
This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided
the original work is properly cited.

echT PressScience

DOI: 10.32604/cmc.2023.035279
Article

Supervised Feature Learning for Offline Writer Identification Using VLAD
and Double Power Normalization

Dawei Liang1,2,4, Meng Wu1,* and Yan Hu3

1College of Computer, Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
2Department of Computer Information and Cyber Security, Jiangsu Police Institute, Nanjing, 210031, China

3JinCheng College, Nanjing University of Aeronautics and Astronautics, Nanjing, 211156, China
4Engineering Research Center of Electronic Data Forensics Analysis, Nanjing, 210031, Jiangsu Province, China

*Corresponding Author: Meng Wu. Email: wum@njupt.edu.cn
Received: 15 August 2022; Accepted: 08 February 2023; Published: 09 June 2023

Abstract: As an indispensable part of identity authentication, offline
writer identification plays a notable role in biology, forensics, and historical
document analysis. However, identifying handwriting efficiently, stably, and
quickly is still challenging due to the method of extracting and processing
handwriting features. In this paper, we propose an efficient system to identify
writers through handwritten images, which integrates local and global
features from similar handwritten images. The local features are modeled
by effective aggregate processing, and global features are extracted through
transfer learning. Specifically, the proposed system employs a pre-trained
Residual Network to mine the relationship between large image sets and
specific handwritten images, while the vector of locally aggregated descriptors
with double power normalization is employed in aggregating local and
global features. Moreover, handwritten image segmentation, preprocessing,
enhancement, optimization of neural network architecture, and normalization
for local and global features are exploited, significantly improving system
performance. The proposed system is evaluated on Computer Vision Lab
(CVL) datasets and the International Conference on Document Analysis and
Recognition (ICDAR) 2013 datasets. The results show that it represents good
generalizability and achieves state-of-the-art performance. Furthermore, the
system performs better when training complete handwriting patches with the
normalization method. The experimental result indicates that it’s significant
to segment handwriting reasonably while dealing with handwriting overlap,
which reduces visual burstiness.
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1 Introduction

Due to the rapid growth in the interactive Internet of Things (IoT), existing traditional applica-
tions cannot meet real-time response requirements and low latency [1]. In response to this situation,
a new method known as mobile edge computing (MEC) is developing, enabling highly demanding
applications [2]. Moreover, biometric technology for securing commercial services has attracted more
and more attention. Compared to biometric features such as face, fingerprint, or iris, handwriting
represents behavior, influenced by external factors such as education level, age, writing tools, etc. The
typical applications mainly lie in biometrics, forensics, historical document analysis, and other fields
in recent decades. Based on this, writer identification (WI) determines the writer of handwriting by
comparing features extracted from the handwriting samples. For the WI system, it is denominated as
author verification which is just determining the identity of two samples. Otherwise, if it is necessary
to search for the most likely query in the database, the task is denoted as writer retrieval. These tasks
are similar, although the latter needs to make a similarity list in the classification link.

According to the form of handwriting processing, WI could be classified as online and offline
[3]. The online WI studies dynamic information such as stroke order, writing speed, pressing force,
etc., while the latter processes the structure, strokes, and statistics from the handwriting image.
Since dynamic handwriting data require special electronic devices, in contrast, handwriting images
are easier to obtain and process, such as historical document manuscripts. Therefore, the research
on offline handwriting identification is more extensive. Currently, extracting discriminative features
from handwritten images is more challenging. In WI, the content of the written text also affects
the identification. If handwritten text is specified, specifically, handwritten content is consistent,
the identification process is content dependent [4]. Otherwise, if there is no requirement for written
content, it is defined that the identification process is content-independent [5].

For offline content independent writer identification, handwriting contains relatively few char-
acteristics of the writer. Therefore, researchers apply various methods to achieve classification from
simple handwriting images. Generally, feature extraction methods can be classified into codebook-
free and codebook-based. The former method calculates the global feature descriptor directly from
the handwriting image, while the latter does not. Generally, in codebook-free methods, researchers
study the width of marks, the angle of stroke direction [6], etc., which are transformed into probability
density functions. In some literature, this method is also called the texture-based method or statistical
method. In other words, a handwriting sample is regarded as a special texture, which is defined as
variations of grayscales with particular patterns.

