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Abstract: Considerable resources, technology, and efforts are being utilized
worldwide to eradicate the coronavirus. Although certain measures taken to
prevent the further spread of the disease have been successful, efforts to com-
pletely wipe out the coronavirus have been insufficient. Coronavirus patients
have symptoms similar to those of chest Tuberculosis (TB) or pneumonia
patients. Chest tuberculosis and coronavirus are similar because both diseases
affect the lungs, cause coughing and produce an irregular respiratory system.
Both diseases can be confirmed through X-ray imaging. It is a difficult task
to diagnose COVID-19, as coronavirus testing kits are neither excessively
available nor very reliable. In addition, specially trained staff and specialized
equipment in medical laboratories are needed to carry out a coronavirus test.
However, most of the staff is not fully trained, and several laboratories do not
have special equipment to perform a coronavirus test. Therefore, hospitals
and medical staff are under stress to meet necessary workloads. Most of
the time, these staffs confuse the tuberculosis or pneumonia patient with
a coronavirus patient, as these patients present similar symptoms. To meet
the above challenges, a comprehensive solution based on a deep learning
model has been proposed to distinguish COVID-19 patients from either
tuberculosis patients or healthy people. The framework contains a fusion
of Visual Geometry Group from Oxford (VGG16) and Residual Network
(ResNet18) algorithms as VGG16 contains robust convolutional layers, and
Resnet18 is a good classifier. The proposed model outperforms other machine
learning and deep learning models as more than 94% accuracy for multiclass
identification has been achieved.

Keywords: Tuberculosis; coronavirus; X-ray; deep learning; VGG16; and
ResNet18

1 Introduction

China experienced the breakout of an unidentified sickness in December 2019, when a few local
people exhibited symptoms of the disease. Initially, although obscure, the sickness was in the long run
recognized by specialists as having influenza and COVID-like side effects [1–4]. The emergence of this
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broad disease was already obscure yet following research center testing and continuous Polymerase
Chain Response (PCR) examination of positive sputum, the viral contamination was checked and
given the name “COVID-19” by the World Health Organization (WHO). COVID-19 rapidly extends
across global boundaries, substantially affecting the well-being, economy, and government assistance
of the total populace [5]. As indicated by information from Worldometers (worldometers.info), more
than 86 million people around the globe had suffered from COVID-19 until January 5, 2021, and
more than 1,870,000 of these people had died from the disease. By guaranteeing patient detachment
and pandemic control, early identification of COVID-19 is necessary for both patient consideration
and general well-being [6]. Analysts considered screening, quick identification of infected people, and
isolation from healthy individuals as basic measures. Because the sickness was obscure at that point,
there were no perceived therapies.

Clinical indications of COVID-19 include pneumonia, fever, hack, dyspnea, and respiratory side
effects. These side effects, although often observed in pneumonia patients, are not guaranteed to
highlight COVID-19, making it hard for specialists to make a diagnosis. Although the RT-PCR
test offers the highest-quality level of testing for COVID-19 determination, it has a few restrictions
and explicit attributes that enable disease testing to be recognized. Reverse Transcription-Polymerase
Chain Reaction (RT-PCR) is a serious, costly, muddled, and tedious procedure. The necessity for a
lab pack, which numerous countries find troublesome or even difficult to give during emergencies
and plagues, is one of the weaknesses of this methodology. This strategy, similar to other analytic
and research facility methods utilized in medical services frameworks, has a predisposition and
errors. Since inspecting the nasal and throat mucosa requires a gifted research center specialist and
is awkward, numerous patients reject nasal trade testing. Even more critically, a few examinations
have revealed the low responsiveness of the RT-PCR test; they have assessed that this demonstrative
technique’s responsiveness increases from 30% to up to 60%, showing a drop in the precision of
COVID-19 determination on several occasions. Additionally, its misleading destructive rate and
clashing outcomes were referenced in specific explorations.

The world has been incapacitated and has lacked assets to battle the coronavirus. The number
of asymptomatic patients can be larger than the number of confirmed cases, assuming that testing
is performed over a much larger scope. As reported by the World Wells Association, testing should
be performed at three times larger rates than is currently being performed. We do not have such
a limit established yet to perform testing at this level. Other than coronavirus, we are additionally
battling tuberculosis over the years. Nevertheless, we cannot handle this level of illness. A total of 1.5
million individuals died from tuberculosis in 2018. Utilizing radiological imaging, such as X-beams
and Computed Tomography (CT) filters, is one of the most vital ways to analyze COVID-19. The
underlying device in screening during pandemics, chest imaging, is a quick and straightforward method
that is prompted by clinical and well-being rules [7]. As coronavirus has side effects that are similar
to pneumonia, asthma, and tuberculosis, it is extremely challenging to anticipate coronavirus on the
foundations of side effects without performing tests. Any clinical trial is assessed on the foundations
of two boundaries: sensitivity and specificity.

