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Abstract: Segmenting brain tumors in Magnetic Resonance Imaging (MRI)
volumes is challenging due to their diffuse and irregular shapes. Recently,
2D and 3D deep neural networks have become famous for medical image
segmentation because of the availability of labelled datasets. However, 3D
networks can be computationally expensive and require significant training
resources. This research proposes a 3D deep learning model for brain tumor
segmentation that uses lightweight feature extraction modules to improve
performance without compromising contextual information or accuracy. The
proposed model, called Hybrid Attention-Based Residual Unet (HA-RUnet),
is based on the Unet architecture and utilizes residual blocks to extract low-
and high-level features from MRI volumes. Attention and Squeeze-Excitation
(SE) modules are also integrated at different levels to learn attention-aware
features adaptively within local and global receptive fields. The proposed
model was trained on the BraTS-2020 dataset and achieved a dice score of
0.867, 0.813, and 0.787, as well as a sensitivity of 0.93, 0.88, and 0.83 for Whole
Tumor, Tumor Core, and Enhancing Tumor, on test dataset respectively.
Experimental results show that the proposed HA-RUnet model outperforms
the ResUnet and AResUnet base models while having a smaller number of
parameters than other state-of-the-art models. Overall, the proposed HA-
RUnet model can improve brain tumor segmentation accuracy and facilitate
appropriate diagnosis and treatment planning for medical practitioners.
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1 Introduction

A tumor is the abnormal growth of cells within the brain tissues. These unusual cells can be
fatal if not diagnosed early [1]. In brain tumors, the most typical type of malignancies reported in
adults are gliomas, and they are graded as High-Grade Gliomas (HGG) that increase rapidly and
Low-Grade Gliomas (LGG) that grow slowly [2]. Meningiomas are more accessible to segment.
However, glioblastomas are challenging to identify because of their high contrast and diffusion [3].
Its appearance varies in size, shape, and form, making it more challenging. Most widely used medical
imaging modalities, i.e., Computed Tomography (CT) scans, X-rays, and Magnetic Resonance Imaging
(MRI), are commonly used to diagnose diseases. High-resolution MRI is commonly used for brain
tumor diagnosis and treatment planning [4]. In 2015, [5] suggested a unique, fully convolutional-based
network (FCN) end-to-end model for natural image segmentation that helped transform the entire
image segmentation field.

Similarly, [6] Introduced an FCN termed Unet for segmentation in medical images, inspired by
the FCN architecture. Unet has two parts: One is an encoder, and the other is the decoder. It also
consists of several skip connections between encoder-decoder parts to merge cropped feature maps,
significantly improving medical image segmentation performance. Unet has now established itself as
a benchmark for tackling the brain tumor segmentation problem. Meanwhile, many enhanced Unet
models, such as Residual Unet [7] and Ensemble Unet [8], have also been proposed to enhance the
performance of tumor segmentation tasks.

Brain tumor segmentation is a challenging task that has been the focus of extensive research
in recent years due to its potential for improving patient diagnosis, treatment, and prognosis. The
Brain Tumor Segmentation (BraTS) dataset has emerged as a popular benchmark for evaluating
the performance of different segmentation models, providing a standardized platform for comparing
results across studies.

However, the BraTS dataset poses several challenges that make accurate segmentation difficult.
For instance, the images in the dataset exhibit significant variability in terms of tumor size, shape,
location, and appearance, as well as in the presence of confounding factors such as edema and
necrosis. Additionally, the dataset is highly imbalanced, with a relatively small number of tumor
regions compared to normal brain tissue regions, which can affect the performance of segmentation
models.

To address these challenges, researchers have developed various segmentation techniques [9–11]
that incorporate advanced machine learning algorithms, such as convolutional neural networks
(CNNs), and feature engineering methods. Some of these techniques use sophisticated pre-processing
methods, such as intensity normalization, bias correction, and skull stripping, to improve the quality
of the input data and enhance the performance of segmentation models.

