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Abstract: Nowadays, smart wearable devices are used widely in the Social
Internet of Things (IoT), which record human physiological data in real time.
To protect the data privacy of smart devices, researchers pay more attention
to federated learning. Although the data leakage problem is somewhat solved,
a new challenge has emerged. Asynchronous federated learning shortens the
convergence time, while it has time delay and data heterogeneity problems.
Both of the two problems harm the accuracy. To overcome these issues, we
propose an asynchronous federated learning scheme based on double compen-
sation to solve the problem of time delay and data heterogeneity problems. The
scheme improves the Delay Compensated Asynchronous Stochastic Gradient
Descent (DC-ASGD) algorithm based on the second-order Taylor expansion
as the delay compensation. It adds the FedProx operator to the objective
function as the heterogeneity compensation. Besides, the proposed scheme
motivates the federated learning process by adjusting the importance of the
participants and the central server. We conduct multiple sets of experiments
in both conventional and heterogeneous scenarios. The experimental results
show that our scheme improves the accuracy by about 5% while keeping the
complexity constant. We can find that our scheme converges more smoothly
during training and adapts better in heterogeneous environments through
numerical experiments. The proposed double-compensation-based federated
learning scheme is highly accurate, flexible in terms of participants and
smooth the training process. Hence it is deemed suitable for data privacy
protection of smart wearable devices.

Keywords: Social Internet of Things; smart wearable devices; data privacy;
asynchronous federated learning

1 Introduction

The smart wearable device is an Internet of Things (IoT) equipment for personal health moni-
toring. It can obtain the human body status in real-time and communicate with other IoT devices.
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After acquiring the physiological data, the device transmits the data to a mobile application or an
intermediate router and finally to a cloud-based database. There have been various applications of
social IoT in recent years [1,2]. The data application scenario for smart wearable devices is one of
the most important. The physiological data on these devices also has significant commercial and
application value.

Studies are emerging on the use of Artificial Intelligence (AI) techniques and various types of
physiological data to assess users’ health levels comprehensively [3]. Among them, using machine
learning techniques to evaluate indicator data for overall health has become the primary path of many
studies. Gavhane et al. [4] used a multilayer perceptron network based on age, blood pressure, and
heart rate data. This network can predict the occurrence of heart disease. Masuda et al. [5] developed
a new practical system that estimates circadian rhythm. This system can estimate the time and heart
rate (HR) value to reach the lowest point in the circadian rhythm. Li et al. [6] proposed a locally
connected long and short-term memory denoising autoencoder framework (LC-LSTM-DAE). This
framework can use the data collected by smart wearable devices to make more accurate predictions
about users’ moods, health, stress, and other aspects. The application of AI technology facilitates users
with training data automatically collected from smart wearable devices. The corresponding models
were trained or predicted through cloud platforms or edge computing nodes, constituting a set of
social IoT for medical services. The significance of its interactive process is that it reduces the time
needed for diagnosis and provides an essential reference for subsequent treatment, evaluation, and
feedback.

Data security [7–12] is a new issue with the development of the information era. Nowadays, smart
wearable devices have been widely used in people’s life to record personal health information, and their
performance of privacy protection cannot be ignored. During the data analysis processing, it may make
the data flow to the outside world and make it difficult for users to ensure the ownership of their data.
These problems allow lawbreakers to easily access sensitive information and illegally exploit the data
for profit. In 2016, the Mirai botnet [13] took control of many IoT devices and launched a Distributed
Denial of Service (DDoS) attack with network traffic up to 620 gb/s, which emerged in most states in
the USA. Another study showed that more than 6,000 open cameras are at risk of privacy breaches in
streets, restaurants, and even hospitals in the USA.

These problems have been improved somewhat since federated learning was proposed [14–16].
Federated learning, regarded as a distributed method in the field, uses homomorphic methods to
solve the problem of data privacy breaches. It is a privacy-preserving and data-sharing method.
The subjects involve the participants and the central server. The participants only upload quantities
that do not directly expose data features such as gradients or model parameters. The homomorphic
encryption [17,18] method keeps the uploaded information from being leaked, effectively protecting
the participant’s data privacy. At the same time, the participants collaborate to train the model so that
it can apply in a broader range of situations.

As federated learning is still at an early stage, many issues still need to be resolved. In recent
years, synchronous federated learning models [19] have been replaced by asynchronous models [20–22],
which can improve the convergence speed and avoid time wastage. Differential privacy-based federated
learning algorithms are used to reduce the cost of cryptography [23]. In addition, federated learning
algorithms in heterogeneous environments [24,25] have been proposed to reduce the heterogeneity loss
in federated learning. However, these methods still have various drawbacks, such as time delay, data
heterogeneity, lack of incentive, loss of accuracy, and limitation to specific scenarios [26–28]. These
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drawbacks will be introduced in detail in Section 2.2 and the way our scheme would overcome the
challenges will be explained in Section 3.