Responsiveness implies that a test needs to distinguish all individuals with an infection. For
instance, if 100 individuals are tested, and 50 of them have tuberculosis, a decent test ought to
identify each of the 50 individuals. For this situation, healthcare providers would discuss a test
with a ‘high responsiveness’. Explicitness implies that a test just distinguishes individuals with an
illness and does not incorrectly identify a sickness in someone who is well. If 100 individuals are
tested for tuberculosis, 50 individuals are identified as normal, and a test with a decent explicitness
would accurately distinguish the 50 normal individuals and show 50 adverse outcomes. Customary
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approaches to testing are exorbitant and time-consuming. Extraordinary hardware and prepared staff
are expected to perform tests. Coronavirus and tuberculosis can likewise be analyzed by X-beam
images. On a chest X-beam of someone with tuberculosis, the cavitation of the tuberculosis microscopic
organisms’ structure in the lung tissue is frequently observed.

The most common changes in the lungs of a patient with the coronavirus include the accumulation
of fluid and/or tissue in pulmonary ducts, the opacity of ground glass, and shrinking and shadowing
of nodular veins. This contamination essentially influences the fringe and lower region of the lungs.
Although X-beam imaging has lower awareness, it has an accuracy rate above 90%. Thus, these pictures
are generally utilized as markers to analyze and recognize COVID-19 and tuberculosis symptoms
and those of a normal individual. Man-made consciousness can be consolidated to characterize a
COVID-19 patient, tuberculosis patient, and healthy individual using X-beam imaging, as coronavirus
and TB have similar side effects and both can be analyzed utilizing X-beam images. To efficiently
distinguish between COVID-19 and TB patients, a deep learning framework based on the fusion
of VGG16 and Resnet18 has been proposed that outperforms other state-of-the-art models. The
following contributions are achieved through the implementation of the proposed model.

• X-ray beams (an effective and cheap resource) are used for the reliable detection of the disease.
• A fusion-based deep learning model is used to distinguish between COVID-19, TB, and healthy

persons.
• The proposed model is superior in performance than current state-of-the-art models.

2 Literature Review

A substantial amount of research on illness recognition has been completed utilizing X-beam
images. A portion of this work has addressed the characterization and discovery of coronavirus and
pneumonia utilizing X-beam images. Tuberculosis has likewise been analyzed utilizing X-beam images
via profound learning. However, TB and coronavirus have not been investigated using profound
learning. The authors in [8] employed deep network architecture for quick chest X-ray tuberculosis
screening and diagnosis. This work consists of five convolutional blocks, followed by a fully coupled
softmax layer with two outcomes and a global normal pooling layer (which packs each component
guide to its mean worth). Two 3 × 3 convolutions with Rectified Linear Units (ReLUs) are included
in each convolutional block, followed by a maximum pooling activity. Compared with AlexNet [9],
the pooling size in step 2 is 3 × 3. The authors in [10] presented chest radiographs for TB using
artificial intelligence, where three deep learning frameworks were employed for the characterization.
In [11], convolutional brain organization is used to separate TB from other diseases in chest X-beam
images. The authors have proposed a novel method for handling erratic, lower-class, X-beam images
using a Convolutional Neural Network (CNN). Their method significantly improves the accuracy of
analyzing various TB symptoms. To prepare the methodology, the authors examine the effectiveness of
mixed examination with cross-approval and discover that it has a notable impact on the categorization
of clinical images. They achieved an 85.68% precision rate with a sizable collection of TB images.

