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Abstract: In the field of energy conversion, the increasing attention on power
electronic equipment is fault detection and diagnosis. A power electronic
circuit is an essential part of a power electronic system. The state of its
internal components affects the performance of the system. The stability
and reliability of an energy system can be improved by studying the fault
diagnosis of power electronic circuits. Therefore, an algorithm based on
adaptive simulated annealing particle swarm optimization (ASAPSO) was
used in the present study to optimize a backpropagation (BP) neural network
employed for the online fault diagnosis of a power electronic circuit. We built
a circuit simulation model in MATLAB to obtain its DC output voltage.
Using Fourier analysis, we extracted fault features. These were normalized
as training samples and input to an unoptimized BP neural network and BP
neural networks optimized by particle swarm optimization (PSO) and the
ASAPSO algorithm. The accuracy of fault diagnosis was compared for the
three networks. The simulation results demonstrate that a BP neural network
optimized with the ASAPSO algorithm has higher fault diagnosis accuracy,
better reliability, and adaptability and can more effectively diagnose and locate
faults in power electronic circuits.

Keywords: Fault diagnosis; power electronic circuit; particle swarm
optimization; backpropagation; neural network

1 Introduction

With the continuing development and improvement of power electronic devices, how to achieve
high energy efficiency is attracting increasing attention. Power electronic converters are vital devices
in energy conversion. They have a high power and high current characteristic. They can balance the
grid and play an essential role in energy conversions, such as energy generation and transmission,
transportation, and hybrid electric vehicles [1,2]. The reliability of power electronic circuits plays a
crucial role in the stable operation of the energy system. If an abnormality occurs in a power electronic
circuit, the equipment can become damaged, or the entire energy system may become paralyzed. Thus,
it is essential to study how to diagnose faults [3,4].
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When a fault occurs in a power electronic circuit, the fault information is present only briefly after
the occurrence of the fault and before the outage. Therefore, real-time dynamic monitoring and online
diagnosis are required. According to the different characteristics of fault diagnosis methods, there are
three main methods for diagnosing faults in a power electronic circuit: mathematical modeling, signal
processing, and knowledge analysis [5-7].

A mathematical model can visualize the changes in the state variables. However, it isn’t easy to
obtain a mathematical model that is sufficiently accurate due to the nonlinearity of power electronic
circuits [8,9]. Mathematical models commonly used for diagnosis are state estimation, parameter
estimation, and equivalent space estimation. An accurate mathematical model is not required for
diagnosis based on signal processing. Researchers can determine the location of a fault from the
relation between the post-fault and system results. However, due to the complex structure of power
electronic circuits, the fault characteristics in acquired signals are sometimes not prominent, and it
cannot be easy to extract useful information [10]. Signal processing methods commonly used for

diagnosis are spectrum analysis, wavelet transforms, and signal fusion.

