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Abstract: Visual question answering (VQA) requires a deep understanding
of images and their corresponding textual questions to answer questions
about images more accurately. However, existing models tend to ignore the
implicit knowledge in the images and focus only on the visual information in
the images, which limits the understanding depth of the image content. The
images contain more than just visual objects, some images contain textual
information about the scene, and slightly more complex images contain
relationships between individual visual objects. Firstly, this paper proposes a
model using image description for feature enhancement. This model encodes
images and their descriptions separately based on the question-guided co-
attention mechanism. This mechanism increases the feature representation
of the model, enhancing the model’s ability for reasoning. In addition, this
paper improves the bottom-up attention model by obtaining two image region
features. After obtaining the two visual features and the spatial position
information corresponding to each feature, concatenating the two features as
the final image feature can better represent an image. Finally, the obtained
spatial position information is processed to enable the model to perceive the
size and relative position of each object in the image. Our best single model
delivers a 74.16% overall accuracy on the VQA 2.0 dataset, our model even
outperforms some multi-modal pre-training models with fewer images and a
shorter time.

Keywords: Bottom-up attention; spatial position relationship; region feature;
self-attention

1 Introduction

Visual question answering (VQA) [1] models must have a solid knowledge of the image content
while reading text questions, and use the information from two models to obtain the correct answer.
Therefore, the rapid advancement of computer vision and natural language processing favors the
development of VQA. VQA has great application potential in helping visually impaired people
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understand the world, building intelligent question-answering systems, and improving the human-
computer interaction experience.

The typical representatives of models based on the co-attention mechanism for VQA are deep
Modular Co-Attention Network (MCAN) [2], Dynamic Fusion with Intra- and Inter-modality
Attention Flow (DFAF) [3], and so on. These models all use the region features [4], and they not
only get the region features but also the spatial position coordinates corresponding to these region
features. However, these models generally ignore the position information of these visual features, or
simply concatenate the coordinate information behind the visual features, which makes the model
unable to perceive the spatial position of each region feature in the image well. In addition, these
models only use the question and image as the input and do not further mine other information,
such as optical character recognition (OCR) text in the image, image description text, and external
knowledge. To make the VQA model better understand an image, we introduce image description
as an auxiliary method of image understanding. First, the image description generation model [5,6]
is used to generate the image description; then, the question-guided feature representation of the
image description is generated based on the co-attention mechanism, so that the model can more fully
learn the alignment information of the image and text. Compared with previous models using image
description information, we tried to use a multi-modal pre-training model to obtain image description
information and explore the impact of different models on the results of VQA. In addition, we explored
whether adding image description data and integrating it with other innovative points of our model
may increase the model’s accuracy even more.

Most of the early models extracted grid features of images from the convolution network [7],
and each grid was of equal size. Later, the bottom-up attention based on Faster region-convolutional
neural network (Faster R-CNN) [8] was used to extract region features from an image. The VQA
model’s accuracy depending on region features has been greatly improved compared with the simple
grid features obtained through convolution networks. Since then, visual region features based on
bottom-up attention has become popular. Based on the bottom-up attention method, the grid model
[9] extracts an “enhanced grid feature”, and the performance of the VQA model using this grid feature
becomes significantly improved. However, the size of this “enhanced grid feature” is (608, 2048), which
is 6 times that of the region feature of bottom-up attention (100, 2048). Moreover, there are only 36
region features in some images; thus, the training time is prolonged by approximately 6 times. Based
on the optimization of this model and a bottom-up attention model, this paper proposes two models
to extract region features, and these two models extract region features at the same position in an
image and concatenate the two features as the final visual region features. In the future, we intend
to investigate the effects of one-objective detection models [10,11] on extracting visual features, such
as visual features obtained using mask region-convolutional neural network (Mask Refined R-CNN)
[10].

When extracting region features based on Faster R-CNN, we also obtain the position coordinate
information of each region feature. We further process the position coordinates to obtain the width,
height, and center coordinate position of each region feature. Then, we calculate the relative size and
relative distance between each region feature and all other region features in an image. Each region
feature can perceive which region is relatively close, which is relatively far, which is larger and which is
smaller. Regarding locations, each region feature can answer the questions more accurately.
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Our innovations and contributions are summarized below:

1) Given that a larger image feature dimension can better represent the features of an image, we
used two improved extractors to obtain two vision features at the same location, concatenating
the two features as the final feature that can better represent the image.