The codebook-based method first extracts features from local handwriting and then forms a global
feature descriptor through a background model that serves as a codebook. According to different
local descriptors, this category can be called the allograph-based approach or shape-based approach.
Typically, individual codebooks were applied using K-means [7] or the Gaussian mixture model
(GMM) [8]. However, due to the simplified correspondence and distance calculation, the universal
background model is more common in WI than individual codebooks.

In recent years, with the improvement of computer calculation ability, machine learning has a
great development in artificial intelligence. Meanwhile, convolutional neural networks (CNN) also
perform well in WI. The difference between CNN and the codebook-based method lies in the local
features extracted. The former extracts biometrics features directly from the original images, while
the latter requires an expert’s subjective experience in language. Therefore, CNN only extracts local
features, and cannot achieve end-to-end writer identification. After that, WI aggregates local features
into global features, denoted as encoding. Subsequently, the system calculates the global features and
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then compares them with the dictionary. In encoding, different models affect the quality of the final
result. The Gaussian mixture model, the vector of locally aggregated descriptors (VLAD), and Fisher
vectors (FV) have been constantly discussed in recent years. In addition, the combination of methods
in CNN and computer vision (CV) has become a new hotspot in WI development [9–11].

However, handwriting feature extraction based on the neural network could be improved by
further processing before and after training, for example., the size of the handwriting patch, pre-
processing methods for handwriting samples and normalization of the extracted features affect the
final result. In this paper, we apply novel techniques to achieve efficient offline WI. First, we employ
a CNN by transfer learning, extracting discriminative features. To begin, transfer learning trains a
CNN on image datasets. Then, we fine-tune the trained CNN with the target dataset. For image
information and handwriting information, the general features are similar, hence WI can get better
feature representation by fine-tuning. Subsequently, we employ the VLAD method with signed square
rooting (SSR) to form a global feature, which represents the characteristics. When SSR is applied to the
representation, it is efficient in reducing visual burstiness. Finally, the writer is identified by comparing
the distance between the unknown writing and the samples.

We organize the content as below. We give a summary of the relevant research about WI in
Section 2. Section 3 represents our work on handwriting preprocess, enhancement, feature extraction,
and identification. In Section 4, we introduce evaluation criteria and the databases, reporting the
evaluation. Finally, Section 5 is the conclusion.

2 Related Work

Du to WI cannot achieve end-to-end handwriting identification, feature extraction has become the
hotspot of WI. On the basis of this, we mainly study text-independent WI. According to the analysis
methods, WI can be divided into texture, allograph, and deep learning.

At the beginning of the study, texture analysis was used to extract features. Said et al. [12] proposed
a texture analysis method employing multi-channel two-dimensional Gabor filtering technology.
The standard deviation and mean of the filtered image are extracted as global features. Schomaker
presented writer features with �-n Hinge, which evolved from the Hinge feature [13]. Meantime,
local phase quantization (LPQ) and local binary patterns (LBP) [14] are applied in the page-level
handwriting description to describe the features of local texture well.

Besides the contours and statistical information, local edges, key points, and spatial distribution
also reflect the handwriting style. Some effective local texture descriptions are suitable for WI, such
as speeded-up robust feature (SURF) and scale-invariant feature transform (SIFT). Fiel et al. [15]
employed SIFT descriptor to extract local features in the training dataset and then calculated the
GMM. After that, GMM is used to get the global features through the verification dataset. Finally,
the cosine distance is calculated to identify handwritten documents. They achieved state-of-the-art
(SOTA) in CVL and ICDAR 2011 datasets.