Knowledge-based methods are efficient and less dependent on the circuit model than the previous
two methods. They utilize only historical data and have a high adaptive and memory capacity. A
knowledge-based process does not require an exact and sophisticated mathematical model. Moreover,
it does not need to analyze signal patterns [11,12]. Therefore, this approach is currently the most
commonly used method for diagnosing and analyzing faults in power electronic circuits. Over the past
few years, neural networks have been widely used for diagnosing faults in power electronic circuits
[13,14]. To analyze different fault modes, a method with a Bayesian network (BN) has been proposed
[15]. Feature information was extracted from the line voltage of the input signal by Fourier analysis.
Feature samples were dimensioned down using principal component analysis (PCA). The results were
input to a Bayesian network, which diagnosed different fault modes. A diagnostic method with a
support vector machine (SVM) and PCA has also been presented [16]. The diagnostic object of this
method was a three-phase rectifier, which selects the output voltage signal for analysis. PCA was used
to extract various fault features, and the fault type was classified with SVM. A fault classification
algorithm for inverters based on an SVM has been proposed [17]. The classification and localization
of open-circuit faults in insulated gate bipolar transistors in inverters are achieved using a vector
machine. An open-circuit fault diagnosis method with an intelligent optimization algorithm has
been developed [18]. The way detects and extracts fault features with a discrete wavelet transform
(DWT) and PCA. The detection algorithm used in this method is a two-sample technique, and the
feature location algorithm selected is wavelet packet entropy. A fuzzy logic system (FLC) and a
correlation vector machine (RVM) were employed for fault classification. Based on this, it combines
Evolutionary Particle Swarm Optimisation (EPSO) and Cuckoo Search Optimisation algorithms to
improve fault diagnosis. The experimental results showed that combining cuckoo search optimization
and a correlation vector machine can perform better. It is important to note that diagnosing faults
in power electronic circuits is a typical feature-classification problem. Thus, an optimization method
based on an extensive feedforward network with self-adaptive parameters and a strategy-based particle
swarm algorithm has been proposed [19]. Features were selected from a large dataset. The weights of
an extensive feedforward network were optimized using this algorithm, which improved classification
accuracy and reduced the calculation complexity. An algorithm to introduce an adaptive strategy in
multi-objective PSO has been proposed [20]. It uses decomposition methods with punitive boundary
interactions to find the best solution. It gives a different penalty value to each weight vector, and
this adjustment is adaptive. Moreover, the method effectively identifies particles that are at the local
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optimum. According to the experimental results, this algorithm demonstrates strong convergence and
diversity in high-dimensional data sets.

Our literature review found that every method for extracting or diagnosing fault features based
on a single intelligent algorithm has limitations and shortcomings. Thus, obtaining satisfactory results
with only one fault diagnosis method can be difficult. By combining multiple intelligent learning
algorithms to enhance the performance of networks, the accuracy and timeliness of diagnosing faults
in a power electronic circuit can be effectively improved. PSO has been widely used for combinatorial
optimization problems because few parameters must be set and have computational simplicity. Many
scholars have conducted a significant amount of research into optimization to solve the premature
maturity and slow convergence of PSO algorithms. There are three main research directions: improving
the iteration strategy, integrating with other optimization algorithms, and improving the population
topology.

The iteration strategy can be improved by changing the inertia weights and learning factors of
the PSO algorithm linearly or non-linearly with the number of iterations. A large two-level PSO
algorithm has been presented [21]. The algorithm’s convergence was accelerated using an increasing
exponential function to control the learning factor. A global PSO algorithm has also been proposed
[22]. It improves the global search capability of the algorithm by introducing a cosine function to
adjust the inertia weights afterward. In addition, It also solves the premature convergence problem of
the particle swarm algorithm by integrating it with another optimization algorithm. For example, a
hybrid algorithm combines the PSO and genetic algorithms with crossover and mutation operators
[23]. This approach reduces the number of local minima. The experimental results show that the
performance of a single intelligent algorithm is not as good as that of fusing several algorithms. In
addition, the population topology can be enhanced by transforming the D-dimensional space into a
chaotic space. The ergodic characteristics of chaos are used in the iterations. By exploiting this feature,
it can significantly improve the algorithm’s overall performance. A PSO algorithm based on chaotic
initialization time variation has been proposed for optimizing the parameters of a transmission line
[24]. It avoids premature convergence and helps to enhance the chances of a particle jumping out of a
local optimum.

In this study, we improved the previous two of the three directions. A linear change strategy
controls the learning factor, a negative hyperbolic tangent function adjusts the inertia weights, and
a simulated annealing (SA) algorithm integrates into the iterative process. Thus the chances of the
algorithm jumping out of a local optimum are significantly increased. Therefore, this paper proposes
an algorithm that employs a fusion of a network and intelligent optimization to diagnose and classify
open-circuit faults in a power electronic circuit. For example, we apply the method to an open thyristor
fault in a three-phase rectifier circuit. First, the characteristics of the circuit model in regular operation
and mark states are analyzed. Second, the fault characteristics are extracted from a signal in a
sample dataset using a Fourier transform. The results are input into a backpropagation (BP) network.
The accuracy of the fault diagnosis is obtained by analyzing the actual and desired output of the
network. Finally, the parameters of the BP network are optimized with the PSO algorithm and the
ASAPSO algorithm, which is then used to diagnose faults. The experimental results show that the BP
network optimized with the ASAPSO algorithm achieves an accuracy of 95.5% in diagnosing faults,
demonstrating that fault diagnosis and localization can be performed accurately and quickly.

