be decrypted using JPEG compression. When the JPEG-compressed data is
decoded, various PSNRs are produced, depending on the Quality Factor (QF) used. The decrypted
output quality is found to be excellent, with a high PSNR as evidenced by Tables 2–5 which display
the JPEG-compressed files and PSNR values for various quality levels. As the QF value is reduced,
the quality of degrades. While the PSNR results are outstanding at QF = 100, the compression ratio
is insufficient compared with original size.

Table 2: Robustness of JPEG compression applied to the Lena image

QF Compressed file (KB) PNSR (dB)

100 42.12 13.91
90 18.52 26.15
80 13.90 24.14
70 12.00 22.02
60 10.05 19.96
50 9.04 20.00
40 6.90 18.84
30 7.05 18.03
20 4.95 17.05
10 3.25 13.82

Table 3: Robustness of JPEG compression applied to the Pepper image

QF Compressed file (KB) PNSR (dB)

100 41.06 40.97

(Continued)
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Table 3: Continued
QF Compressed file (KB) PNSR (dB)

90 18.10 26.19
80 13.15 23.33
70 10.50 21.18
60 9.19 20.10
50 7.75 19.14
40 6.65 18.00
30 6.25 16.92
20 4.50 16.08
10 3.00 12.88

Table 4: JPEG compression robustness: Baboon image

QF Compressed file (KB) PNSR (dB)

100 48.10 40.82
90 21.20 25.18
80 13.80 22.12
70 12.10 19.74
60 10.15 18.88
50 9.17 19.17
40 8.02 18.18
30 7.22 17.05
20 4.75 16.08
10 4.24 14.13

Table 5: JPEG compression robustness: Barbara image

QF Compressed file (KB) PNSR (dB)

100 45.46 40.19
90 18.95 25.11
80 14.10 21.91
70 11.18 20.13
60 9.33 18.32
50 7.96 18.45
40 6.97 17.54
30 5.91 17.14
20 5.16 16.44
10 3.26 13.15
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4.3 The Effect of Different Parameters on Computational Complexity

The encryption technique proposed in this paper has mainly focused on processing time that is
determined by three parameters: N, B and K. The most essential parameter in these parameters is K.
The amount of these coefficients have an effect on the number of chaos map iterations and the size of
the matrix. The choice of a substantial number of DCT elements is made when the level of security is
high, as a result, the iterations is increased, and the size of the matrix is also increased. As a result, the
processing time required to encrypt more DCT pieces is visibly long. The time required to process full
encryption is entirely influenced by N and B. The effect of JPEG compression is highlighted in Fig. 6
with different PSNR.

5 Security and Performance Evaluation

It is imperative to ensure the security of an image encryption method and verify its ability
to withstand various forms of attacks. This section thoroughly examines the dependability of the
proposed technique.

5.1 Key Space Analysis

To evaluate an encryption algorithm, it is common to perform key space analysis. This analysis
examines the size and complexity of the key space, which is a critical factor in preventing brute
force attacks. The larger the key space, the more challenging it becomes for an attacker to break the
encryption. In addition, image encryption methods that use chaotic systems are often considered more
secure due to erodicity and initial conditions. As a result, the proposed encryption technique will be
assessed for its reliability and ability to resist various forms of attacks. If the key space is more than
2100, an algorithm is secure [23]. The key space of the presented strategy is 1090. It is clear that, this
space is sufficiently large even after a single iteration.

5.2 Analysis of Differential Attack

Differential attacks on image encryption may be evaluated largely using two frequently used
metrics: NPCR and UACI [24,25]. Let C (i, j) and C ′ (i, j) denote the ciphertext image before and
following a one-pixel modification in the plaintext image. These metrics can be mathematically
expressed as:

NCPR =
∑

i,j D (i, j)

m × n
× 100% (10)

UACI = 1
m × n

[∑
i,j

|C (i, j) − C ′ (i, j)|
255

]
× 100% (11)

D (i, j) equals 1 if (i, j) 
= C ′ (i, j); else, 0. Tables 6 and 7 indicate NPCR and UACI for both
complete and partly encrypted images. Both tables demonstrate that the NPCR for both total and PE
is more than 99%. UACI values are greater in the event of complete encryption than in the case of PE.
The greater the UACI number, the more secure the encryption is, but the slower the processing speed
is in comparison to PE.
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Table 6: Differential analysis with N = 4 and B = 16