In [12], the authors made incremental improvements to COVID-19 identification, utilizing a CNN
for thorough component extraction and a Support Vector Machine (SVM) for the classification. They
discovered the coronavirus using X-beam images and determined that it had a dual characteriza-
tion. This research suggests an advanced learning-based method for diagnosing COVID-19 patients
using X-beam images. The deep component is used to assist the vector machine in organizing the
coronavirus-impacted X-beam images from various sources. The method helps the clinical expertise
to evaluate a patient who has been exposed to COVID-19. To identify COVID-19, the recommended
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model, such as RESNET-50 in combination with the SVM, achieves quality metrics, namely, precision,
Final Production Run (FPR) (95.38%), F1-score (95.52%), Matthews Correlation Coefficient (MCC)
(91.41%), and Kappa (90.76%). Automated models for pneumonia detection and classification were
developed on X-ray images using MobileNet V2 and Xception frameworks. The suggested methods
have been verified on the data that contains 5856 images (1583 typical and 4273 pneumonia).
The authors concluded that calibrated versions of RESNET-50, with MobileNet V2 and Inception
RESNET V2, exhibit appealing results. In [13], the authors tested for viral and COVID-19 pneumonia.
The test was administered to examine the effectiveness of Artificial Intelligence (AI) from chest X-ray
images. The authors have created a public data collection by combining 1) various public information
bases and 2) providing recent research images. The collection contains images of COVID-19 (423),
pneumonia (1485), and standard chest X-rays (1579). A few premade deep CNNs were created and
approved using the move learning approach and image enhancement. Certain organizations were
willing to purchase two different plans: one plan for typical COVID-19 pneumonia and another plan
for viral COVID-19 pneumonia with and without image enhancement. For both designs, the respective
scores for exactness, accuracy, responsiveness, and explicitness were 99.7%, 99.7%, 99.7%, and 99.55%,
respectively, as well as 97.9%, 97.95%, 97.9%, and 98.8%, respectively [14]. A deep learning classifier
framework was developed by the authors in [15] to diagnose COVID-19 in X-ray images. The proposed
COVIDX-Net includes several types of deep convolutional brain network models, including the second
generation of Google MobileNet and the revised VGG19. To efficiently conduct experiments and
evaluate COVIDX-Net, 80 percent of X-beam images were used for training the model and 20% for the
testing phase. Achieving F1-scores of 0.89 and 0.91 for normal and COVID-19 respectively, VGG19
with the dense convolutional network (DenseNet) models demonstrated a respectable and comparable
presentation of robotized COVID-19. In [16], the authors organized images of chest X-beams using
fluffy variety and stacking techniques while attempting COVID-19 identification with deep learning
models to benefit from social mimic optimization. A kind of automated reasoning that is referred to as
deep learning was applied in this review to identify coronavirus. The data collection consists of three
different classes: COVID-19, pneumonia, and standard X-beam symbols. The images were organized
with the initial pictures that were stacked, and the information classes were reconstructed using a
preprocessing step of the fuzzy color technique. The dataset was then employed with MobileNetV2
and SqueezeNet deep learning models. The model capabilities were handled by applying the social
mimic augmentation method. The proposed technique yielded a general categorization rate of 99.27%
[17]. Additional work has also been completed to use X-beam imaging to identify a specific ailment.
COVID-19 has also been more specifically examined using X-beam images. However, attention has
been given to the problem of the early and robust identification of the disease. Additionally, deep
learning frameworks have not been fully utilized to distinguish COVID and TB using X-beam images.
The authors in [18] proposed an Internet of Things (IoT) based screening system to detect face masks
using the VGG16 deep learning model.

3 Methodology

As profound learning is in its pinnacle period, some exploration has been completed and
additional work is underway. Some calculations have been proposed to address different genuine
issues. Profound learning models are best utilized in class models for various complex undertakings,
including discourse acknowledgment, PC vision, and machine interpretation. Nonetheless, preparing
profound learning models, for example, profound brain networks, is a complicated undertaking,
as during the preparation stage, the contributions of each layer continually change [19]. We are
likewise consolidating a profound learning answer for analyzing COVID-19 and TB. This multiclass
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characterization consists of three classes: coronavirus-positive, TB-positive, and normal patients. The
proposed model contains four fundamental layers, as shown in Fig. 1, namely, the data acquisition
layer, data preprocessing layer, application layer, and performance evaluation layer.

Figure 1: Block diagram of the model

The datasets of coronavirus and TB patients are collected from Kaggle [20]. The tuberculosis
dataset is accumulated from an alternate source, and the COVID-19 dataset is gathered from an
alternate Kaggle account. There are 357 chest X-ray images for coronavirus patients. These two
datasets additionally contain chest x-beam pictures of healthy individuals. After the collection of
information from various sources, the data is combined to create a solitary dataset. This dataset
contains pictures of coronavirus and tuberculosis patients’ chest x-beams. Additionally, the dataset
also contains X-beam images of healthy individuals. The information acquisition layer is shown in
Fig. 2. A few X-beam images for tuberculosis and coronavirus patients are presented in Fig. 3.

As revealed in the dataset, the X-beam images have different sizes and designs and are on
various scales. Furthermore, it is almost consistently beneficial to apply pre-handling changes to the
information before it is introduced to an organization. Additionally, the results of the organization
frequently present the expected resulting values [21]. Thus, we want to preprocess the information
before presenting it to the organization. The information in pre-handling layer is displayed in Fig. 4.