With the wide application of deep learning technology, researchers applied convolutional neural
networks to WI. It achieved better results than the traditional way. CNN is generally employed
to extract local or global features in the form of supervised, unsupervised, and semi-supervised.
Fiel et al. [16] first employed CaffeNet in 2015. After that, they identify the writer through the
Euclidean distance. Also in 2015, Christlein et al. [17] employed a six-layer CNN to extract local
descriptions. Furthermore, the local descriptions were aggregated through zero phase component
analysis (ZCA) whitening and GMM. On ICDAR2013 and CVL datasets, they achieved the 0.989 and
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0.994 TOP-1 criteria, respectively. Then Christlein et al. [18] used the SIFT feature clustering method
to obtain proxy labels of handwriting samples and train CNN to achieve unsupervised learning. In
[19], the original ResNet was adjusted by conjugating deep residual networks. They evaluated the new
architecture on four public datasets and achieved consistent results.

In contrast to previous work, a novel ResNet method is proposed with VLAD and SSR. We
assume that the proposed pipeline could preserve the handwriting features between patches while
eliminating the burst of visual elements to improve feature learning, and enhance the robustness of
identification.

3 Methodology

The proposed WI consists of three modules: preprocessing, feature extraction, and encoding (see
Fig. 1). After obtaining the features, we classify the samples.
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Figure 1: The proposed WI consists of two parallel lines: base set (upper line) and query classification
(bottom line). The common parts include preprocessing, feature extraction, and encoding. Among
them, the feature extraction of the base set is realized by fine-tuning of transfer learning, and the
parameters of query architecture are updated. After encoding, the features extracted from the query
are compared with the dictionary and the results are output

Compared with the common classification task, the current writer identification has some
problems, i.e., it is unable to achieve an end-to-end process through CNN. First of all, due to the large
parameters of CNN, the cost-intensive blocks the realization of deep learning writer identification
for pages. Thus, most deep learning-based methods utilize image patches to form discriminative
handwriting features to identify the writer. Second, each writer in the current dataset contributes
1 to 5 pages, which leads to the lack of training samples. The above-mentioned problem could be
partly solved by dividing pages into image patches. The task of classification or retrieval is conducted
following the feature extraction.
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3.1 Dataset

Two classical databases are employed in this paper. The first is ICDAR 2013 [20] standard
database. There are 700 handwritten pages of content in English and German provided by 350 writers.
And another one is CVL [21] standard database. In CVL, 300 writers supply handwritten pages in
English and German. We conduct the fine-tuning of CNN on ICDAR 2013 and evaluate it on the CVL.

3.2 Preprocessing

Preprocessing is the first step in the proposed pipeline. In preprocessing, page-level handwritten
images are reduced by image processing, converted into patches, and fed to CNN.

3.2.1 Image Process

In image preprocessing, the first step is rotation correction, due to the incorrect scanning mode
and the writing without reference lines. The skew in handwriting images will bring problems to
segmentation, thus we adopt Probabilistic Hough Transform proposed in [22] to detect line, skew,
and correct. Suddenly, OSTU’s method is applied for binarization, improving the visual quality and
eliminating the background influence.

3.2.2 Patch Generation

The processed handwriting needs to be segmented to create local features for the following CNN.
Specifically, we remove the edge of the images first, maintaining the image height to width ratio,
then the appropriate patch is generated by the sliding window. We optimize the sliding window,
balancing the relationship between the processing speed and the integrities of the handwriting features.
In training, we ensure less loss of handwriting features through reduce the window. Simultaneously,
the patch containing less writing information is discarded. Sample patches are exhibited in Fig. 2.

Figure 2: Sample patches generated from standard database

3.2.3 Data Augmentation

For CNN, the handwriting involved in the training set affects the generalization accuracy.
Therefore, data enhancement technology is applied. Common image enhancement techniques include
rotation, mirroring, inversion, partial enlargement, etc. In this paper, considering the characteristics
of handwriting, we utilize contour, sharpening, and inversion. These ensure the aspect ratio of the
images and do not change characteristics. After that, we divided the patches for training, testing, and
validation. The preprocessed patches would be fed into the CNN, while the size is adjusted according
to the input.
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3.3 Feature Extraction
3.3.1 ResNet

Researchers have built many classic deep learning architectures, such as GoogleNet, AlexNet,
VGG, ResNet, etc. He et al. [23] first proposed the application of ResNet in WI and achieved
radical results. The advantage lies in that the residual unit solves the degradation, and drives deeper.
Compared to other deeper networks, we utilize adjusted ResNet50 (see Table 1) to extract handwriting
characteristics while balancing the computational cost and performance.