Several studies have explored the potential of these techniques in the context of the BraTS dataset,
showing promising results regarding segmentation accuracy and efficiency. However, further research
is still needed to develop robust and reliable segmentation models that can address the challenges of
brain tumor segmentation in the BraTS dataset.

As Unet must progressively recover down-sampled images due to intrinsic stridden convolution
and pooling layers, attention methods can bridge the information flow between shallow and deep
layers to facilitate the up-sampling. As a result, this improved the accuracy of the pre-existing Unet
models for the MRI segmentation tasks by increasing its capacity to capture multiple local and
global responses. Inspired by the performance of Unet, this research integrates the residual attention
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and Squeeze-Excitation (SE) modules in Residual Unet to explore further the impacts of both local
and global features mapping for the segmentation of brain tumors in MRIs. Notably, a 3D deep
model for brain tumour segmentation is proposed by stacking attention and Squeeze-Excitation
modules at different levels into the Residual Unet for performance enhancement. The following are
the contributions of our work:

• This research proposes a 3D deep and light-weighted, end-to-end model to address the challenge
of accurately segmenting brain tumors in MR scans by successfully embedding the residual
blocks, attention, and Squeeze-Excitation (SE) modules into the basic Unet model.

• The proposed 3D Residual Unet model integrates low- and high-level features using residual
blocks. A series of Attention modules are added on Skip-Connections between corresponding
contracting and expanding parts to adaptively enhance local responses of different down-
sampled feature maps used for feature recovery in the subsequent up-sampled phase to reduce
the semantic gap between both parts. Finally, Squeeze-Excitation (SE) modules are added
before up-sampling in the expanding part, recalibrating the channels to suppress the less
relevant features and learn the inter-channel relationships.

• Experiments on the publicly available dataset, i.e., BraTs-2020, show that the proposed 3D
deep model with attention and Squeeze-Excitation modules outperforms its baseline model
and shows competitive performance with a smaller number of parameters for segmenting the
brain tumors.

The rest of the sections in this paper are organized as Section 2, which contains the state-of-the-
art methods for semantic segmentation of tumors. Section 3 gives a detailed overview of our proposed
methodology, including the dataset, pre-processing strategy, and deep Unet model. Section 4 evaluates
the proposed model, presents experimental findings, and compares it to existing models. Section 5
contains the conclusion.

2 Related Work

Healthcare professionals consider medical image segmentation as a crucial task, which helps
them to pinpoint a patient’s area of interest and perform a diagnosis. Traditional approaches such
as the watershed transform, graph cut, and other methods required handcrafted features and prior
information on the input data to obtain impressive performance. However, this still does not fill
the gap between computational cost and domain specialists in healthcare. Introducing deep neural
networks (DNNs) has been a significant breakthrough in medical image processing. Unlike previ-
ous approaches, DNNs can automatically acquire discriminative features, making them capable of
segmenting images effectively. Convolutional Neural Networks (CNNs) are the most common deep
network for segmenting videos and images. In 2014, a novel fully convolutional-based neural network
(FCN) was proposed to enhance the effectiveness of CNN for segmentation in medical images. In
2015, a deep CNN method was proposed for segmenting tissues in the brain using multiple modalities
of magnetic resonance images. CNNs are not fully capable of separating tumors with uneven densities
and indistinct boundaries. Unet was designed to have a structure comparable to a fully convolutional
network to address the volumetric aspect of medical imaging. The attention mechanism has been
widely employed in computer vision for various tasks, and its use in medical imaging tasks is minimal.
In 2018, a novel attention gate model for diagnosis in medical images called attention Unet was
proposed, which could learn to focus on target structures of diverse sizes and shapes. Another study
created a hybrid attention-aware deep model to identify liver and extract malignancies from liver CT
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images in the same year. Customized U-Net architectures have been utilized for effective medical image
segmentation.