2) The vision features alone cannot represent the image information comprehensively, so we
introduce the implicit knowledge in the images. Based on the image caption generation model,
image description texts are introduced to improve the model’s understanding of the image
information.

3) Based on spatial position information, we designed a dense co-attention model to enhance
the perception of spatial position. The model includes three units: a text self-attention (SA)
module, an image self-attention module based on spatial position, and a question guided
attention (GA) module. Due to the incorporation of spatial position information, the model is
able to better answer counting-type questions.

4) Ablation experiments show that the methods this paper proposes are effective. Moreover,
the effects of these methods can be superimposed. Our model has significantly improved the
performance on the VQA 2.0 [12] and generative question answering (GQA) [13] datasets.

2 Related Work
2.1 Attention Mechanisms

The attention mechanism [14,15] in deep learning places more attention resources into a certain
area, and is similar to human attention mechanism. For example, people can quickly browse a whole
image to obtain the focus area; then, focus on this area to obtain the information of the target of
interest while ignoring other unnecessary information. In the paper [14], a hierarchical relational
attention mechanism is suggested to accomplish a comparable capability. The paper [15] suggests a
VQA model that makes use of the Bidirectional Encoder Representation from Transformers (BERT) to
embedding question and the stacking self-attention. In particular, the model can concentrate on both
the relationships between objects and a single object due to the stacking self-attention mechanism.

2.2 Pre-Training Model

The majority of VQA approaches employ word embedding for linguistic features and a visual
model trained on ImageNet [16] and Visual Genome (VG) [17] as distinct pre-training models. First, we
will explain why we need to conduct a pre-training study of visual language. It is well known that pre-
training models [18,19] such as BERT have significantly improved the effect of the text-downstream
task. In fact, the effect is very important because the data volume of the downstream task is relatively
small because it is manually annotated, and the effect is limited only by a small amount of data.
Similarly, in the downstream task of learning visual language, it is also limited by the data volume
of labeled training samples, and there is no way to further break through the effect.

3 Proposed Model

We introduce our model structure in this section. Fig. 1 depicts the suggested model’s overall
structure.
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Figure 1: The structure of our proposed model, SA represents self-attention unit, and GA represents
guided-attention unit

3.1 Text Question Representation

All questions are specified to a maximum of M words. Each question is encoded as a global
vectors for word representation (GloVe) [20], which uses a public version of pre-training based on
the Wikipedia corpus. If the length of the question is less than M, it is extended with a zero vector.
The sequence after word embedding is encoded by the gated recurrent unit (GRU), and following is
the calculating formula:

X = GRU (Glove (ques)) (1)

where X ∈ R
dx∗M is the question embedding.

3.2 Image Description Text Extraction and Representation

The image description text depends on the image caption generation model. We use the boot-
strapping language-image pre-training (BLIP) [5] and OFA [6] models to extract the corresponding
two description texts. After obtaining the image description text, we use the GloVe word vector to
encode and then use GRU for further processing to obtain the final feature C. The following is the
calculating formula:

C = GRU (Glove (BLIP/OFA (image))) (2)

where C ∈ R
M∗dc is the image description embedding, and dc is the output dimension.
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3.3 Image Feature Representation

At the moment, popular image feature extraction algorithms use the bottom-up attention to
identify specific objects in an image and output the residual network (ResNet) feature of the image’s
Top-k target regions. Based on the bottom-up attention, we made a modification and extracted the
first new enhanced visual region feature. In a recent paper [9], grid features were extracted using the
Faster R-CNN, and the result was noticeably better. However, the size of the grid features increased
sharply, resulting in a training time that was too long. Therefore, we extracted a new visual region
feature based on this model. All the detectors are pretrained on the VG dataset.

3.3.1 Improved Visual Region Features Based on Bottom-Up Attention

As shown in Fig. 2a, we modify based on bottom-up attention. First, we use the ResNeXt [21]
C1−5 module to extract the feature map, and integrate the C5 module with C1−4. The initial region
features are obtained by processing the 14 × 14 region of interest (ROI) Pooling operation. Finally, we
employed the mean-pooled method to achieve the final region feature, which is our first target detector
that extracts the region feature. The image’s feature can be expressed as follows:

Y1 = FRCNN1 (image) (3)

where Y1 ∈ R
dy∗N is the vision feature, dy = 2048 is the dimension, and N = 100 is the number of

detected targets.