The rest of the paper is organized as follows. Section 2 presents the fault modes and the extraction
of features from a signal for the circuit. Section 3 presents the process of a BP network for fault
diagnosis. The PSO algorithm first optimizes the parameters and then the ASAPSO algorithm.
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Section 4 presents the experimental validation of the proposed method, which is performed in
MATLAB. Our conclusions are drawn in the last section.

2 Extraction of Fault Features from a Signal

The topology of a three-phase bridge rectifier circuit is shown in Fig. 1. Where VT1, VT3, and
VTS5 are common cathode group thyristors, VT4, VT6, and VT2 are common anode group thyristors,
Ris aresistor, L is an inductor, and u, is the load output voltage. In the regular operation of the circuit,
there is a thyristor in the common cathode at any moment, and a thyristor in the common anode is
turned on simultaneously to form the current path. The phase is changed every 7/3. In one cycle, the
thyristors are turned on in a specific order, and the conduction situation is VIl — VT2 — VT3 —
VT4 — VTS5 — VT6.

AN
L
ZfVTJ Zf-VTS ZfVT5

a

C

ZfVT4 vam ZfVTz

Figure 1: Three-phase bridge rectifier circuit

In actual operation, the primary faults in power electronic circuits are thyristor open and short-
circuit faults [25]. To make it easier to analyze, we will only discuss single and double open circuits in
this paper. We treat a normal circuit condition as a specific fault. Overall, there are C¢' + C;*> + 1 =22
faults, corresponding to 22 states of the circuit, which are numbered from 1 to 22.

The output voltage u, at the load side of the rectifier bridge is not only easy to measure, but
its waveform contains various fault information. Therefore, u, is chosen as the object of analysis in
this paper. Voltage waveforms u, of the 22 faults were obtained by simulating an open-circuit fault at
trigger angle o = 0° for each thyristor. We simulated the circuit illustrated in Fig. 1. Two typical fault
waveforms are shown in Fig. 2.

The waveforms in Figs. 2a and 2c demonstrate that the u, waveforms under different fault types
differ significantly for the same trigger angle «. The waveform shapes for different faults of the same
type are shifted along the time axis. When the trigger angle o changes, the shape of the u, waveform
will correspondingly change. The Fourier analysis in Figs. 2b and 2d show that the features needed
for fault diagnosis are contained in the former third harmonic of u,. Therefore, the DC component «,
and previous third harmonic amplitudes 4,, 4,, and A4; of u, are selected as containing information
about fault features. Before inputting into the neural network, the data were normalized to reduce the
computation required to process it.
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Figure 2: Output voltages and Fourier analysis of faults

3 Proposed Methodology
3.1 Fault Diagnosis with a BP Network

A BP network is a type of network that is used in a wide variety of applications. It is inspired
by the human brain’s neural network and trained by propagating errors backward. Such networks
have a robust nonlinear mapping ability, good generalizability, and high robustness. They are widely
used for pattern classification, fault diagnosis, and decision optimization [26]. The construction of a
BP network consists of three layers: the input layer, which receives the data; the hidden layer, which
processes the information; and the output layer, which produces the results. The neurons in different
layers are fully interconnected, whereas neurons are not connected to others in the same layer [27]. The
learning process of the BP network is described below. Information is imported into the input layer,
processed by the hidden layer units, and transmitted to the output layer. The difference between the
predicted and actual values is calculated at the output layer, then sent back to the input layer through
the original connection path. In this way, the weights and thresholds for the neurons in each layer
are iteratively updated before the network error is smaller than the target error. The topology of a BP
network is shown in Fig. 3.
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Input layer Hidden layer ~ Output layer