Table 1 presents a summary of the methods and their respective applications in medical image
segmentation from the year 2007 to 2022. The methods included traditional approaches such as the
watershed transform, graph cut, and other methods, deep neural networks (DNNs), and customized
U-Net architectures. The attention mechanism has also been introduced for medical image segmen-
tation to identify target structures of diverse sizes and shapes. These methods have demonstrated
impressive performance in various medical imaging applications, including tissue segmentation in the
brain, brain tumor segmentation, and malignancy extraction from liver CT images.

Table 1: Related work on medical image segmentation

Years Methods Applications

2007 till 2014 Watershed transform, graph cut, and
other traditional approaches [12–15]

Medical image segmentation

2014 Fully convolutional-based neural network
(FCN) [16–19]

Medical image segmentation

2015 Deep CNN method [20,21] Tissue segmentation in the brain
using multiple modalities of MRI

2016 CNN-based deep model [22,23] Brain tumor segmentation using
MRIs with tiny filters

2017 till 2018 Attention Unet and Hybrid
attention-aware deep model [24–31]

Medical image segmentation for
diagnosis, Liver CT images,
malignancy extraction

2019 till 2022 Customized U-Net architectures and
different attention mechanisms [32–44]

Medical image segmentation

3 Methodology

This research proposes a new hybrid attention-based deep model for the semantic segmentation of
brain tumors. The proposed deep learning model comprises three core blocks that segment the brain’s
tumorous cells. Initially, a 3D residual Unet is developed. Many residual blocks are layered together
to acquire multi-scale information by merging low-level features with high-level ones in brain MRIs.
Multiple attention modules are embedded at the skip connections between the encoder and decoder to
learn multiple attention-aware features of different tumor parts. Finally, squeeze and excitation blocks
enhance essential features by recalibrating the feature maps across various channels.

3.1 The Proposed Deep Learning Model

Our proposed deep-learning model is depicted in Fig. 1. It is relatively like a regular Unet,
simultaneously embedded with residual, attention, and squeeze-excitation mechanisms better suited
for segmentation tasks in the medical image when the availability of correctly annotated data is
limited. The contracting path of the model propagates the contextual information through residual,
allowing for a more complex extraction of hierarchical feature maps. The expanding path takes these
hierarchical features of varying complexity and reconstructs them from coarse to fine. The Unet, like
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deep models, benefits from introducing long-range connections across the contracting and expanding
parts, allowing distinct hierarchical feature maps to be combined and making the model more robust.

Figure 1: The overview of the proposed pipeline. First is the input module that comprises four
modalities, i.e., Flair, T1, T2, and T1ce, which are stacked together to form 3D volumes. The second
is the proposed deep Residual-based Unet model with attention and Squeeze-Excitations blocks to
process the input volumes and segment the Tumor. The third is the output module with three labels

3.2 Residual Learning Mechanism

The proposed model consists of Residual blocks as basic building blocks, with basic architecture
illustrated in Fig. 2. The deep models’ depth is critical in all computer vision tasks. However, the
vanishing of the gradient is a typical problem during the backpropagation in a deep neural network,
resulting in poor training outcomes. Reference [23], presented a residual learning network to learn the
identity maps. Residual blocks are layered except for the first and final layers to unlock the learning
capacity of our proposed deep model. A shortcut identity mapping achieves the residual learning
mechanism as fast connections through element-wise addition operation, significantly improving
accuracy and training speed without extra parameters. The residual learning mechanism is presented
in Eq. (1):

YR(i,c) (I) = I + FR(i,c) (I) (1)

Here, YR(i,c) (I) is the output of the residual operation, which is the summation of I; the first input,
and FR(i,c) i.e., a mapping function for the residual path to be learned here i represents all spatial
positions while all channel’s indexes are depicted by: c ∈ {1, ..., C} of input, and C represent the total
channels.
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Figure 2: The residual-block used in the proposed deep model. The final output is the sum of Identity
mapping and features from three sub blocks containing batch normalization, relu activation, and
convolution blocks