Image NPCR UACI

Lena 99.01 15.25
Peppers 99.15 15.25
Babbon 99.09 15.32
Barbara 99.14 15.19

Table 7: Differential analysis with with N = 4, B = 16, K = 128

Image NPCR UACI

Lena 99.08 12.09
Peppers 99.21 13.32
Babbon 99.03 12.28
Barbara 99.04 12.78

5.3 Analysis of Statistical Attack

By inventing statistical assaults on ciphertext images, an intruder can learn about plaintext images.
Therefore, any statistical attacks should be able to be withstood by an image encryption approach. We
use histogram analysis and correlation analysis to demonstrate protection against statistical assaults.

5.3.1 Analysis of Histogram

An image encryption technique is to be regarded as secure if the histogram’s output of plaintext
and ciphertext images are completely distinct. The ciphertext picture’s histogram should not give
any details of the image. Comprehensive Encryption (CE) histogram analysis findings are shown in
Fig. 7. Fig. 7 demonstrates that the histogram of the encrypted image bears a close resemblance to the
Gaussian distribution function. According to these findings, the frequency distribution of the plaintext
picture is hidden behind the encrypted histogram. For all test photos, similar Gaussian distribution
functions are generated when PE is used.

5.3.2 Analysis of Correlation

The neighouring points (pixels) in a plaintext image have an intrinsic correlation. When it comes
to extremely reliable image encryption, low correlation coefficients in both directions are generally
necessary [26]. Table 8 indicates that the horizontal connection between encrypted images is high and
smooth for both whole and partial images. This horizontal correlation is crucial in compression, as
discussed in Section 4.2.
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Figure 7: Histogram analysis. (a) Histogram of original Cameraman. (b) Histogram of encrypted
Cameraman. (c) Histogram of original newton. (d) Histogram of encrypted newton

Table 8: Corelation coefficient results (vertical)

Image Plaintext Ciphertext (PE) Ciphertext (CE)

Lena 0.9882 0.4080 −0.0237
Peppers 0.9562 0.4375 −0.0310
Babbon 0.6498 0.4280 −0.0428
Barbara 0.8930 0.4827 −0.0401

5.4 Analysis of Time

Using the MATLAB software R2021a, the suggested technique was evaluated with all image sizes
of 256×256. The CPU had a processing speed of 3.4 GHz and 4 GB. Table 9 shows the time necessary
to encrypt an image using the given techniques. Table 9 illustrates that PE takes less time than total
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encryption. PE data appears to be a good option. However, as discussed in earlier sections, CE provides
greater security. As a result, there is a trade-off between processing speed and security.

Table 9: Time analysis

Image Ciphertext (PE) Ciphertext (CE)

Lena 0.7154 0.4215
Peppers 0.8654 0.4410
Babbon 0.7876 0.4012
Barbara 0.8543 0.4219

6 Conclusion and Future Work

This study presents a novel and efficient approach to image encryption that utilizes the unique
characteristics of chaotic maps and orthogonal matrices. Because of the ability of the proposed
technique to endure channel noise and JPEG compression, the proposed system is particularly
well-suited for use with big data. Even with low SNR values, the suggested technique can retrieve
perceptually identical plaintext. When photos are compressed, the quality changes with the encrypted
image size. In contrast to standard techniques, from the ciphertext image, the original image may still
be deciphered. Furthermore, the suggested approach is usable in a variety of contexts with varying
security and processing time requirements. To minimize processing time, only a small fraction of
DCT coefficients are encrypted in the frequency domain. However, security evaluations indicate that
encrypting all pixels in the spatial domain leads to higher security. The proposed approach employs a
symmetric key for both encryption and decryption, which means that the same secret key is used for
both operations. The encoded image can only be decoded using the same secret key. In future, our aim
is to proposed public key encryption along with compression. Further security may be achieved by
using the concept of spatiotemporal chaos and multi-chaos approaches. Moreover, we aim to perform
cipertext and plaintext attacks analysis in future.
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