This paper aims to form a flexible federated learning scheme with better security and usability
to protect sensitive data in smart wearable devices. We propose an asynchronous federated learning
scheme based on double compensation. It is used for the horizontal federated learning scenario to
solve the time delay problem and data heterogeneity. The scheme proposed in this paper generally has
certain advantages over existing methods.

We summarize our main results and contributions as follows:

• We propose an asynchronous federated learning scheme based on double compensation. The
scheme uses the DC-ASGD method [29] based on second-order Taylor expansion as the delay
compensation. It adds FedProx operators [30] to the objective function as the heterogeneity
compensation. The two compensations are used for solving the time delay and data hetero-
geneity problems.

• Our scheme performs a role reversal between the participants and the central server. The
entire process is participant-centered making the update process more flexible and incentivizes
participants. This design motivates the federated learning process.

• We theoretically prove that the existing methods have previously mentioned problems, and our
scheme can solve them and simplify the parameter update process.

• Experiments show that our scheme can effectively improve the accuracy of asynchronous
federated learning algorithms by about 5%, which is compromised for time delay and data
heterogeneity problems.

Section 2 introduces the basic process of federated learning and the classic federated averaging
(FedAvg) [27]. Besides, we discuss existing related work. In Section 3, we discuss the scheme’s design
and the two compensations theoretically and present our scheme. In Section 4, we present comparative
experiments in regular and heterogeneous scenarios respectively and discuss the experimental results.
We summarize the findings of this paper and discuss future work in Section 5.

2 Background

As data becomes more commoditized and personalized, privacy protection becomes an increasing
concern for data owners. However, to maximize the value of their data, such as using machine learning
to make more accurate predictions and classifications, these data owners need to work together to
ensure that the data is as well distributed as possible. This collaborative approach inevitably leads to the
problem of privacy leakage. Federated learning [31], as a privacy-preserving approach in distributed
learning scenarios, makes good use of homomorphic methods to solve this problem.

2.1 Federated Learning

The subject of federated learning includes the participant and the central server [15,32]. The
participants are the data owners, usually enterprises, platforms, individuals, etc. who own the data.
The data will involve privacy and confidentiality. The central server is the intermediate computing
party, which does not own the data. It is mainly responsible for receiving the parameters of each
participant, calculating the intermediate results, and issuing the new model parameters. The central
server can be curious, as ordinary federation learning usually uses homomorphic privacy protection
methods to prevent the leakage of intermediate results. However, it must be assumed to be honest to
prevent malicious tampering during the computation and distribution process affecting the overall
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model effect. In exceptional cases, the central server can be omitted to form a point-to-point overall
structure, but the computational cost is also increased.

The primary process of federated learning is divided into the following steps [32], Distribute
model, Local training, Upload parameter, and Update and Syndicate, as shown in Fig. 1. The central
server issues initial parameters to each participant. Each participant receives the model parameters
from doing local training and uploads the model parameters or gradients to the central server after
complementing the homomorphic operation. After receiving the model parameters, the central server
performs specific calculations to obtain the optimized results, which are distributed to the participants.
This process is repeated until the number of training rounds is reached, or convergence is achieved.
Homomorphic privacy protection methods are essential for federated learning to carry out subsequent
algorithm development. The standard methods are homomorphic encryption [17] and differential
privacy [23].

Figure 1: The basic process of federated learning

In addition, another essential factor in federated learning is data. Each participant has different
amounts and types of data. The appropriate federated learning algorithm needs to be set up to
enable better aggregating gradients, models, and other information according to these circumstances.
Depending on the amount and type of data, the main types of federated learning are horizontal
federated learning, vertical federated learning, and federated transfer learning.

Horizontal federated learning is also known as sample-partitioned federated learning [33,34]. In
this scenario, the participants have the same data attributes and different data samples, represented
as horizontal divisions in the data table. The federated learning for the data scenario used in this
paper is horizontal. We use the smart wearable device to collect the same physiological data, and each
participant has separate data samples from different users.

The mathematical description of the horizontal federated learning scenario is as follows. The set
Di is the data owned by a participant, where i is the participant’s index. Then the data category and
label category of the participant i will be (Xi, Yi). For two participants, i and j, there are:

Xi = Yj, Yi = Yj, Di ∩ Dj = ∅ or Di ∩ Dj ≈ ∅ (1)

Horizontal federated learning implies that each participant has a complete data type. The
implementation relies on the results of the training of each participant. Suppose the overall objective
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function satisfies a linear relationship in a weighted average with the objective function of each
participant, such as the MSE, Cross-Entropy, and other types of objective functions. Then the
derivatives theoretically also satisfy such linear relationships. The theory is as follows.