3.3 Residual-Attention Learning Mechanism

If attention modules are naively stacked in any deep model, the performance of that model will
surely suffer. A study [24] presented a novel attention-learning mechanism to solve this problem.
This Residual-attention learning mechanism is based on Residua-Bocks and splits into two branches:
Trunk-Branch and Soft-Mask-Branch; original features are processed in the Trunk-Branch with t
number of residual blocks. The Soft-Mask-Branch constructs the identity mapping using the r number
of residual blocks in encoder-decoder type structures. (2) depicts the final output of the residual-
attention module for the Residual-Attention learning mechanism

YA(i,c) (I) = (
1 + Si,c (I)

)
Fi,c (I) (2)

Here, S(I) is the Output of Soft-Mask-Branch and has values between 0 and 1; if S(I) has values
near 0, then YA(i,c) (I) will have the feature maps F(I) Trunk-Branch processes them. The Soft-Mask-
Branch performs the primary function of enhancing good features and lessening the noise from
the trunk branch in the proposed attention-learning mechanism by identifying similar features and
minimizing the noise from the Trunk-Branch. As mentioned earlier, the soft mask branch has two
parts consisting of D Residual-Blocks, with max-pooling and up-sampling operations, and r skip
connections between the corresponding parts. At the end of the soft branch, two layers of convolution
and one Sigmoid layer are added to normalize the output from the attention module. The attention
module’s depth increases concerning the base model’s depth. The attention module is illustrated in
Fig. 3.

In general, the original feature maps are conserved by the trunk branch in the proposed attention
mechanism, and it pays attention to the features of the brain tumor through the soft mask branch.



CMC, 2023, vol.76, no.1 653

Figure 3: (a) Is the residual-based attention module’s architecture used in our proposed model. The
architecture of soft-mask-branch is depicted in (b). Here p, t, and r represent the hyperparameters.
Soft-mask branch has an encoder-decoder structure. D denotes the depth of these blocks. In our model,
D is equal to {1, 2, 3, 4} according to the skip-connections of the proposed model

3.4 Squeeze-Excitation Learning Mechanism

Every deep model creates valuable feature maps by combining H × W (spatial) and C (Channel)
information inside local-receptive fields at different stages to perform correctly. Soft-Mask-Branch’s
attention varies adaptably based on the trunk-branch’s features in the attention mechanism mentioned
above. However, the “Squeeze-Excitation” (SE) module in the expanding part of the proposed
model addresses this limitation of the Residual-attention mechanism. This SE module [26] finds the
interdependencies across distinct channels to recalibrate channel-wise feature maps. Fig. 4 depicts the
architecture of the SE module. As a result of this channel-wise feature extraction mechanism, the model
can concentrate on the channel dependencies that the model ignores as it recreates the feature maps.
The SE module works the following way: First, each channel’s features (H × W) are compressed into
an actual number using global average pooling. Then, a nonlinear transformation is performed using a
fully connected neural network to obtain each feature channel’s weight. Finally, the normalized weights
obtained above are weighted to the Residual-based channels. These weighted features of respective
channels are then concatenated with the up-sampled features maps of the residual blocks, which are
then fed into subsequent layers of the corresponding expanding part.

The SE normalization technique has shown the potential to enhance the performance of CNNs
in brain tumor segmentation. By weighting the feature maps adaptively, SE normalization allows the
model to focus on the most significant features that distinguish between different brain tissue types
and tumors. At the same time, it can down-weight features prone to noise or artefacts, resulting in
improved accuracy and robustness of CNN-based segmentation models for brain tumor analysis.

Generally, a SE block is a structural unit that allows the proposed model to execute dynamic
channel-wise feature recalibration to increase its segmentation power. Furthermore, SE blocks shed
light on the residual attention mechanism’s incapacity to appropriately describe channel-wise feature
relationships.
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Figure 4: The architecture of the SE (Squeeze-Excitation) module

4 Experiments and Results

Extensive experimentation is performed in this study to evaluate the effectiveness of the proposed
tumor segmentation model. All the experiments were performed using python language using the
Keras and Tensor Flow frameworks on NVIDIA Titan 1080 TI GPU with a 12 GB GPU workstation.
The rest of this section provides the details of data pre-processing, loss function, evaluation matrices,
results and finally, the comparison with baseline models.