Figure 3: Topology of a BP network

The central idea of a BP network is that the sum of squared errors in the last layer is used as the
cost function. To obtain the optimal cost function value, we need to modify the weights and thresholds
of the network iteratively. The process is adjusted using the gradient descent method. The training and
optimization of the whole process are achieved when the modified optimized value is less than or equal
to the set error value. The algorithm flow of a BP network can be illustrated in Fig. 4.
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Figure 4: Algorithm flow in a BP network

3.2 Fault Diagnosis with the ASAPSO Algorithm
3.2.1 PSO Algorithm

Dr. Eberhart and Dr. Kennedy proposed the particle swarm optimization (PSO) algorithm in
1995. Tt is based on the concepts of population and evolution. It searches for an optimum solution in
a D-dimensional target space [28,29]. If the population size is N, then the position of the ith particle is

X:(xilax[29~~'9xiD)s i:152a"~aN (1)



CMC, 2023, vol.76, no.1 301

The velocity of the ith particle is
I/iz(vilavib"'aviD)a i=1’2’-"9N (2)

As the ith particle evolves from generation 7 to generation ¢ + 1, its position and velocity are
updated:
Viip =wvip + ar(p'y, — x'p) + Cz”z(Pth — X'ip) 3)
X=X+ vy 4)

where w is the inertia coefficient, ¢, is the self-cognitive factor, ¢, is the socio-cognitive factor, r,, and
r, are random numbers distributed in the range [0, 1], P, is the extreme individual value, and P, is
the extreme global value.

When searching for the optimum, the particle is mainly guided by its previous velocity and
two learning factors. w is the inertia part that guides how the particle retains its original velocity.
¢, is the self-cognitive part, which guides the particle flying to its historical best position. ¢, is the
socio-cognitive component, guiding the particles to the best place in the population or neighborhood
history. Commonly, the iterative search in the PSO algorithm terminates when the fitness is sufficiently
accurate, or the set number of evolutions is reached. In this paper, to fully evaluate and analyze the
effects of various algorithms, the process stops after a set number of iterations.

After the two core parameters of the particle, the velocity and position, are updated, the boundary
is checked to determine whether the range has been exceeded. If it has, the current value is replaced
with a random value within the field or directly with the boundary value. The article is updated using
the individual and global extremes:

leiD _ x:iDaf(x:iD) Sf(l?:,'p) (5)
D (X'p) > f(P')
1 P S 0'p) =@ p)
t+ b — & 6
P [p;D,f@:-D) S ©

Because BP networks have a slow convergence rate and are prone to converge to a local optimum,
the PSO algorithm is adopted in this study to obtain the optimum values of the initial parameters
of the network. The basic idea is that the BP network’s neuron connection rights and thresholds
are regarded as one particle. The high-dimensional parameter space, composed of the weights and
thresholds, is searched to find an optimal solution. The PSO algorithm replaces the algorithm for
backpropagating errors in the BP network. It finds all the initial optimal parameter values for the
network when the objective function is minimized. The flow in a BP network optimized with the PSO
algorithm is illustrated in Fig. 5.