886 CMC, 2023, vol.76, no.1

Figure 2: Data acquisition layer

Figure 3: Sample data from the provided dataset

The information has been designed, resized, and standardized to address these issues. As X-beam
images are of various sizes, we resized our pictures to 224 × 224. The obtained pictures are in various
organizations. The pictures are in jpg format, png configuration, or other formats. In this way, we
converted each of the pictures to png format for further handling. Our X-beam images have various
scales. Some pictures are brilliant and some are hazy. Along these lines, we performed picture scaling
to standardize our information. The following figure shows a picture after the pre-handling steps. We
obtained the five X-beam images as displayed in Fig. 5 during the preprocessing stage.
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Figure 4: Data preprocessing layer

Figure 5: A few sample images from TB dataset

In the application layer, the pre-handled dataset is fed as shown in Fig. 6 with the preparation
model. The model used to prepare our framework is known as VGG16 [22]. The model has the
greatest number of stored convolutional layers and is known for efficient picture handling and robust
feature extraction. VGG16 has a total of 138 million boundaries. Additionally, VGG16 has different
convolutional layers, a max-pooling layer, a completely associated layer having ReLU as an actuation
capability, and toward the end, it has a delicate max layer. The layered design architecture of VGG16
is presented in Fig. 7.

Figure 6: Flow diagram for VGG16 model

Figure 7: Layered illustration of the VGG16 model

The test image is passed into a series of convolutional layers, where employed channels with tiny
receptive fields of size 3 × 3 (minimum range) are used. The convolution step is performed at a distance
of each pixel. After the convolutions, pooling is carried out with a stride of 2 or more pixels. The
accompanying Fig. 8 shows the building blocks of the VGG16 model.
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Figure 8: Structural details of VGG16

After these 13 convolution layers and five max-pooling layers, we have thick layers. Each thick
layer contains 4096 units and has a ReLU initiation capability. Relu is utilized to quit sending negative
qualities and permits rapid organization. The Relu capability is characterized underneath in numerical
terms:

r (x) = max (0, z) (1)

In the last thick layer, a delicate max capability is utilized for grouping. It standardizes the results
for each class within the range of 0 and 1 and partitions by their total, giving the likelihood of the info
esteem being in a particular class. The proposed calculation is carried out in the Python programming
language. The different datasets are downloaded from Kaggle, and in our case, the dataset contains
500 chest X-beam images of COVID-19 patients, 500 images of TB patients, and 500 X-beam images
of healthy individuals. The entire dataset organizer contains two further envelopes, named “preparing”
and “testing”. Every envelope contains TB_images, COVID_images and “Normal_images”. After
planning, the labeled data is employed in the VGG16 and ResNet18 networks for classification. The
attributes of VGG16 are given in the accompanying figure. We train our information in 40 epochs. In
general, datasets are divided into train and test sets (especially when the amount of data is very large)
[23]. Typically, fifteen hundred images have a learning rate of 0.001. A hyper-boundary controls the
amount to change the model because of the assessed error each time the model loads are refreshed
[24]. We compute the error after every age. The error condition is given as:

Etotal = 1/2 [(target-output)] (2)

Considering the above error, we update the weights each time. The equation for weight updating
is given below:

w = w − ηd1/dw (3)

Here, we represent the underlying weight, w denotes the weight, and η indicates the learning rate.
In this way, our model has been carried out at this point. Additionally, the model is prepared by the
above-portrayed boundaries. After the application layer, we have a sublayer referred to as the execution
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assessment layer, in which we work out our expense capability, accuracy, and precision. We can identify
and order the coronavirus and TB from the x-beam pictures.

In Fig. 9, the layer performance of the model is evaluated, and the results are discussed and
compared with other works.

Figure 9: Evaluation layer

4 Results

This model is designed mostly for people over 40 years of age. The performance of the model
increases with increasing age, and the efficiency of the model decreases with decreasing age. Using the
entropy of the model, we can characterize the global maxima, where we obtain the least number of
errors and the most extreme precision.

4.1 Accuracy

Fundamentally, accuracy is the number of correct expectations by the model. The accuracy is
numerically expressed as follows:

Accuracy = (TN + TP)/(TP + FP + TN + FN) (4)

where TN represents true negative, TP stands for true positive, FP represents false-positive, and FN
shows false negative samples. In the preparation stage, our model showed an exactness of 94.26% and
an accuracy of 94.18%.