Let the overall loss function be F(w), and the loss function of participant k be Fk(w). If the
weighted average relationship is satisfied, then:

F (w) =
∑

pkFk (w) (2)

where pk is the weight assigned to participant k. pk is usually the ratio of the number of nodes nk owned
by a participant to the total number of nodes N. By applying both sides of Eq. (2) simultaneously to
the gradient of the model parameter w, the relationship between the overall gradient and the gradient
of each participant is obtained as follows:

g (w) =
∑

pkgk (w) (3)

From Eq. (3), the gradient of the overall model can be obtained by a weighted average of the
gradients calculated locally by each participant, which is the specific theory of the federal averaging
algorithm FedAvg [27]. However, two aspects have been improved in implementing the algorithm:
communication dissipation and computational complexity. The former is reduced by increasing the
number of rounds trained locally. The latter reduces the computational cost using methods such
as stochastic gradient descent (SGD) to simplify the gradient calculation. The improved FedAvg
algorithm, which makes it challenging to use gradient averaging due to multiple calculations locally
by the participants, uses a model averaging method.

2.2 Related Work

Smart wearable system is an crucial application scenario of social IoT. Compared with other data
security scenarios, smart wearable systems do not have powerful computing and storage capabilities
on the device side. In contrast, their data are real-time, distributed, and multi-typed. When designing
the privacy protection scheme for this scenario, the existing data security technologies need to be
improved. The following section describes some federated learning methods suitable for the smart
wearable scenario and summarizes the limitations.

• Asynchronous Federated Learning. Derived from asynchronous distributed learning, asyn-
chronous federated learning enables participants in federated learning to upload training data at
any time, rather than having to wait for all participants to finish uploading before computing
in one training session. With the distributed and asynchronous nature of data in horizontal
federated learning, asynchronous federated learning can save time and enable faster convergence
of the model [26].

• Federated Learning based on Differential Privacy. Differential privacy is homomorphic, and it
has lower calculation costs. It can replace homomorphic encryption in federal learning for smart
wearable devices for post-processing data. The local differential privacy method is usually used
[35,36]. Abadi et al. proposed the Moments Accountant Algorithm to calculate the overall
privacy cost of training a model containing a specific noise distribution and demonstrated
that choosing the right noise strength and threshold can achieve a smaller privacy loss [37].
Mcmahan et al. proposed a language model based on long short-term memory (LSTM)
networks and differential privacy [27], which has less impact on prediction accuracy and allows
for user-level differential privacy.
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• Federated Learning in Heterogeneous Environments. There is a heterogeneity problem in fed-
erated learning with the non-independent identical distribution of data (Non-IID) [24,25]. If
using the traditional FedAvg algorithm, it will have a significant impact on the results of the
federated learning [28]. Li et al. conducted an in-depth study of this problem [14], suggesting
that this impact can be measured using empirical mode decomposition (EMD) and proposing
a strategy for building shared subsets. Zhao et al. provided a comprehensive survey of existing
federated learning methods in a heterogeneous data environment and summarized three main
approaches [28]: FedProx [38], FedNova [39], and Scaffold [40]. Among them, FedProx added
standard terms to the loss function for local training. FedNova changed the way of updating
and aggregating the central server. Scaffold adds drift to correct updates during local training.
Zhao et al. comprehensively analyze these three methods and give the results in different
environments using suppression decision trees for data heterogeneity methods [28].

The above solutions will have problems as follows. The current asynchronous federated learning
assigns update weights by time lengthening [26] but ignores the decisive role of the distance of the
model parameters. It also suffers from inaccurate time delay compensation, data heterogeneity, high
communication costs, and insufficient incentives. Federated learning based on differential privacy
reduces the cost of cryptography but still suffers from the loss of accuracy due to added noise. For
the federated learning method in heterogeneous environments, it reduces the heterogeneity loss in the
federated learning process. But as far as the current study is concerned, it can only be applied to specific
scenarios, and its generalizability and portability are low.

3 Scheme Design

The asynchronous federated learning algorithm is emerging to solve the problem of time-
consuming issues. It replaces the synchronous model with an asynchronous one, where the participants
can join in updating the primary model and obtain the updated parameters at any time. For example,
all n participants are trained for a fixed number of iterations. For a synchronous model, they would
wait for all participants to finish training and perform one update. For an asynchronous model,
they perform n updates in the order in which the parameters are uploaded after training. So, the
asynchronous model converges much faster than the synchronous model and can be deployed as
needed.

However, new issues arise. Updating for asynchronous federated learning has a different solid
mathematical foundation than synchronous models. A common update method for multilayer neural
networks is gradient descent, whose primary requirement is to update the original parameters. On
the one hand, in asynchronous federated learning, as the master model is constantly being updated,
the model parameters to be optimized by the participants are prone to mismatch with the existing
model parameters of the central server. On the other hand, synchronous federated learning based on
model updates also suffers from data heterogeneity due to the non-independent and homogeneous
distribution of the participant’s data. This problem leads to difficulties in converging the aggregated
model in the central server after each participant has been trained several times locally. Besides,
motivating participants is also a hot issue of federated learning in current research.