Table 1: The adjusted architecture

Layer Output Remarks

Conv1 112 × 112 7 × 7, 64, stride 2
Conv2-x1 56 × 56 3 × 3 max pool, stride 2

Conv2-x2 56 × 56

⎡
⎢⎣

1 × 1, 64
3 × 3, 64
1 × 1, 256

⎤
⎥⎦ × 3

Conv3-x 28 × 28

⎡
⎢⎣

1 × 1, 128
3 × 3, 128
1 × 1, 256

⎤
⎥⎦ × 4

Conv4-x 14 × 14

⎡
⎢⎣

1 × 1, 256
3 × 3, 256
1 × 1, 1024

⎤
⎥⎦ × 6

Conv5-x 7 × 7

⎡
⎢⎣

1 × 1, 512
3 × 3, 512
1 × 1, 2048

⎤
⎥⎦ × 3

Global pooling
1000-d FC

1 × 1 Drop out
Softmax (according to the dataset)

Compared to the original architecture, the penultimate pooling layer is replaced by a global
average one. Then, the last layer is adjusted following the writers. Thus, image patches belong to
K writers, where K represents the writers. The value of K is 100 on ICDAR2013 and 50 on CVL,
respectively. When training or extracting features, the final full connected layer should be adjusted
according to the dataset.

3.3.2 Transfer Learning

In the previous image processing, although after data enhancement, the handwriting data are still
insufficient. Simultaneously, due to the similarity of visual features and handwriting image features,
the WI could be pre-trained by transfer learning through the ImageNet dataset. Subsequently, the
advanced features are extracted by fine-tuning through the target dataset.
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For transfer learning, there are two working modes. The first scenario is that the neural net freezes
the parameters in the training process, whereas the classifier is initialized and trained randomly. The
other is fine-tuning, in which the neural network parameters are loaded into the pre-trained weights
and fine-tuned together with the classifier by continuing backpropagation. The above two modes are
selected according to the correlation of the target dataset and features.

3.3.3 Normalization of Local Descriptors

The local features of handwriting data are acquired through feature extraction, and the normaliza-
tion method improves the performance of the local features. In the traditional method, local features
are normalized with L2 normalization, reducing the impact of larger bin values without increasing
processing or storage requirements. Thus, we employ Hellinger normalization to improve system
performance, where each element xi of the activation feature X is normalized. See Eq. (1). The sign()
denotes the sign of the scalar.

x̂i = sign (xi)
√|xi|, ∀xi ∈ X (1)

3.4 Encoding
3.4.1 Vector of Locally Aggregated Descriptors

Global features of handwriting could be obtained by integrating multiple local features. This
process is called encoding. Typical VLAD yields a compact representation of local features. Thus,
we utilize it with local features extracted by deep learning. For VLAD encoding, the K-means
algorithm is employed to calculate the vocabulary. After that, all the vectors match with the nearest
centroid. Subsequently, we accumulate the residuals among the local features and corresponding
cluster centroids. See Eq. (2).

vk =
∑

fS :NN(fS)=ck

(fS − ck) (2)

In the equation, ck refers to the centroid of the kth cluster. NN(fs) is a function of fs, accumulating
the nearest neighbor. Subsequently, we concatenate a global feature through Vk for page V . See Eq. (3).

vVLAD = (vT
1 , vT

2 , . . . , vT
K)T (3)

Unlike other coding methods, VLAD is based on codebooks with fixed similarity. In the case of
different center clusters, that is, when new samples are mixed into the dataset, the descriptors show
completely different similarities, affecting the global results. Thus, we only train in a single training set
and verify in multiple verification sets.

3.4.2 Normalization of Global Descriptors

After VLAD, we deal with visual burst, correlation, and variability between sessions of global
descriptors by normalization. Power normalization could effectively deal with visual contour bursts.
We normalize every element xi in the global vector X . See Eq. (4).

x̂i = sign (xi) |xi|n , ∀xi ∈ X (4)

The sign() denotes the sign of the scalar. When the power n sets to 0.5, the power normalization
equates to Hellinger normalization employed for local features described above, which is also denoted
as signed square rooting.