Figure 2: Overview of the extraction region model

3.3.2 Improved Visual Region Features Based on the Grid Model

As shown in Fig. 2b, the “In Defense of Grid Feature for VQA” model first uses the ResNet C1−5

module to extract the feature map and then uses 1 × 1 ROI Pooling operation to achieve the initial
region feature; then two 1024-dimensional fully-connected (FC) layers are used. When extracting grid
features, only the feature processed by ResNet is needed. To extract new visual region features, as
shown in Fig. 3b, we first obtain the features processed by ResNet and then use the 1 × 1 ROI Pooling
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operation as the final visual region features. The image’s feature can be expressed as:

Y2 = FRCNN2 (image) (4)

where Y2 ∈ R
dy∗N is the vision feature, dy = 2048 is the dimension, and N = 100 is the number of

detected targets.

Figure 3: The three basic attention units’ architecture

3.3.3 Concatenating Two Region Features in the Same Spatial Position

We use the improved method based on the bottom-up attention to extract the first visual feature as
the main feature and obtain the corresponding spatial position of the region feature (unified bounding
box). The second visual feature extraction model based on the grid model obtains the second visual
region feature of the same spatial position with the unified bounding box. Then, after obtained the
two visual features, we concatenate in the first dimension of the two visual features and calculate the
formula as follows:

Y = Concat(Y1, Y2) (5)

where Y ∈ R
2N∗dy is the concatenation feature of the image, Y1 ∈ R

N∗dy , Y2 ∈ R
N∗dy are the two visual

region features from above improved models.

3.4 Co-Attention Model Based on Image Description and Spatial Position

Our multi-modal attention model includes a text self-attention unit and a question-guided atten-
tion unit. The interaction information is learned between the same modal or different modal through
the attention mechanism. The question-guided image attention has the same implementation method
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as the question-guided image description attention, except that the image feature representation is
replaced by the image description text feature representation.

3.4.1 Multi-Head Self-Attention Mechanism

Before introducing the basic units of the co-attention mechanism of the model, we introduce multi-
head self-attention. Because all the basic units of attention in the model are based on it, which includes
a multi-head attention layer, a layer normalization layer, a residual link layer, and a forward layer. The
input feature X is mapped by three matrices to obtain the corresponding matrices Q, K and V , which
are calculated by a scaled dot-product. The calculation formula is as follows:⎧⎨
⎩

Q = XW Q, K = XW K , V = XW V

Attn (Q, K, V) = soft max
(

QKT

√
dk

)
V

(6)

where Q represents the Query, K represents the key, V represents the Value, dk represents the dimension
of the Query, Key and Value.

Using the multi-head attention mechanism which includes h attention operations, the model’s
presentation ability is further enhanced. and each attention operation corresponds to a scaling
dot product operation. The output representation of the multi-head attention layer is created by
concatenating the operation results:{

headi = Attn (Qi, Ki, Vi)

MHA (Q, K, V) = Concat (headi, head2, . . . , headh) Wo

(7)

where Qi, Ki, Vi represent the i-th head’s matrix. Wo ∈ R
h∗dh∗d represents the projection matrix.

3.4.2 Text Self-Attention and Guide-Attention

As shown in Fig. 3a, we introduce text self-attention. The formula used to calculate SA is as
follows:⎧⎪⎨
⎪⎩

Q = XW Q, K = XW K , V = XW V

f = LayerNorm (X + MHA (Q, K, V))

SA (X) = LayerNorm (f + FFN (f ))

(8)

where X = {x1; x2; . . . ; xM} ∈ R
M∗dx is the input features of SA.

The difference between the guide-attention mechanism module and the self-attention module lies
in the input of two different features. As shown in Fig. 3c, the corresponding matrices of the question
feature X as the guidance feature are K and V, and the corresponding matrix of the visual feature (or
image description feature) is Q:⎧⎪⎨
⎪⎩

Q = YW Q, K = XW K , V = XW V

f = LayerNorm (Y + MHA (Q, K, V))

GA (X) = LayerNorm (f + FFN (f ))

(9)

where X = [x1; x2; . . . ; xM ] ∈ R
M∗dx and Y = [y1; y2; . . . ; yN] ∈ R

N∗dy are the input features of GA.
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3.4.3 Image Self-Attention Based on Spatial Position Information

If spatial location information is not added to self-attention, the use of image self-attention is
basically the same as that of text self-attention. Only the data input to the self-attention unit is different.