We build on previous studies and propose an asynchronous federated learning scheme based on
double compensation, which maximizes solving these problems and makes it more practical. The flow
and effect of each component in our scheme are shown in Fig. 2.
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Figure 2: Design of the overall scheme

• Delay Compensation. We use the DC-ASGD method to compensate for the losses in asyn-
chronous distributed learning [29]. The method calculates the compensation by performing
Taylor expansion on the gradient function, performing an approximation of the Hessian matrix
in the process. Hence the model converges faster than traditional asynchronous distributed deep
learning.

• Heterogeneity Compensation. To alleviate the data heterogeneity problem, we use the FedProx
algorithm for nearest neighbor optimization [38], whose main element is adding the regularized
nearest neighbor operator to the loss function to reduce the bias of the model parameters during
the training process. It was previously applied to synchronous federated learning after gradient
averaging. However, the algorithm can also be used for asynchronous federated learning due to
its derivation process’s generality and context-specific nature.

• Motivation Design. The scheme designs a motivating algorithm to enhance the positivity of the
participants based on double compensations. The scheme performs a role reversal between the
central server and the participants. The entire process is participant-centered, and participants
will focus on completing their training. The central server or the coordinator is involved in a
supporting role throughout the process. Thus, the motivation of participants is improved for
better training.

3.1 Delay Compensation
3.1.1 The Problem of Time Delay in Federated Learning

The delay problem arises from asynchronous federated learning. The basic steps of asynchronous
federated learning are as follows. First, the central server sends the initial model parameters to each
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participant. After local training, the participant individually sends the current model gradient to the
central server. Finally, the central server returns the new model parameters directly to the participant
after updating.

However, the asynchronous federated learning algorithm suffers from the time delay problem,
depicted in Fig. 3. When the participant returns the trained gradient or model parameters at a time, the
central server may have already performed multiple rounds of updates. The principle of the gradient
descent algorithm is to update the original parameters. Therefore, the model no longer applies to
the linear operations represented by FedAvg. The above analysis shows that the parameter changes
resulting from the time delay of the training process are the key to preventing asynchronous federated
learning from performing direct updates.

Figure 3: The problem of time delay in federated learning

3.1.2 Limitations of the FedAsync Algorithm

There is less existing research on asynchronous federated learning. Xie et al. proposed the
FedAsync algorithm based on model averaging. It compensates for the loss during temporal asyn-
chrony by weighting the parameters uploaded by the participants. The algorithm’s update equation is:

ωt = αtωnew + (1 − αt) ωt−1 (4)

where αt is a variable obtained by performing a function on the time delay. The paper lists several
forms of calculating αt: Constant, Hinge, Polynomial, etc.

As the algorithm is based on a failure function, the following problems will arise in its implemen-
tation. Firstly, for slower training participants, the algorithm suffers from underweighting. However,
the faster training participants can not only participate in adjusting the model parameters several times
but also have higher weights. So, the model formed by the final calculation will likely to be more biased
towards these participants, resulting in poor model training. Secondly, the paper assumes intuitively
that time delay correlates with error. When we revisit the asynchronous federated learning process,
it can be found that the error occurs due to the update of the central server parameters. The actual
correlation with the error should be the distance between ωt+τ and ωt.

3.1.3 Delay Compensation in the DC-ASGD Method

In the study of distributed deep learning, Zheng et al. propose the DC-ASGD method to compen-
sate for the losses in asynchronous distributed learning [29]. The method calculates the compensation
by performing Taylor expansion on the gradient function, performing an approximation of the
Hessian matrix in the process. The final update equation obtained is:

gk (ωt+τ ) = gk (ωt) − λtgk (ωt) � gk (ωt) � (ωt+τ − ωt) (5)
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Zheng et al. also demonstrate that Eq. (5) can converge [29] faster than traditional asynchronous
distributed deep learning. Distributed deep learning [41] and federated learning is similar in some
respects, and the above derivation process is universal. We regard it as a more accurate description of
the parameter relations for use in the asynchronous federated learning proposed in this paper.

3.2 Heterogeneity Compensation
3.2.1 Data Shorten the Convergence Time of the Model in Federated Learning

The difference between common distributed learning and federated learning lies in the different
structures of the data sets. Distributed learning aims to improve the efficiency of machine learning,
in which the data is planned to be divided so that each set has roughly the same structure. Federated
learning is based on the user’s privacy, and no changes can be made to the form of the data owned by
the user. There is a Non-IID phenomenon in the data, which creates a data heterogeneity problem.