3.2.2 Simulated Annealing

SA is employed for solving global optimization problems based on Monte Carlo ideas. It has been
widely used as it is effective in solving combinatorial optimization problems and complex function
optimization problems [30]. The Metropolis criterion is at the core of the SA algorithm. This method
is unique in that it accepts better values of the objective function during the iterative process, and it
can also obtain worse values with some probability [31]. The SA algorithm is incorporated into the
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PSO algorithm, as it can help particles jump out of a local optimum effectively. It also speeds up the
calculation and enhances the quality of the solution.
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Figure 5: Algorithm flow in a BP network optimized with the PSO algorithm

The SA algorithm generates a new solution and determines whether it can be accepted in three
main steps:

1. The temperature and the solution are set initially.

2. The probability of receiving a new solution during each iteration is derived from the current
temperature.

3. The temperature is updated based on whether it performs the annealing operation.

First, the initial temperature of the SA algorithm is set according to the global optimum value of
the initial state of the particle swarm. The temperature in each outer loop iteration is updated according
to a decay function. In this paper, we use an exponential decay function:

’E(p’g[,) /1log(0.2), t=1

T (1) = (7

aT(t—1), t>1
where E(p',;) represents the overall optimal value of the population at the initial stage, and « is a
cooling constant, which is in the range of 0 to 1, but is generally very close to 1.
Second, after the initial temperature of the population is set at the early stage of the iteration, a
new solution is accepted during each iteration according to the Metropolis sampling criterion. The
acceptance probability is

1, E(t) < E,

®)
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where E(f) represents the individual extremum of a single particle at the ith iteration, E, represents
the optimal extremum of the whole population, and 7; represents the current temperature. The
temperature in each iteration decays linearly according to Eq. (7). If after an iteration E;(t) < E,,
then this solution is adopted and used to replace the previous optimal solution. At the same time,
it automatically updates the objective value. Otherwise, it will not fully accept the new solution, and
the probability of acceptance isexp (—AE/T)) .

Third, if the termination condition of the algorithm is met, the program exits, and the current
solution is chosen as the optimum. The annealing operation is then performed to update the
temperature.

The whole optimization search process with the SA algorithm is an alternative process. It
constantly searches for a new solution with a slow cooling down. A Markov process can describe this
step. Each new state E(¢ + /) is produced independently of the previous initial solutions from E;(0) to
E(t— 1), as it is entirely determined by E(¢). It is asymptotically convergent and has a probability of 1
that it will connect to the global optimum. The most significant advantage of the SA algorithm is that
because it searches probabilistically, particles do not get trapped in a local optimum, which improves
the probability of finding the global optimum.

3.2.3 ASAPSO Algorithm

The velocity and accuracy of the PSO algorithm in the search process are mainly influenced by
three control parameters: w, ¢,, and ¢,. The inertia factor w especially balances the overall capability
of the algorithm. It is set to larger values in the early stages of the evolution. In the early evolutionary
stage, ¢, is set to a significant discount, gradually decreasing. In contrast, ¢, has a small matter that
gradually increases. The learning factors ¢, and ¢, mainly regulate the maximum flight lengths of
particles toward the individual and global extremes, respectively. The direction of the flight of the
particles is affected by these three parameters together, and the overall result is that better particles
are found.

A negative hyperbolic tangent function is used to update the inertia weight adaptively:
_ (a)max + wmin) (kmax - k) (a)max - a)min)
B 2 Knax 2

where k represents the present number of evolutions, k., represents the allowed maximum number
of evolutions, while w,;,, and w,,, represent the minimum and maximum of the inertia weights,
respectively.

+ tanh (—4 +8 )

This function is a nonlinear control strategy. At the beginning of the algorithm, w is large and
decreases slowly so that the particles are given sufficient time to search globally. This ensures that the
parameter space is searched globally. During the middle period, @ decreases approximately linearly,
gradually increasing the particle’s local search capability. In the later search stage, the rate of change
of w is reduced again to ensure that the particles perform a careful local search near the extreme
point, allowing the algorithm to obtain the global optimum accurately. Thus, the particles’ global and
regional search abilities are balanced by dynamically adjusting w.

In this study, after many experimental tests, the PSO algorithm achieved the best performance
when w,,;,, = 0.4 and w,,,, = 0.95. The inertia weight is plotted in Fig. 6.