286 CMC, 2023, vol.76, no.1

3.5 Classification

After the training, we conduct the classification. In this process, we load the trained parameters
into the neural network and remove the last layer. The preprocessed query is fed into the system
for forward propagation. Then, the exportation of the FC layer is considered as the local feature
representation. Subsequently, WI integrates the global features of the whole test set and query. The
system calculates the L2 distance between the reference and the query to determine the writer.

4 Experiments

Before model training, we first determine the patch scales of the handwriting samples collected.
Second, we compare the popular neural network frameworks and determine the structure used.
Moreover, we use several normalization methods to process the extracted handwriting features. In
model training, we explore the effectiveness of data preprocessing methods, compare the efficiency of
various coding methods, and verify the normalization method of local features generated after coding.

4.1 Evaluation Metrics

To evaluate the model, we utilize the TOP-N index. This process is slightly different from the above
classification. First, all vectors in the dataset are listed according to the distance from the query. At
this point, we evaluate the system with two criteria: hard and soft standards. Soft standard means that
the result is yes if there is more than one matched sample. More strictly, the hard one means that the
identified value is if all the samples are matched. Subsequently, the mean of corrected values for all
writers is calculated as a percentage. In this paper, taking into account the datasets, we employ soft
TOP1, soft TOP5, soft TOP10, hard TOP2 and hard TOP3 to estimate the system. Soft TOP1 and
hard TOP1 are the same concepts.

Mean average precision (mAP) is also employed. In the TOP-N index mentioned above, we list
the distance of the query and the reference. To obtain the mAP, we first calculate the AP(i), which
means the average precision of the ith sample. See Eq. (5).

AP (i) =

n∑
k=1

P (k) r (k)

M
(5)

In Eq. (5), we employ P(k) as the precision of rank k, while M is the number of samples matched.
Besides, r(k) is a function that is one when the kth handwriting is matched, zero otherwise. Finally,
we calculate mAP, the mean value of AP. See Eq. (6).

mAP =

N∑
i=1

AP (i)

N
(6)

4.2 CNN Activation Features
4.2.1 Patch Scales

To get the best extracting effect, we conduct experiments on several architectures. The experiments
are verified by an Intel Core i7-10875H with RTX2060. In terms of the implementation framework,
we use Pytorch-lightning 0.9.0 with Pytorch 1.6.0 as the backend. The process is accelerated by the
Compute Unified Device Architecture (CUDA).
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We feed the image patches to CNN, which are extracted from the ICDAR2013 standard dataset.
Additionally, image patches with less handwriting information are discarded. We extract about 450000,
260000, 150000, and 80000 image patches on the four scales of 32, 64, 128, and 256, respectively. We
divide the patches for training and verification by 200:1. Meanwhile, the scale of the extracted image
patch is optimized (see Table 2).

Table 2: Comparison of various patch scales (in %)

Scales S-TOP1 mAP

32 70.7 50.4
64 77.5 60.8
128 83.3 66.7
256 85.6 71.8

The table shows that the image patches based on the 256-scale perform well in all indicators,
indicating that the image patches contain more complete handwriting information on this scale, i.e.,
the word-based scale. At the same time, the training time of the model is relatively short due to the
fewer image patches separated from the dataset in 256 sizes. In contrast, a larger image patch is a
horizontal scan of the handwriting page, which is not suitable in consideration of the data volume and
computing cost. Therefore, the experiments below are based on 256-scale image patches.

4.2.2 CNN Architecture

We have assessed various network models. The parameters of the networks are transferred from
ImageNet training, and subsequently optimized using the stochastic gradient descent (SGD) method.
The hyper-parameters operated are exhibited in Table 3.

Table 3: The hyper-parameters

Parameter Value

Momentum 0.9
Learning rate 0.0001
Epochs 20
Batch size 64

Several popular CNN architectures were employed. We feed the image patches into CNNs after
preprocessing. Subsequently, backpropagation is performed. The accuracy is shown in Table 4.