The different data structures result in the distributed model optimizing in different directions
during training, while the linear relationship with the overall model breaks down and does not even
converge. As a result, the simple FedAvg algorithm cannot be used. The rationale is explained as
follows. In a Non-IID federated learning scenario with two participants, participant a has only two
types of data, 1 and 2, and participant b has only two classes of data, 3 and 4. The directions of
optimization that participants a and b wish to achieve when training the classification model are:

ωa = arg min Fa (ω) (6)

ωb = arg min Fb (ω) (7)

And the optimal solution of the overall model is:

ωcenter = arg min Fcenter (ω) (8)

There is a linear relationship between Fa(ω), Fb(ω), and Fcenter(ω): Fa (ω) + Fb (ω) = Fcenter(ω).
Under the Independent and Identically Distributed (IID) condition, it is straightforward to find that
E (ωa) = E (ωb) = E(ωcenter) satisfies the same linear relationship as the loss function calculating the
overall model. However, under Non-IID, the expectation values of the three are not the same. The
arg min () function is not an ordinary linear operation that cannot be averaged linearly. Therefore,
attention needs to be paid to the heterogeneity of federated learning.

3.2.2 FedProx Algorithm

This paper uses the FedProx algorithm for nearest-neighbor optimization to alleviate the data
heterogeneity problem [38]. The algorithm’s main element is adding the regularized nearest neighbor
operator to the loss function to reduce the bias of the model parameters during the training process.
In

ρ

2
‖ωk − ωt‖2 synchronous federated learning, the FedProx algorithm constrains the relationship

between the training and global models, reducing heterogeneous losses. Due to the iterative nature of
the asynchronous algorithm, the algorithm plays another role. It reduces the losses due to the omission
of higher-order terms in the Taylor expansion in 3.1. Also, Dou et al. propose that the update process
of FedProx can be simplified by the chain rule as [30]:

gk (ωt) = ρ (ωt − ωk
∗) (9)

where ωk
∗ is the value of the model parameter for which the FedProx derivative is zero, and the process

is referred to as implicit gradient descent. Dou et al. found that the result was applied to synchronous
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federated learning after gradient averaging. However, the algorithm can also be used for asynchronous
federated learning due to its derivation process’s generality and context-specific nature.

3.3 Motivation Design

The scheme designs a motivating algorithm to enhance the positivity of the participants based on
double compensations. The motivation for federated learning is a hot issue in current research [42–45].
It arises due to the lengthy training process, complex environment deployment, and excessive training
restrictions of federated learning. For example, implementing federated learning in a 2B scenario
requires the coordination of all participants to complete the environment deployment and continuous
participation in each session.

However, the participants cannot see the training results at any time and can only follow the
instructions of the agreement to complete the training within a fixed number of rounds. In the long
term, their motivation can be severely dampened, leading to reduced participation and ineffective
continuation of federated learning outcomes. The introduction of asynchronous federated learning
has reduced the time cost of the federated learning system and made the update-issuance process more
flexible. But it still requires participants to deploy a rigorous environment and conduct a fixed number
of training rounds. It is a semi-normative learning process overall.

The scheme proposed in this paper performs a role reversal between the two parties. The entire
process is participant-centered, and participants will focus on completing their training. The central
server or the coordinator is involved in a supporting role throughout the process.

Inspired by Eq. (9) in 3.2.2, we consider ωk
∗ a critical parameter with asynchronous nature. ωk

∗ is
independent of the training time and the number of training rounds, which is only related to the data
structure owned by participant k. Thus, ωk

∗ is not only applicable to asynchronous federated learning
but can loosen the process of federated learning and lift the restriction of a fixed number of training
rounds for the participants. At the same time, gradient descent is performed at the central server using
the delay compensation in Section 3.1.

It results in a new federated learning scheme: the participants train to approximate convergence
and the central server performs gradient descent. The new model has three motivational effects. First,
the participants are motivated by being able to train themselves in appropriate values and see the results
of their models at any time. Second, the participants’ autonomy increases by lifting the restrictions
on training time and several training rounds; Third, participants’ initiative to join federated learning
enhances. Because the central server acts as a supporting role to help the participants escape the local
minimum trap and overfitting.

3.4 Description of the Scheme

From the illustrations in 3.1 and 3.2 with Eqs. (5) and (9), it follows that with the inclusion of the
two compensations, the gradient of the existing model parameter ωt−1 of the central server for the data
of participant k is:

gk (ωt−1) = gk (ωτ) − λtgk (ωτ) � gk (ωτ) � (ωt−1 − ωτ) = ρ (ωτ − ωk
∗) − λtρ

2 (ωτ − ωk
∗) � (ωτ − ωk

∗)

� (ωt−1 − ωτ) (10)

A gradient descent at the central server gives that:

ωt = ωt−1 − ηgk (ωt − 1) (11)
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A system overview is illustrated in Fig. 4. It can be seen that the update process involves only the
addition, subtraction and dot product operations of the three model parameters ωt, ωt−1 and ωk

∗. It
avoids finding the first and second-order derivatives and simplifies its update process.