4.2 Precision

Both exactness and accuracy indicate how close an estimate is to a true value; however, exactness
indicates how close an estimate is to a known or acknowledged value, while accuracy indicates how
repeatable an estimate is, regardless of how far it is from the value that is acknowledged [25]. One way
to describe accuracy is gained from the following expression:

Precision = TP/(TP + FP) (5)

where TP and FP are already defined in Eq. (4). The proposed model achieves 94% precision rate.

4.3 F1 Score

The F1 score and Hamming loss of the model are 0.911 and 0.068, respectively. The F1 score is
the symphonious mean of accuracy and review. The condition for the F1 score is given as:

F1 = 2.0 ∗ (Precision × Recall)/(Precision + Recall) (6)
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4.4 Awareness

Awareness is also referred to as the hit rate or genuine positive rate and is expressed as the number
of accurately certain recognized cases. Responsiveness is given as follows:

Sensitivity = TP + TN/ (FP + FN) (7)

Misfortune in the preparing stage is 0.053, and misfortune in the approval stage is 0.093. The
misfortune curve for all ages is presented in Fig. 10. The blue line represents training error, and the
orange line denotes testing error. The model undergoes a slight over-fitting due to less complexity of
features in the training dataset.

Figure 10: Loss curve over each epoch

The accuracy of this model is shown in Fig. 11:

Figure 11: Model accuracy in the training and validation phases

Here, note the slight amount of overfitting and a modest number of X-beam images are accessible
for each of the three classes. This overfitting issue can be addressed by choosing a more noteworthy
age and having a large measure for preparing the dataset. In the wake of preparing the model and
approving it, we selected this model for the absolute test X-beam images. The findings show an
exactness of approximately 92% with these test pictures. The results for the proposed model are shown
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in Table 1. The overall accuracies for the three classes, COVID-19 positive, TB positive, and healthy
patients are 92.9%, 92.7%, and 98.2% respectively. There is a slight decrease in the accuracy metrics
of TB patients as the X-ray images of a few TB patients are complicated and the pattern is similar
to COVID-19 samples. The thickness and texture of fluids are different for both diseases and the
proposed model efficiently distinguishes them [26].

Table 1: Summarized results of the model

Training results Validation results

Accuracy% 94.6 94.18
Loss 0.053 0.093
F1 core 0.911 0.88
Humming loss 0.068 0.085

The confusion matrix, which is given below in Fig. 12, shows the true positive results of all three
classes: COVID-19 +ve, TB +cve, and both −ve.

Figure 12: Confusion matrix
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5 Comparative Analysis

Comparisons of different methods for diagnosing COVID-19 or TB with X-ray images are shown
in Table 2.

Table 2: Comparison of the proposed model with existing models

Types of images Method used Accuracy (%) No. of classes
Pasa et al. [8] Chest X-rays Efficient deep network

architecture
95.6% 2 (TB & Normal)

Liu et al. [10] Chest X-ray images Convolutional neural
network (CNN)

85.68% 2 (TB and Normal)

Masood et al. [22] Chest X-ray images VGG-19 93.48% 3 (COVID, pneumonia &
Normal)

van der Tol [23] Chest X-ray COVIDX-Net 90.0% 2 (COVID and Normal)
Apostolopoulos et al. [24] Chest CT ResNet location Attention 86.7% 2 (COVID and Normal)
Lupia et al. [25] Chest X-ray Deep CNN & ResNet-50 98.0% 2 (COVID and Normal)
Wang et al. [26] Chest X-ray images SVM & Resnet50 95.38% 2 (COVID and Normal)
The proposed technique Chest X-ray VGG16 and ResNet18 96% 3 (COVID, TB and

Normal)

6 Conclusion

The proposed study may have a critical contribution to the clinical field and can assist the
clinical framework and staff to effectively manage the disease and lessen its spread. Profound learning
models are making cutting-edge techniques on various complex tasks, including medical imaging,
machine vision, and biomedical signal processing. Nonetheless, preparing profound learning models,
for example, profound brain networks, is an intricate task, as during the preparation stage, the
contributions of each layer continue to vary. In the proposed model, a framework is designed to analyze
COVID-19 and TB symptoms. It is a multiclass model that contains three classes: Coronavirus positive,
TB positive, and coronavirus, and TB negative. The model has accomplished an accuracy of 94%. To
improve the metrics and unwavering quality, a couple of additional steps will be included in the future,
for example, using transformer-based learning for the training data. The combination of two profound
learning models, VGG16 and RESNET-18, not only upgrades the quality metrics but also enhances
the robustness of the proposed model.
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