Table 4 shows that ResNet50, i.e., the deeper CNN has better accuracy, which is beneficial for
retrieval. Meanwhile, the gap between VGG and GoogleNet with the highest accuracy rate is not
remarkable. The reason is that the extraction of handwriting features has been sufficient, which limits
the performance of the deeper network. In addition, the accuracy of the table is not acceptable. This
is so because the handwriting information contained in the image patches is only the contour, which is
not sufficient compared with the scene or object in ImageNet. After extracting local features, encoding
is conducted to obtain global features.
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Table 4: Accuracy of cross validation from different CNN architectures (in %)

Architecture Accuracy

LeNet 52.8
AlexNet 60.1
VGG19 69.2
GoogleNet V3 72.4
ResNet50 75.9

4.2.3 SSR for Local Features

In the model, the normalization of local features also has a positive effect on the results.
We evaluate the Hysteresis threshold and L2 normalization, which are the standard normalization
techniques suggested. In addition, we investigate Hellinger normalization, also known as SSR (see
Table 5).

Table 5: Evaluation of various normalization methods (in %)

Method S-TOP1 mAP

Baseline 87.1 74.0
L2 88.2 75.9
Hysteresis 88.0 75.3
SSR 88.9 76.7

The outcome shows that the local feature normalization improves the recognition rate to some
extent compared to the baseline. Among them, SSR had the best effect, increasing by 2.8%. In addition,
normalization improves the efficiency of subsequent encoding.

4.2.4 Image Preprocessing and Augmentation

The preprocessing of handwriting images mainly consists of rotation correction and binarization.
In the process of image patch segmentation, if the handwriting is conglutinated or the cutting of
context is not accurate, feature learning will be affected. Therefore, it is necessary to correct the skew
handwriting. Meanwhile, we employ Ostu’s method to eliminate the impact of background.

To enhance the generalizability of CNN, in preprocessing step, we expand the patches by data
augmentation. To preserve handwriting information, traditional enhancement methods such as flip,
rotation, cropping, and deformation scaling are discarded. Moreover, contour, sharpening, and
inversion are utilized (see Table 6).

Table 6 shows that the generalization ability of CNN has been improved through image pre-
processing and data enhancement. The baseline is improved by 4.2% and 7.6%, respectively, on
S-TOP1. However, mAP has poor progress, only 0.8%, and 1.7%. The reason is that the slanting
of handwriting is also one kind of characteristic. Eliminating distortion is equivalent to reducing
the features extracted. Otherwise, contour, sharpening, and conversion do not change the inherent
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Table 6: Evaluation of image preprocessing and data augmentation employed (in %)

Method S-TOP1 mAP

Baseline 88.9 76.7
Preprocessed 93.1 77.5
Augmented 96.5 78.4
Combination 99.0 83.7

characteristics of handwriting but increase the amount of data from the perspective and background
of handwriting, which is beneficial to feature extraction.

4.3 Experiments on Encoding

There are many encoding methods in the literature. Currently, we evaluate FV [24], I-vector [25],
and VLAD [26]. The role of SSR and L2 normalization after encoding is also discussed. We utilize
standard settings in FV coding, and the global features are power normalized. For I-vector coding, we
choose the dimension in training, that is, 100 components for every feature (see Table 7).

Table 7: Evaluation of various encoding methods (in %)

Method S-TOP1 mAP

FV 85.5 76.7
I-vector 93.4 77.5
VLAD 96.5 80.4
VLAD + L2 97.0 81.5
VLAD + SSR 99.0 83.7

Table 7 shows the results of different encoding methods. It draws a clear picture that VLAD-based
encoding generally delivers better results compared with the other methods. Moreover, through the
final global descriptors, SSR has a certain improvement compared to the raw and L2 normalization.
The best result is now achieved by the VLAD-based encoding with SSR.