4.1 Dataset Pre-processing

This study used the publicly available BraTs-2020 dataset [11] to evaluate the proposed model.
BraTs-2020 contains the pre-operative MRI scans collected from multiple institutes to segment
inherently diverse and complex brain tumors with four commonly used modalities. These are T1
weighted (T1), T1 weighted and contrast-enhanced (T1Gd), T2 weighted (T2), and fluid-attenuated
inversion recovery (FLAIR) for each case, as shown in Fig. 5. All the MRI scans are of 240 × 240
resolution, and 155 slices for each modality with manually annotated ground-truth labels for every
scan. The BraTs-2020 training set comprises 369 patients. The hyperparameters were defined as a
learning rate of 0.001, a dropout rate of 0.2 the number of epochs was 100 with a batch size of 1.

Figure 5: BraTs-2020 dataset with four different modalities with segmented masks and labels

Similarly, the validation set includes 125 patients. However, the ground-truth labels are made
public for the training set. In contrast, withheld labels for validation sets validate the proposed model’s
generalization and scalability using the online validation approach.

Segmenting brain tumors in MRIs is a difficult challenge because of the brain’s and biological
tissue’s complex structure and the medical imaging quality. Due to the restricted processing resources,
this model downsized each image from 240 × 240 × 155 voxels to 128 × 128 × 128 voxels. Input MRI
scans must be normalized because pixel intensities vary due to manufacturers, acquisition conditions,
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and sequences. Each MRI sequence’s non-zero voxels are normalized independently through zero-
score normalization and shrink input data. (3) illustrates Z-Score normalization:

Z = I − μ

δ
(3)

Here, Z is the output image obtained after normalization on the input image I, μ is the mean, and δ

is the standard deviation. There is no additional image processing. All MR images fed into our model
have a final input size of 128 × 128 × 128 × 4, where 128 × 128 indicates the spatial dimensions of
the input image (i.e., width and height), 128 represents the number of slices, and 4 represents the four
MRI modalities. This research stacked all the modalities together to generate four channels to feed
into the model. All the annotated training sets’ masks are handled the same way. The ultimate size of
the segmented masks input into the model is 128 × 128 × 128 × 4. The first three numbers reflect the
resolution and the number of scan slices. 4 represents the number of classes provided, namely: label
0 (Background), label 4 (ET (GD Enhancing-Tumor)), label 2 (ED (Peritumoral-Edema)), and label
1 (NCR/NET (Necrotic and Non-Enhancing Tumor-Core)). Even though deep models are mainly
resistant to noise, data processing is still necessary for improving brain tumor segmentation accuracy.
In this research, we performed data processing to make the available brain MRI scans better suited to
train the deep model according to the available resources, as shown in Fig. 6.

Figure 6: Dataset pre-processing steps

4.2 Loss Function

The proposed model determines if a pixel represents a specific brain tumor tissue or a regular
pixel. However, severe class imbalance problems are usually exhibited using the BraTs dataset for
segmentation. Table 2 depicts the distribution of tumor subclasses and healthy tissues in the Brats-
2020 training set.

Table 2: Given Labels and the Rate of sub-class distribution in the training set of BraTS-2020

Label Sub classes Rate

0 Background 98.46%
1 NCR/NET (Necrotic and Non-Enhancing-Tumor-Core) 1.02%
2 ED (Peritumoral-Edema) 0.29%
4 ET (Enhancing-Tumor) 0.23%
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As brain tumors, mainly the TC (tumor core), are often tiny in the overall MRI Scans, CE (Cross-
Entropy) loss is ineffective in solving this class imbalance problem in the segmentation task. The well-
known, class-wise Dice overlap coefficient is adopted as a loss function in such tasks, outperforming
the CE. For multi-class segmentation problems, the Dice-Coefficient for each respective class can be
determined using Eq. (4):

LossDice = 1 −
c∑

c=1

2
∑N

i=1 s (c, i) gt (c, i)
∑N

i=1 s (c, i)2 + gt (c, i)2
(4)

Here N represents the number of volumes (subjects) that, in our case, is 365, s (c, i) ∈ [0,1,2,3]
represents the predicted output (softmax output) of the model, and gt (c, i) ∈ [0,1,2,3] is the given mask
with four labels for tumor sub-classes, respectively. This loss function is used to check the similarity
index of multi-class samples directly.