Figure 4: System overview. : scheduler initializes training through the coordinator. 1©: participant
receives model ωτ from the central server via the coordinator. 2©: participant trains locally with a loss
function containing the FedProx operator to obtain the parameter ωk

∗. It computes local updates as
Algorithm 1. 3©: participant pushes the locally updated model to the central server via the coordinator.

4©: central server receives an updated model from the coordinator. 5©: central server updates the global
model by the Eqs. (10) and (11) and makes it ready to read by the coordinator in step 6©

The detailed algorithm is shown in Algorithm 1 (Table 1). Notations of the system is shown in
Table 2. The central server initializes and distributes the model parameters, which are received and
trained locally by each participant. When trained to approximate convergence, the trained parameters
ωk

∗ and the previously received parameters ωt are packaged and sent to the central server. The central
server performs the updates of Eqs. (10) and (11) and returns them to that participant. The algorithm
has both the stimulus effect stated in 3.3.1 and the loss compensation function in 3.1 and 3.2. It is
suitable for flexible, efficient, and autonomous asynchronous federated learning scenarios.

Table 1: Pseudocode for the system

Algorithm 1: Federated learning based on double-compensation

1: Process Central Server :
2: Thread Init () :
3: Initialize ω0, λt, ρ, v
4: Send the model ω0 to participants
5: Thread Update (ωt−1) :
6: Receive the pair (ωk

∗, ωτ)

7: gk ∼ (ωt−1) = ρ (ωτ − ωk
∗)−λtλρ

2(ωτ −ωk
∗)

⊙
(ωτ −ωk

∗)
⊙

(ωt−1 −ωτ)

8: ωt = ωt−1 − ηgk (ωt−1)

9: Send the model ωt to participants
10: Process Participants :
11: while():
12: Receive model ωt from the central server
13: ωτ ← ωt, ωk,h ← ωt

(Continued)
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Table 1: Continued
Algorithm 1: Federated learning based on double-compensation

14: Define loss function g (ωk; z) = f (ωk; z) + ρ

2
| |ωk − ωτ | |2

15: while g
(
ωk,h; z

)
> threshold v do

16: Random Sample zτ ,h ∼ Dk

17: Update ωk,h = ωk,h−1 − η∇g
(
ωk,h−1; zτ ,h

)
18: end
19: ωk

∗ ← ωk,h

20: Push (ωk
∗, ωτ) to the central server

21: end

Table 2: Notations of the system

Notation Description

τ The moment when the central server issues the model to the participant
t − 1 The moment when the central server receives the results of the participant, t − 1 > τ

t The moment the central server model is updating
k The participant’s index
ωi The overall model parameters at the moment i
ωk

∗ The training results for participant k
ρ Regularization weight
λt Parameters to improve the accuracy of time delay compensation, λt ∈ [0, 1]
v Loss Threshold
gk ∼ (ω) The gradient of the participant k to the model ω

Dk All data of the participants k, including features and labels
f (ω; z) Loss function with parameters for model ω and data z
η The gradient descent step of the central server

4 Experiments
4.1 Data Sets

The data used in this paper were collected in the field and post-tabulated from smart wearable
devices. Data from smart wearable devices are often private. Yet their data can be used to provide
better services to users. The application of federated learning in smart wearable devices is essential.
The data contained eight sets of screened characteristics related to cardiorespiratory fitness: rapid
heart rate, blood oxygen variance, running time, heart rate rise speed, heart rate reserve, heart rate fall
speed, resting heart rate, and maximum heart rate. The labels are derived from ratings of 800/1000
meters running performance on a physical test closely related to adolescent fitness, with four levels
Excellent, Good, Pass, and Poor. The size of dataset was 5772 × 9, with a randomly divided training
and test set ratio of 7:3.
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In the simulation experiments, the training set was divided into M(M = {2, 4, 6}) subsets used to
simulate the M participants. To simulate different asynchronous federated learning environments, we
randomly generated the computational order of the participant’s participation in the overall model.
The starting point for studying more complex deep learning models is the multilayer perceptron
network (MLP) [46], and the training model selected for this paper is always the MLP. Besides, all
the simulation experiments were done in the python 3.7 environment.

4.2 Experimental Design

The specific setup and description of the simulation experiment are as follows.

• Our method and the FedAsync method do not have similarities with the existing FedAsync
method, and the parameters play different roles. This paper selects multiple sets of parameters
for comparison experiments to obtain an overall comparison.