When acquiring the visual region features, we obtain the bounding box coordinates [xmin, ymin, xmax,
ymax] of the object; thus, using the region feature over the grid feature is more advantageous. After the
image self-attention is integrated into the spatial location information, it can better realize the size of
all objects and the relative distances between objects in the image.

Given the coordinate position information of the regions in the image, the coordinates of the
center point of the region are first calculated, and the distance between the two features of all regions
in the image are calculated. Then the distance is divided by the width and height for standardization to
obtain the relative distance. As a result, each region can detect its relative distance from other regions:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x = log
(

x − xT

w

)

y = log
(

y − yT

h

) (10)

where [x, y] is the center point coordinate of the region feature.

Secondly, the width and height of each region are divided by the widths and heights of the other
regions; thus, the relative size of each region is obtained to determine which regions are larger and
which regions are smaller. Similarly, we can also obtain w, h.

Then, the above four vectors are concatenated together:

R = Concat(x, y, w, h) (11)

Finally, we use two fully-connected layers for processing:

r = MLP(R) = Relu ◦ FCdr
h ◦ Relu ◦ FC4

dr
(R) (12)

where FCdr
h and FC4

dr
are fully-connected layers, FC4

dr
indicate the dimension is converted from 4 to dr.

We obtain spatial information and incorporate it into the self-attention unit. The self-attention
based on spatial position (SPSA) is calculated using the following formula:⎧⎪⎨
⎪⎩

SP_Attn (Q, K, V) =
(

Soft max
(

QKT

√
dk

)
+ r

)
V

SPSA (Y) = SP_MHA (Y , Y , Y)

(13)

where Y represents the input features, only SP_ MHA and multi-head attention (MHA) have different
calculation methods of attention, while others remain unchanged.

3.4.4 Cascade of the Attention Modules

To further improve the representation ability of the feature, we use a cascade approach to combine
the attention modules. The output of the upper layer is used as the input of the lower layer. For the
text attention mechanism, a total of L layers are stacked as the final text feature:

X k = SAk
(
X k−1

)
(14)
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where SA1, SA2, . . . , SAL represent the different layers of text self-attention. The final layer X L is
obtained as the final text feature.

Then, the final image features are obtained by using the SPSA and GA:

Y k = GAk
(
XL, SPSAk

(
V k−1

))
(15)

where GA1, GA2, . . . , GAL represent the different layers of question guided-attention. The obtained
final image feature Y L is used as the final region feature.

Similarly, after obtaining the image description text feature C processed by GRU, the self-attention
unit is used for processing and then input into the attention module GA:

Ck = GAk
(
XL, SAk

(
Ck−1

))
(16)

where GA1, GA2, . . . , GAL represent the different layers of question guided-attention. The obtained
final image description text feature CL is used as the final image description feature.

4 Feature Fusion and Answer Prediction

After obtained the three features, we need to fuse them. We need to use multilayer perceptron
(MLP) to process these three types of features to get the final features.⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

MLP(X) = FCd
2d ◦ Relu ◦ FCd

d (X)

α = soft max(MLP(X L))

V =
M∑

i=1

αixi

(17)

Moreover, the vector α = [α1, α2, . . . , αM ] ∈ R
M . Similarly, we can get Q and D. Finally, to acquire

the fusion feature, we employ a straightforward linear projection:

h = LN(W T
v V + W T

q Q + W T
d D) (18)

where the vectors are W T
v , W T

q , W T
q ∈ R

d∗dz and h ∈ R
dz are the fusion features.

After the final fusion feature is obtained, the answer can be predicted. We receive a set of A
candidate answers if the answer appears more than 8 times in the dataset. We categorize it using a
linear classifier, and then we calculate the predicted probability value using a sigmoid function:

ŷ = Sigmoid
(
W T

z h
)

(19)

where vector W T
z ∈ R

dz∗A, A is the number of the candidate answers.

5 Experiment
5.1 Datasets

The VQA 2.0 dataset consists of 40,504 verification images, 81,434 test images, and 82,783 training
images. All question sets’ answers are manually compiled, and the yes/no, number, and other answer
categories make up the question-answer group. Ten volunteers answered each question. There were
ten potential responses. The response chosen as the correct one was the one that appeared the most
frequently out of the possible 10.
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The GQA dataset contains 22 million questions as well as over 110 k images. The GQA dataset
has more questions with multistep reasoning requirements and more evenly distributed answers. 51%
of its questions focus on the relationships between the objects, while 94% demand multistep reasoning.