4.3 Evaluation Metrics

An overlap and a distance metric are two primary evaluation metrics for the deep model’s
evaluation. The Dice Similarity Coefficient (DSC) is a regularly used metric for determining overlap
between two sets. It compares two groups, S1 and S2, by normalizing their intersection sizes over the
average of their sizes. It is defined as follows in the context of ground truth comparison in Eq. (5):

DSC = 2
|S1 ∩ S2|

|S1| + |S2| (5)

Sensitivity, specificity, and Hausdorff distance are statistical decision theory metrics determined
using Eqs. (6) to (8), respectively.

Sensitivity = Tp
Tp + Fn

(6)

Specificity = Tn
Tn + Fp

(7)

H (A, B) = maxa∈AminbεBa − b (8)

Hausdorff-Distance is complementary with the Dice coefficient metric to quantify the maximum
distance between the margins of original and predicted volumes. In (8), A (Actual Mask) and B
(Predicted Mask) are the two sets of points being compared, and H (A,B) is the directed Hausdorff
distances between them. Here a is a point in set A, b is a point in set B, and the function max and min
(a,b) calculate the maximum and minimum Euclidean distance between a point in set A and a point
in set B. It penalizes outliers heavily, as a model prediction might have voxel-perfect overlap. However,
its value will be significant if the predicted voxel is far from the actual segmentation mask. This metric
may appear noisier than the Dice-Coefficient, but it helps determine the segmentation’s clinical utility.
For example, suppose the predicted segmented mask includes surrounding healthy brain tissues. It will
require manual adjustment from the radiation oncologist, even if the overlap of predicted and actual
masks assessed through the Dice metric is good enough to avoid fatal effects on the patient.
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4.4 Comparison with SOTA Methods

In this study, a new method for brain tumor segmentation was proposed that achieves state-
of-the-art performance on the BraTS 2020 challenge dataset. Our method leverages the power of
deep learning. It combines several innovative components, such as a dual-attention mechanism,
a residual-attention mechanism, and a squeeze and excitation attention mechanism, to improve
the segmentation’s accuracy and robustness. We extensively evaluate our approach using standard
evaluation metrics and statistical tests and show that it outperforms previous state-of-the-art methods
on BraTS 2020. In particular, our method achieves an average dice score of 0.87 on the Training
set and 0.86 on the test set, with less number of parameters as shown in Table 3. Furthermore, in
Tables 4–7, we performed an ablation study to investigate the contribution of each component to the
overall performance.

Table 3: Comparison with SOTA methods

Methods Average dice score
(Training set)

Average dice score
(Validation set)

Number of
parameters

SA-Net [45] 0.86 0.85 16.5M
Vanilla U-Net 0.85 0.83 17.8M
Proposed method 0.87 0.86 13.2M

Table 4: Evaluation metrics of the proposed model on BraTS_2020 Train and Validation sets. WT
(Whole-Tumor), TC (Tumor-Core), and ET (Enhancing-Tumor)

Results Labels Dice-coefficient Sensitivity Specificity Hausdorff-distance

ET WT TC ET WT TC ET WT TC ET WT TC

Training (365
MRI cases)

Mean 0.75 0.92 0.86 0.86 0.93 0.85 1.00 0.93 0.98 23.49 5.10 4.30
StdDev 0.23 0.06 0.20 0.23 0.08 0.23 0.03 0.05 0.02 86.11 11.11 7.84
Median 0.89 0.94 0.94 0.94 0.95 0.94 0.99 0.94 0.99 1.41 2.24 1.73
25quantile 0.82 0.90 0.88 0.88 0.91 0.88 0.96 0.99 0.98 1.00 1.73 1.41
75quantile 0.93 0.95 0.96 0.96 0.97 0.97 0.99 0.96 0.99 2.00 3.74 3.00