304 CMC, 2023, vol.76, no.1

0 200 400 600 800 1000
Iterations

Figure 6: Adaptive change of the inertia weight

The two learning factors are adaptively updated linearly. At the beginning of the search, ¢, is given
a significant positive value, and ¢, is provided a small positive value. As the investigation progresses,
¢, 1s linearly and gradually decreased, and ¢, is linearly and progressively increased so that the focus
of the inquiry by a particle is adjusted at different stages. The expressions for ¢, and ¢, are

(C] max — C1 min)

Ci = Cimax — k kmax (10)
€y = Comin + k(CZmaxk_ C2min) (11)

where ¢, and ¢, are the minimum and maximum of the individual learning factor, respectively,
and ¢, and ¢, are the minimum and maximum of the population learning factor, respectively. In
this study, we determined the reasonable values of these four parameters after several experimental
tests. When ¢ i = Comin = 1.2 and ¢ = Comax = 2.55, the convergence rate of the PSO algorithm was
reasonable; in optimization with the PSO algorithm, the transfer of particles must be done clearly.
However, this certainty may cause particles to fall into a local optimum. To increase the flexibility of
the search process, we have used the SA algorithm in this paper to improve its convergence rate.

The SA algorithm can accept the optimal value when the temperature decreases and retain a
different deal with a certain probability. The initial temperature of SA is set based on the optimal
value of the initial state of the population at the beginning of each iteration. During iteration, the
difference between the updated individual particle fitness and the current population optimal fitness
is calculated with the Metropolis criterion. Then, the probability p(¢) of receiving the new solution is
obtained according to Eq. (8). A comparison with rand() is used to decide whether to accept a worse
value. Finally, the annealing operation is performed to update the temperature.

In summary, in the ASAPSO algorithm proposed in this paper, the three critical parameters of the
PSO algorithm are updated adaptively. In addition, the SA operation is incorporated to increase the
possibility of the algorithm performing a global search. Thus, the optimization rate and the accuracy
of the algorithm’s convergence are improved. In combination with the sample of fault features obtained
previously, the specific steps in the ASAPSO algorithm for optimizing the parameters of a BP network
and using it to diagnose faults are as follows:

Step 1: Preprocess the feature information data set.

Step 2: Construct the BP network, and configure the network parameters.



CMC, 2023, vol.76, no.1 305

Step 3: Set the parameters of the PSO algorithm, and initialize the population.

Step 4: Evaluate the fitness values of the initial particles. Record the extreme individual value P';,
and the extreme global value P',,. Determine the initial temperature for SA with Eq. (7).

Step 5: Adaptively update the parameters w, ¢;, and ¢, according to Eqgs. (9) to (11).
Step 6: Update the two parameters, velocity and position, according to Egs. (3) and (4).
Step 7: Calculate the value of the objective function of the updated particles.

Step 8: Update the individual best position of the particle with Eq. (5) and the overall best position
with Eq. (6).

Step 9: Calculate the probability p,(¢) of accepting a new solution at the current temperature with
Eq. (8).

Step 10: Compare p,(t) and rand() to determine whether the global optimum replaces the new
solution, and then perform the cooling operation to update the temperature.

Step 11: Stop the search if the evolutionary number k., is reached. Otherwise, return to step (5)
to continue the search.

Step 12: Identify the current global optimal particles.

Step 13: Train the BP neural network.

Step 14: Calculate the network error.

Step 15: If the error accuracy requirement is not satisfied, return to step (13).

Step 16: Output the fault diagnosis classification, and terminate the algorithm.
4 Results and Discussion
To assess the fault classification effectiveness of the ASAPSO algorithm, we compared it with two

other methods. The relevant parameters are set in Table 1.