4.4 Comparison with SOTA
4.4.1 ICDAR2013 Dataset

The handwriting in ICDAR 2013 is a great challenge to the model due to writing in English
and Greek. We employ the training set to fit the parameters while not retraining by other datasets.
Table 8 shows the evaluation that the soft criterion achieves a better result. This is so because the
hard criterion has higher requirements for the generalization of system models. Besides, the results
achieve a quite good level, compared with other models, with just a 7.9% lag in hard TOP3, and a
6.4% lag in mAP, respectively. Significantly, the method in [27] did better in mAP, due to the mixed
training set in English and Greek handwriting from 100 volunteers in the International Conference
on Frontiers in Handwriting Recognition (ICFHR) 2012 database. More differential handwriting
data makes the model perform relatively well, whereas the reality is that the original samples are
insufficient. Otherwise, the proposed model uses only part of the ICDAR dataset, more in line with
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actual handwriting circumstances. In other words, the metrics of the model are relatively robust
compared with SOTA.

Table 8: Comparison results on ICDAR (in %)

Models S-TOP1 S-TOP5 S-TOP10 H-TOP2 H-TOP3 mAP

Fiel et al. [15] 88.5 96.0 98.3 40.5 5.8 N/A
CS-UMD-b [20] 95.0 98.6 99.2 20.2 8.4 N/A
HIT-ICG [20] 94.8 98.0 98.3 63.2 36.5 N/A
Chen et al. [27] 96.6 N/A N/A N/A N/A 90.1
Tang et al. [28] 99.0 99.2 99.6 84.4 68.1 N/A
Christlein et al. [29] 97.1 98.9 99.0 42.8 23.8 67.1
Lai et al. [30] 97.1 N/A 99.2 N/A N/A 60.3
Proposed method 99.0 99.3 99.7 84.8 60.2 83.7

4.4.2 CVL Dataset

Due to the small capacity, it is easy to achieve better results on CVL. The proposed method
achieves good results in each index, in addition, the model has strong robustness, see Table 9. The
proposed model is only 0.4%, and 0.2% worse in soft TOP1 and TOP10 compared to other models.
The handwriting features learned by CNN are relatively common, leading to the high probability of
overfitting. Thus, the features extracted are similar, which makes the final results close to each other.
Moreover, due to the problems of label error and handwriting ambiguity in the dataset itself, it is
challenging for the model to extract distinguishing features. In addition, the dataset demands further
processing. In comparison, we found that in mAP, the proposed method is 0.3% behind Lai et al.
[30]. The main reason is that Lai adopted pathlet and SIFT features with machine learning, which
augments the local feature extraction ability. However, the calculation is relatively complicated and
system architecture is not an end-to-end framework.

Table 9: Comparison results on CVL (in %)

Models S-TOP1 S-TOP5 S-TOP10 H-TOP2 H-TOP3 mAP

Fiel et al. [15] 98.9 99.3 99.5 97.6 93.3 N/A
CS-UMD [20] 97.9 99.1 99.4 90.9 71.2 N/A
TSINGHUA [20] 97.7 99.0 99.1 95.3 94.5 N/A
Chen et al. [27] 99.2 N/A N/A N/A N/A 97.8
Lai et al. [30] 99.7 N/A 99.8 N/A N/A 98.7
Proposed method 99.3 99.5 99.6 98.3 97.2 98.4

From the above experimental results, the proposed WI shows a good capability to extract and
identify characteristics, mainly in two aspects: (1) The ResNet50 pre-trained by ImageNet represents
a good generalization ability. And transfer learning improves the training effect by extracting similar
writing features from related samples through the pre-trained neural network; (2) The double nor-
malization for local features and global features effectively preserves the main features of handwriting



CMC, 2023, vol.76, no.1 291

in feature extraction and dimension reduction, solving the problems of visual burst, correlation, and
intersession variability.

5 Conclusion

In this paper, a novel method for WI with CNN and double-power normalization is proposed.
We employ activation features extracted from ResNet50 that are pre-trained by ImageNet. After the
local descriptors are normalized, VLAD is adopted to calculate the global features, following SSR.
The experiments are conducted on the ICDAR2013 and CVL datasets. The evaluation shows that the
method presents a good identification result and achieves the SOTA while having better robustness
and fast real-time response capability.

In future work, we will test CNN with a more effective network structure to extract handwriting
features and pay attention to the new normalization method. Furthermore, appropriate data augmen-
tation and encoding methods are also considered due to insufficient handwriting features. The work
after coding, that is, the classification method, also improves the final result to a certain extent, which
needs to be studied.
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