Validation (125
MRI cases)

Mean 0.65 0.86 0.72 0.74 0.84 0.69 0.79 0.94 0.97 7.22 9.14 10.79
StdDev 0.30 0.10 0.26 0.24 0.15 0.30 0.03 0.06 0.04 11.15 13.66 14.50
Median 0.79 0.89 0.83 0.82 0.89 0.81 0.99 0.96 0.99 3.00 4.69 5.87
25quantile 0.57 0.85 0.63 0.65 0.79 0.51 1.00 0.92 0.96 1.73 3.00 2.83
75quantile 0.87 0.92 0.91 0.89 0.93 0.91 1.00 1.00 1.00 6.06 7.68 12.57

Table 5: Summary of each model

Models Time cost (Per epoch) Trainable parameters

Base model (Residual Unet) 2.3 min 4,212,947
Residual unet + Attention 4 min 12,514,616
Proposed model (Residual Unet + Attention + SE) 5.2 min 13,253,348
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Table 6: Comparison with base models on dice-coefficient and hausdorff distance-95 through the
online evaluation process

Results Model Mean dice-coefficient Mean hausdorff
distance-95

ET WT TC ET WT TC

Base model (Residual Unet) 0.378 0.558 0.415 52.43 38.14 27.12
Training set Residual Unet + Attention 0.693 0.877 0.80 36.81 15.60 11.07

Proposed model (Residual
Unet + Attention + SE)

0.807 0.909 0.843 23.49 5.101 4.295

Base model (Residual Unet) 0.215 0.434 0.296 28.92 32.54 26.05
Validation set Residual Unet + Attention 0.64 0.816 0.679 13.97 25.55 13.58

Proposed model (Residual
Unet + Attention + SE)

0.787 0.869 0.813 7.217 9.138 10.79

Table 7: Comparison of deep models by Sensitivity and Specificity through the online evaluation
process

Results Model Mean sensitivity Mean specificity
ET WT TC ET WT TC

Base model (Residual Unet) 0.664 0.784 0.674 0.938 0.905 0.942
Training set Residual Unet + Attention 0.765 0.891 0.794 0.965 0.917 0.969

Proposed model (Residual
Unet + Attention + SE)

0.863 0.985 0.849 0.999 0.925 0.983

Base model (Residual Unet) 0.634 0.739 0.552 0.897 0.886 0.891
Validation set Residual Unet + Attention 0.748 0.842 0.659 0.997 0.987 0.997

Proposed model (Residual
Unet + Attention + SE)

0.836 0.936 0.889 0.987 0.938 0.997

4.5 Results and Discussion

The proposed 3D deep model completely utilizes volume information while capturing three-
dimensional data. The proposed 3D lightweight model integrates different modules to create a precise
segmentation mask. Meanwhile, training with large MRI volumes of 128 × 128 × 128 × 4 gives
significantly more contextual-based information than training with small patches. The brain volumes
received by the model are passed from top to bottom during the contracting phase. Lower features were
then passed top-down in the contracting path through different pooling layers and reversed during the
expanding phase, with doubled resolution thanks to up-sampling. The attention blocks are used to
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realize the links between both parts. The feature maps from these attention blocks were concatenated
with corresponding up-sampling and SE level of expanding part. The final brain tumor segmentation
probability map was generated using an activation layer (i.e., Softmax). Table 4 presents our model’s
training and validation results (Mean, Standard Deviation, Median and 25 & 75 Quantile) obtained
through the online evaluation system for Brats-2020.