• In the simulation experiments, we randomly generate a sequential list of participants involved in
the overall model update to implement the asynchronous scenario. It can simulate asynchronous
learning in a variety of training situations. The list length is set to 30. When the update proceeds
to the participant of the sequential list, it will trace back the time or model parameters of the last
participant update in the order of the list and follow the algorithm of this paper or FedAsync’s
steps to perform the update and the evaluation of the loss on the training and test sets.

• To compare the convergence speed of the two methods more intuitively, we set each participant
to enough rounds to allow comparison at the same training level. It satisfies the approximate
convergence condition of the proposed method. In the experiments, the number of local training
rounds for each participant is set to 1000.

• For the comparison experiments of the FedAsync algorithm, we choose the more effective hinge
update methods, whose failure functions are described in Eq. (12).

Sa,b (t − τ) =

⎧⎪⎨
⎪⎩

1, t − τ

1
a (t − τ − b) + 1

, Else

• In this experiment, the Fedprox operator was added to the loss functions of both algorithms.
The Fedprox operator was set as the parameter ρ(ρ = 1).

In the model training, we find that the optimal value of the step size η is related to the number of
participants M. When M is bigger, the updated step size needs to be smaller. This design is because
the training of participants leads to different directions of optimization. The more participants, the
more dispersed the direction of optimization and complex the environment is. So, the step size needs
to be reduced. We set the step size to η1 when M = 1 and ηn = η1/n when M = n.

4.3 Results and Discussion
4.3.1 In Regular Scenarios

For different numbers of participants and training parameters, the loss descent images of this
paper’s method and the FedAsync algorithm (FedAsync-hinge algorithm) are shown in Fig. 5. The
data of the accuracies are shown in Table 3. As we mentioned in the experimental design in 4.2, we were
unable to conduct comparative experiments controlling the same parameters. Therefore, our method
sets fixed parameters λ(λ = 1). While in the FedAsync-hinge algorithm, we have selected α(α =
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{0.4, 0.6, 0.8}) for comparison experiments to get an overall performance comparison. Since only the
update parameters are changed, the rise and fall of the three FedAsync-hinge’s loss descent angles
are synchronized. While the proposed scheme in this paper changes the update method, and its loss
descent angles have different starting points from the above three angles.

Figure 5: Loss reduction of two algorithms in different situations
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Table 3: Accuracy of the two algorithms in different situations

Number of participants Algorithms Parameter values Accuracy after 30 rounds

M = 2

Our method λ = 1 0.9019

FedAsync-hinge
α = 0.4 0.8485
α = 0.6 0.8473
α = 0.8 0.8552

M = 4

Our Method λ = 1 0.9039

FedAsync-hinge
α = 0.4 0.8486
α = 0.6 0.8503
α = 0.8 0.8512

M = 6

Our method λ = 1 0.9060

FedAsync-hinge
α = 0.4 0.8543
α = 0.6 0.8521
α = 0.8 0.8451

In Fig. 5, we can see that as the number of training rounds increases, the loss descent of this paper
is more stable than that of FedAsync, and the final accuracy is higher. In Table 3, the accuracy of
our method (after 30 rounds) usually is over 90% and is better than FedAsync by 5%. The results
in regular scenarios show that solving the time delay problem can improve training accuracy while
smoother the training process. It also proves the superiority of our delay compensation method, which
uses the DC-ASGD method [29] based on second-order Taylor expansion as the delay compensation.
The smoothness of the training process benefits from the participant being constantly motivated.

4.3.2 In Heterogeneous Scenarios

To make the data distribution of each participant as dispersed as possible to form a robust data
heterogeneous environment, we group and arrange the datasets according to labels and divide them
into participants. In a data heterogeneous environment, the loss reduction images and accuracy of our
scheme and FedAsync-hinge algorithm are shown in Fig. 6 and Table 3.

Fig. 6 shows that although the FedAsync-hinge algorithm also contains FedProx operators in its
loss function, its performance in a more heterogeneous environment is still different than the scheme in
this paper. The reason is that the FedAsync-hinge algorithm is based on a model averaging algorithm
that replaces the underlying model during the update process and is more susceptible to the models of
participation in a heterogeneous environment. As a result, its overall loss in training can have large ups
and downs. In contrast, the scheme in this paper is based on a gradient descent approach, and the loss
drop will be smoother. In terms of accuracy after 30 rounds, our method is about five percent higher
than the FedAsync-hinge algorithm. Our scheme performs well even in data heterogeneous scenarios
because FedProx operators [30] are added to the objective function as the heterogeneity compensation.
In addition, our scheme updates the parameters based on swapping the roles of the participant and the
central server, which motivates the federated learning processing. This motivation also plays a gainful
role in the training process.
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Figure 6: Loss reduction of two algorithms in heterogeneous scenarios
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4.3.3 Evaluation of Our Scheme

Some measures of classification performance, including Precision, Recall, and F1 − Score are
calculated as follows.