5.2 Experimental Setup

The hyperparameters of our model used in the experiments follow the MCAN model. The GQA
dataset offered A = 1878 potential responses. The length of a tokenized word is 14 characters. The
GQA dataset also used the VQA 2.0 learning rate technique. We applied cross-entropy (CE) loss to
improve our model.

5.3 Ablation Experiment

Based on the MCAN model, we conducted the following ablation experiments:

• MCAN: Denotes a benchmark model.
• MCAN + SPSA: MCAN combined with the SPSA module.
• MCAN + OFA: Refers to that extracts image description text based on the OFA model and

introduces question-guided image description.
• MCAN + BLIP: Refers to the that extracts image description text based on the BLIP model

and introduces question-guided image description.
• MCAN + vision feature1 (VF2): Denotes the use of the improved bottom-up attention to

extract the region feature VF1 to replace the original bottom-up attention’s visual feature.
• MCAN + vision feature2 (VF2): Denotes the use of improved Faster R-CNN based on Grid

model [14] to extract the region feature VF2 to replace the visual feature of the original bottom-
up attention.

• MCAN + Concat (VF1, VF2): Indicates the features of VF1 and VF2 are concatenated as input
visual features.

• MCAN + SPSA + OFA + Concat (VF1, VF2): All of the methods proposed in this paper are
combined.

The ablation results are shown in Table 1. In the first row, the MCAN model is used as the
benchmark model. In the second row, after introducing the SPSA module based on the MCAN, the
accuracy is improved by 0.42%, indicating that the SPSA module is effective. In the third row, the OFA
model is used to extract the image description text, and the accuracy is improved by 1.5%, which verifies
that the question-guided image description attention mechanism module is effective. In the fourth line,
the BLIP model is used to extract the description information, but the accuracy is only improved by
0.93%, indicating that different caption generation models have an impact on the accuracy. The fifth
to seventh lines show that our two visual feature extractors are effective, and the accuracy is further
improved after concatenating the two image features. Through ablation experiments, we found that
the image description text of the OFA model is more effective than that of the BLIP model. Each
method we proposed contributes to the improvement of the model, and the three methods can overlay
the effects.
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Table 1: The results of ablation experiment on the VQA 2.0 val set

Model SPSA OFA BLIP VF1 VF2 Accuracy (%)

MCAN 67.17
� 67.59

� 68.67
� 68.10

� 68.26
� 67.88

� � 69.16
� � � � 70.29

5.4 Qualitative Analysis

Fig. 4 shows the self-attention map of the question, the image description, the vision feature, and
the guide-attention mechanism. With an increasing number of stacking layers, the keywords in the
questions will be found, and some areas of the image will be focused on. We chose 4 questions at
random and showed the image attention to exhibit the effects of our model (Fig. 5). The top three
regions in the box with the best scores have something to do with the inquiries. The incorrect examples
revealed the flaw in our model: 1) The model lacks certain common sense, as evidenced by its inability
to detect the wording on the sign in the third example (e.g., in the fourth example, the model is
unfamiliar with the famous people). The inadequacies mentioned here serve as a foundation for future
advancements in VQA.

Figure 4: (Continued)
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Figure 4: The number of layers of the attention is six. In the first and sixth layers, attention maps are
displayed

Figure 5: Typical illustrations of what our model predicts. The first two instances are accurate forecasts,
but the final two are false. Each sample only displays the top three regions, with boxes highlighting
the object regions. The number next to each box in the image denotes how much attention is paid to
each region
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5.5 Comparison with the State-of-the-Art Models

On VQA 2.0, we compare our model against the state-of-the-art in Table 2. Bottom-Up and
Top-Down (BUTD) [4] is the challenge model of 2017, it also extracts the region features for the
first time, and our model is 8.49% more efficient. Multimodal deep fusion network (MDFNet) [22]
proposes graph reasoning and fusion layer (GRFL) to reason complex spatial and semantic relations,
our model improves 3.5%. Sparse co-attention visual question answering network (SCAVQAN) [23]
proposes a sparse co-attention visual question answering network based on thresholds, our model
improves by 3.02%. Context-aware attention network (CAAN) [24] developed a novel absolute
position computation approach based on the coordinates of each image region and the image’s real
size, the accuracy of the model is just 71.59%, our model exceeds it by 2.57%. MCAN [2] and spatial
position relationship co-attention network (SPCA-Net) [25] explore the attention mechanism within
and between modals, for the two models, there is an efficiency improvement of 3.26% and 2.49%,
respectively. Based on the use of grid features, Movie [26] designs a model to improve the count
category, our model improves by 1.13%.