Our proposed deep learning model relies on three primary modules. 1st: a simple 3D basic Unet
model that uses residual blocks rather than convolutional blocks like traditional Unet. 2nd: Residual
Attention module added to the base model on skip Connections. 3rd: SE (Squeeze and excitation)
module to derive information from the feature maps; SE module is utilized with upsampling layer
after each residual unit in the expanding part. In this research, we trained the proposed deep model in
this way; first, our base residual Unet model was trained, then added the attention modules, and finally
added SE modules in the proposed model. For comparison, we acquired quantitative evaluations
of each tumor class with baseline models regarding Dice-Coefficient and Hausdorff-Distance. This
research trained all three models without weight initialization for the convolutional kernel parameters
with Adam optimizer and Dice Loss. LR = 0.001 was the initial learning rate. The time cost and the
total number of trainable parameters for each model are depicted in Table 5.

In this research, we evaluate the performance after adding each corresponding module in the
baseline model through BraTs-Online Evaluation-System for training and validation sets. Fig. 7 gives
a graphical representation of evaluation metrics for all models, while Tables 6 and 7 depict the numeric
comparison of Evaluation metrics of the proposed model with base models.

Figure 7: (Continued)
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Figure 7: Boxplot demonstrates the evaluation metric for three deep models, including the base model,
base model with attention, and proposed model. (a) Dice-coefficient for both training and validation
sets, (b) Hausdroff95 for training and validation sets, (c) Sensitivity for training and validation sets
(d) Specificity for training and validation sets. The different tumor types explained in Section 4.1
represent the abbreviation in the legend. (orange) ET is an acronym for Enhancing-Tumor (yellow)
TC stands for Tumor-Core, and (green) WT is for Whole-Tumor

By comparing the (1) and (3) rows of Table 6, this research finds that our final model’s Dice
Score of WT, TC, and ET of base model Residual Unet increased for training and validation sets. The
Hausdorff-Distance of all tumors was also reduced by adding deep supervision through two additional
modules in the base model. These two modules’ inclusion helped extract other discriminative tumor
features, as seen by the improvement in most measures. By comparing the results of the last two rows
in Table 5, the Dice of all tumor classes in the base model with both attention and SE modules were
better than those of the base model with only the attention module.

The proposed 3D deep model has fewer parameters than the traditional Unet. Adding Attention
and SE modules to the base model increases the trainable parameters. However, the above-mentioned
results demonstrated the effectiveness of each module individually that is added base residual Unet
model along with model’s depth. A few segmented examples of our proposed model and baseline
models are shown in Fig. 8.
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Figure 8: The segmented outputs for unseen MRIs from the BraTs training set, from left to right: four
modalities (FLAIR, T1, T1CE, T2), ground truth, and prediction of our models; for this instance, 1st
Row: Patient ID 366, slice 90; 2nd Row: Patient ID 369, slice 100; Colors: Red is (Tumor-Core), Yellow
is (GD-Enhancing-Tumor), and Green is (Peritumoral-Edema)

5 Conclusion

This research presented a light-weighted 3D deep model for the segmentation task of tumors
using brain MRIs by embedding attention, Squeeze-Excitation mechanisms, and residual blocks into
Unet to perform pixel-to-pixel segmentation. By including a series of attention modules on the skip
connections and Squeeze-Excitation modules on the corresponding expanding path, the proposed
model adaptively enhances local responses of residual features maps by reducing the noise and
rescaling these features maps by assigning channel weights in the recovery process of the expanding
part. The effectiveness of the proposed model is demonstrated through experimental results. Our
model outperformed the baseline models, i.e., Residual Unet and Residual-attention Unet, and showed
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comparable performance with other state-of-the-art brain tumor segmentation methods with the
fewest parameters on the benchmark of the BraTs database. The proposed model expands the Unet
family and can be extended to different medical imaging domains critical for real-world applications.
However, there is a drawback in using resized MRI volumes as inputs to train the segmentation model,
which leads to the potential loss of information on brain tumors due to the limitation of available
computational resources. Therefore, in the future, some post-processing methods will be explored
to improve the segmentation results further. In addition, to make the architecture more general for
various datasets and more flexible for everyday medical imaging tasks, this research will further explore
other powerful feature extraction modules to improve extra performance.
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