Precision = TP
TP + FP

(13)

Recall = TP
TP + FN

(14)

F1 − Score = 2Precision ∗ Recall
Precision + Recall

(15)

where TP (True Positive) represents the positive samples that the model correctly predicts. FP (False
Positive) represents the negative samples that are correctly predicted by the model, and FN (False
Negative) represents the positive samples that the model incorrectly predicts. Thus, Precision represents
the percentage of samples correctly predicted as positive by the model, and Recall represents the
probability of being correctly predicted among the actual positive samples. F1 −Score is their summed
average, and the higher its value is, the better the classification performance is. In this paper, we take
F1 − Score as a classification metric to measure our algorithm. Its results at M = 4 are shown in
Table 5. Excellent, Good, Pass, and Poor represent the classification results of body mass data on the
smart wearable device and are described in detail in 4.1.

Table 4: Accuracy of the two algorithms in different situations

Number of participants Algorithms Parameter values Accuracy after 30 rounds

M = 2

Our method λ = 1 0.9031

FedAsync-hinge
α = 0.4 0.8513
α = 0.6 0.8498
α = 0.8 0.8516

M = 4

Our method λ = 1 0.9082

FedAsync-hinge
α = 0.4 0.8461
α = 0.6 0.8540
α = 0.8 0.8589

M = 6

Our method λ = 1 0.9088

FedAsync-hinge
α = 0.4 0.8531
α = 0.6 0.8540
α = 0.8 0.8477

Table 5: F1 − Score of the two algorithms at M = 4

Our method FedAsync α = 0.4 FedAsync α = 0.6 FedAsync α = 0.8

Excellent 0.8371 0.5212 0.6342 0.6048
Good 0.9538 0.9193 0.9236 0.9512

(Continued)
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Table 5: Continued
Our method FedAsync α = 0.4 FedAsync α = 0.6 FedAsync α = 0.8

Pass 0.9061 0.7923 0.7681 0.8449
Poor 0.7736 0.5978 0.6700 0.7547

As seen above, the scheme proposed in this paper changes the updated method of federated
learning. Both the FedAsync method and our method are related to scalar multiplication and addition
operations of tensors. Although our method also involves two dot multiplication operations, the time
complexity of both update methods is O(n) for the number of model parameters n. Meanwhile, the
time consumed by the update process is small compared to the training time of all parties. For different
scenarios, the training time and the overall model convergence time are different for each participant,
so it is impossible to compare the time complexity.

In the scenario of this paper, the training loss with time is as Fig. 7. Our method and FedAsync-
hinge method drop to the lowest in the 50 s, which shows that there is little difference in the time
complexity of the two methods in this scenario. In addition, the loss of our method falls more smoothly
during training, without ups and downs. It benefited from the scheme where we added time and
heterogeneous compensation for the asynchronous federal learning environment, and the participants
were more active in the training process.

Figure 7: Comparison of two methods in training loss vs. time

In discussing space complexity, all three methods (Our method, the FedAsync method, and
the asynchronous federated learning without two compensations) occupy the space of the order of
magnitude of the model parameters with a complexity of O(n).
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4.3.4 Discussion

This subsection explains the performance of the proposed work. Figs. 5 and 6 show the compari-
son of the federated learning scheme based on double compensation and the FedAsync algorithm in
the smoothness of the decline of the loss value. Tables 3 and 4 compare the accuracy after 30 rounds
of the two methods. The above experimental results show that the scheme in this paper has certain
advantages over existing methods.

The research highlights of our method are listed as follows.

• It solves two main problems: the time delay problem and the data heterogeneity problem. Both
of these problems can lead to low accuracy.

• The accuracy is about 5% higher on the training set than the FedAsync algorithm.
• The convergence of our method is smoother during the training process, and it can adapt better

in heterogeneous environments.

In terms of time complexity, the scheme in this paper and the other asynchronous federated
learning algorithms only modify the update method of the central server. Therefore, consume the
same order of magnitude of time for each round of training. Our method has a mathematical basis,
reduces the number of parameters that need to be adjusted, and has good practicality. In contrast
to methods such as FedAsync, which averages categories of models, the scheme in this paper uses a
gradient descent method with better accuracy and mathematical basis, avoiding the influence of local
models of the participants in the process of model averaging.

5 Conclusion and Future Work

In this paper, we proposed an asynchronous federated learning scheme based on double compen-
sation to solve time delay and data heterogeneity problems. Our experiments showed that the proposed
scheme converged more smoothly and was more accurate than the existing algorithm. It performs
better in scenarios where data from smart wearable devices are analyzed and processed at scale. For
federated learning, the current algorithms only consider the case of honest participants and central
servers. In the future, we will continue to study the problem of security mechanisms for dishonest
participants or central servers in the flexible federated learning environment proposed in this paper.
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