Table 1: Parameter values used for fault diagnosis

Fault diagnosis method  Parameters

BP inputnum = 4, hiddennum =9, outputnum = 1, epochs =200, Ir =0.1,
goal =0.0001

PSO-BP D=55 N=100,T=100,w=0.8,¢c,=c,=1.5

ASAPSO-BP Crmax = Comax = 2.55, Crmin = Comin = 1.20, @ =0.95, 0,in = 0.4,  =0.98,
Konax = 1000

4.1 Fault Classification by a BP Network

Before training the BP network, we need to determine its overall structure. The more layers there
are, the more the output error is reduced, so the network output will be closer to the expected value.
However, as the number of layers in a network increases, the structure of a network becomes more
complex, and the training time is also prolonged. Because an arbitrary nonlinear function can be
approximated with a three-layer BP network, the number of layers was determined to three. The
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network is configured as follows. According to Section 2, we know that the information input about
fault features has four components, so the first layer was set to four nodes. The coding bits for
classifying the fault output consist of one decimal number, so the output layer was assigned to one
node. Unlike before, there is no fixed rule for the hidden layer. Thus, a reasonable value needs to be
selected through trial and error. After repeated training and analysis of the experimental results, the
hidden layer was finally determined to be nine nodes; thus, the overall structure was determined to be
4-9-1.

The sigmoid function was used for the hidden layer, while the linear function was used for the
output layer. The network is trained using the L-M training function. The other parameters are listed
in Table 1. All the fault information for the rectifier circuit at trigger angles o = 0°, 30°, 60°, and 90°
was selected as training samples. The number of training samples was 88. Different sampling times were
chosen for each trigger angle for sampling multiple faults. The information acquired about the mark
was used to form 66 test samples. The simulation results of fault classification by the BP network are
illustrated in Fig. 7. The horizontal coordinate represents the index of the test sample, and the vertical
coordinate is the fault category. The accuracy rate of fault classification was 78.78%.
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Figure 7: Fault classification with BP network

4.2 Optimization of Fault Classification of a BP Network by the PSO Algorithm

The PSO algorithm was used to globally optimize the parameters of the BP network in this paper.
Initially, we need to define the number of weights and thresholds. The configuration of the BP network
was the same as in Section 4.1, namely 4-9-1. Thus, it can be calculated that the number of codes
required was 55. Table | lists the parameter values used in the PSO algorithm. Fig. & illustrates the
simulation results of fault classification by PSO-BP. It can be seen that the accuracy rate of fault
classification was 86.36%. This result shows that the BP network is optimized with the PSO algorithm,
dramatically improving fault diagnosis accuracy.

4.3 Optimization of Fault Classification of a BP Network by the ASAPSO Algorithm

To improve diagnostic accuracy, we have used the SA algorithm in this paper to update the three
critical parameters of the PSO algorithm adaptively. Table | lists the parameter values used in the
ASAPSO algorithm. The other parameter values and the network structure were the same as before.
Fig. 9 illustrates the simulation results of fault diagnosis by the ASAPSO-BP algorithm. It can be seen
that the accuracy rate of fault classification reached 95.45%. In conclusion, the BP neural network
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optimized with the ASAPSO algorithm has higher fault diagnosis accuracy. Therefore, it is more
suitable for diagnosing faults in power circuits.
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Figure 9: Fault classification with ASAPSO-BP

5 Conclusions

In this research, we propose an ASAPSO algorithm to optimize the internal parameters of a
BP network and use it to diagnose faults in power electronic circuits. The components of the fault
voltage signal were extracted by Fourier analysis, and sample data were obtained using the harmonic
components. After normalization, the data were input as the training sample to optimize the BP
network. We used a negative hyperbolic tangent function to adjust for nonlinear changes in the inertia
weights @ and a linear change strategy to update the learning factors ¢, and ¢,. Thus, the three crucial
search parameters of the PSO algorithm were updated adaptively in each iteration. An SA operation
was introduced into the iteration process to give the particles a higher chance of moving away from a
local optimal. Overall, the searchability of the PSO algorithm was greatly improved, and the search
requirements for the algorithm at different stages were met. It can be concluded from the experimental
results that the optimization rate and fault diagnosis accuracy of the algorithm has been significantly
improved. This diagnostic strategy could be extended to multiphase multilevel circuits.
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