Table 2: Comparison with the state-of-the-art models on the VQA v2.0 test-dev and test-std datasets

Model Test-dev (%) Test-std (%)

Y/N Num Other Overall Y/N Num Other Overall

BUTD [4] 81.82 44.21 56.05 65.32 82.20 43.90 56.26 65.67
MCAN [2] 86.82 53.26 60.72 70.63 - - - 70.90
MDFNet [22] 86.27 53.86 60.57 70.39 - - - 70.66
SCAVQAN [23] 86.96 53.49 60.95 70.82 - - - 71.14
CAAN [24] 87.37 52.65 61.41 61.41 - - - 71.59
SPCA-NET [25] 87.18 54.98 61.52 71.35 87.50 54.83 61.73 71.67
MoVie [26] 88.39 57.05 63.28 72.91 - - - -

Our (train+val+VG) 89.15 57.82 64.80 74.04 89.15 57.79 64.85 74.16

We compare our model to the recent models on the GQA dataset in Table 3. Our model does not
use the Val set for data augmentation; it is only trained on the train set. Deep context learning models
include Language-Conditioned Graph Networks (LCGN) [27] and object-centric compositional
attention mode (OCCAM) [28]. Both, however, merely take the visual modality’s context into account.
They are outperformed by our model by 3.47% and 3.07%, respectively. The corresponding context
learning modules are designed by multiple context learning network (MCLN) [29], which also develops
a multiple context learning layer. Our model gets a 2.22% higher value than SPCA-NET [25].

We also compare our model with multi-modal pre-training model. Table 4 shows the results.
It can be seen that universal image-text representation learning (UNITER) [30], object-semantics
aligned pre-training for vision-and-language tasks (OSCAR) [31], and vision and language large-scale
adversarial training (VILLA) [32] were pre-trained with 4 million images, which is more than 30 times
the number of images we used. We directly trained our model on the VQA 2.0 dataset, with a total
of 120 thousand images. However, our model is 1.25%, 0.72%, and 0.49% higher than their respective
values on the test-std of the VQA 2.0 dataset. The number of images used in the seeing out of the box
(SOHO) [33] model pre-training is 219,000, which is nearly twice that of us, but the accuracy is 0.69%
lower than our model. The cross- and intra-model prior knowledge (ROSITA) [34] was pretrained
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with 9.5 million images, but the final accuracy was 0.19% lower than our model. Compare with these
multi-modal pre-training models, our model has achieved considerable results with fewer images, a
shorter training time, and fewer training resources.

Table 3: Comparison with the recent models on the GQA datasets

Model Test-dev (%) Test-std (%)

Accu Binary Open Valid Plausi Consist Accu

LCGN [27] 55.80 - - - - - 56.10
OCCAM [28] 56.20 - - - - - 56.30
MCAN [2] 56.00 75.61 38.76 96.69 85.35 87.03 -
MCLN [29] 56.80 - - - - - 57.00
SPCA-NET [25] 57.05 76.2 40.20 96.44 85.23 87.78 57.34

Our 59.27 77.32 43.40 96.61 84.46 88.72 60.52

Table 4: The comparison with VQA’s recent multi-modal pretraining model

Model Pre-train Images VQA-v2

Test-dev (%) Test-std (%)

UNITER [30] 4 M 72.70 72.91
OSCAR [31] 4 M 73.16 73.44
VILLA [32] 4 M 73.59 73.67
SOHO [33] 219 K 73.25 73.47
ROSITA [34] 9.5 M 73.91 73.97

Our 120 K 74.04 74.16

6 Conclusion

In this paper, we propose a visual question answering model based on multi-view enhanced vision
features and image caption enhancements. We extract the two vision features of regions at the same
location and splice these two features as the final vision region feature. We calculate the relative size
and distance of the region under the same image based on the location of the region feature, so that the
model has better spatial perception ability. Through ablation experiments and comparison with other
models, our model has very competitive results in two datasets (VQA 2.0 and GQA). This paper shows
that extracting effective vision features may be more effective in improving the accuracy of VQA than
improving the models of VQA. We will continue to further explore the impact of the vision features
obtained by a vision detector based on Transformer in VQA.
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