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Abstract: In response to the problem of the high cost and low efficiency
of traditional water surface litter cleanup through manpower, a lightweight
water surface litter detection algorithm based on improved YOLOv5s is
proposed to provide core technical support for real-time water surface litter
detection by water surface litter cleanup vessels. The method reduces network
parameters by introducing the deep separable convolution GhostConv in
the lightweight network GhostNet to substitute the ordinary convolution in
the original YOLOv5s feature extraction and fusion network; introducing the
C3Ghost module to substitute the C3 module in the original backbone and
neck networks to further reduce computational effort. Using a Convolutional
Block Attention Mechanism (CBAM) module in the backbone network to
strengthen the network’s ability to extract significant target features from
images. Finally, the loss function is optimized using the Focal-EIoU loss func-
tion to improve the convergence speed and model accuracy. The experimental
results illustrate that the improved algorithm outperforms the original Yolov5s
in all aspects of the homemade water surface litter dataset and has certain
advantages over some current mainstream algorithms in terms of model size,
detection accuracy, and speed, which can deal with the problems of real-time
detection of water surface litter in real life.

Keywords: Surface litter detection; lightweight; YOLOv5s; GhostNet; deep
separable convolution; convolutional block attention mechanism (CBAM)

1 Introduction

Along with the high-quality growth of China’s economy and the rising living standards of its
residents, the increasing richness of material life is accompanied by the corresponding phenomena
of the massive output of garbage, random discarding, simple piling, and disposal [1]. Besides, the
problems of water pollution and eutrophication caused by floating litter on the water surface have
seriously affected the ecological civilization and human living environment in the watershed. At the
present stage, the management of floating litter on water surfaces by domestic related departments
and institutions is mainly based on interception and collection and manual salvage, but the manual
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cleaning method is time-consuming, laborious, and long-period, and it cannot reach the demands of
intelligent detection and automatic cleaning in real-time.

With modern information technology and the advancement of intelligent manufacturing technol-
ogy, related researchers have proposed the combination of object detection technology and mechanical
cleanup boats to detect and clean up floating litter on the water surface by using deep learning
technology instead of manual labor [2]. Since these scenes use hardware that is mostly edge devices,
under the terms of limited memory and arithmetic power, it is necessary to take into account not only
its mechanical cleanup device drive system requirements, the required arithmetic power requirements
of the model. Therefore, reducing the model size is more beneficial for porting to computing devices
[3].

As artificial intelligence technology and computer vision develop, object detection, as one of the
key branches, is extensively applied in Optical Character Recognition (OCR) analysis, contextual
analysis, disaster management, and vehicle recognition. In the field of Unmanned Aerial Vehicles
(UAV), Dilshad et al. [4] innovated the LocateUAV method for estimating UAV location using
contextual analysis in an Internet of Things (IoT) environment. In the vision field, the traditional
object detection technology based on machine learning mainly uses the size, shape, color, texture, and
other information of the object, and then performs template matching and saliency detection after
completing manual feature extraction by image segmentation technology [5]. However, this method
suffers from insufficient model detection accuracy, speed, and poor robustness. Over the past few
years, object detection techniques grounded on deep learning have obtained outstanding results in
terms of detection effectiveness and model robustness under their convolutional neural networks’
ability to automatically extract features. Yu et al. [6] proposed the High-resolution Network (HRNet)
improves detection accuracy by fusing multi-scale feature maps using parallel structural networks
to obtain different multi-scale feature information. Tang et al. [7] achieved good detection results
in OCR by changing the detection scale of the network and incorporating a modified OCR branch
in the network. Currently, there are two stages in the development of object recognition algorithms
based on deep learning: one class is region-based two-stage object detection algorithms, with networks
such as Regions Convolutional Neural Network (R-CNN) [8], Fast R-CNN [9], and Faster R-CNN
[10] as typical representatives. This type of method performs feature and classification detection in
two stages based on the divided regions, which have a higher detection accuracy but slow speed.
Another class is the single-stage regression-based object detection algorithm, with a series of networks
such as You Only Look Once (YOLO) [11,12] and Single Shot Multi-Box Detector (SSD) [13,14] as
typical representatives. Mathias et al. [15] merged a Gaussian mixture model 2D empirical modal
decomposition algorithm with a Yolov3 depth network and applied it to underwater object detection.

The YOLO series algorithm integrates features and classification into one network and identifies
and locates them through regression calculation, significantly increasing the detection speed and
meeting the demand for detection in real-time, but with a loss in detection accuracy. For that reason,
this paper proposed a lightweight surface litter detection algorithm with improved YOLOv5s, which
reduces the model size and makes the network more lightweight based on improving the detection
performance of the original YOLOv5s methods. The main contributions of our work are as follows:

(1) Improving the ordinary convolution in the YOLOv5s network into a deeply separable convolu-
tion GhostConv, which effectively reduces the convolution layers and computational resources;
introducing lightweight C3Ghost modules to substitute the C3 module, further minimizing the
model parameters and computation, making it more lightweight.
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(2) This paper fuses the CBAM module [16] in the backbone network of YOLOv5s, applying it to
enrich the network’s capacity to acquire target feature information and improve the model’s
prediction capability.

(3) A new loss function is adopted, and the Focal-EIoU (Focal and Efficient Intersection over
Union) [17] loss function is invoked as the prediction frame regression loss function in the
YOLOv5s network to optimize the deficiencies of the CIoU (Distance IoU) [18] loss function
in the original method and accelerate the loss function convergence speed and model prediction
accuracy.

In this paper, Section 2 reviews the work on water surface litter detection, YOLOv5s network, and
lightweight network. Section 3 describes the water surface litter detection methods. Section 4 describes
the experimental content, including the experimental datasets production, experimental environment,
and evaluation metrics. Experiments and results are presented and reviewed in Section 5. Section 6
summarizes and gives an outlook.

2 Related Work
2.1 Water Surface Detection

Water surface litter detection is a branch of object detection, which has significant research
implications for environmental management and water resource protection. Surface object detection
has been gradually improved and enriched from traditional manually designed features and shallow
classifier frameworks based on deep learning object detection frameworks.

As far as the traditional detection methods are concerned, they rely too much on key points,
edges, and templates leading to their low detection accuracy. For example, Matsumoto’s Histogram
of Oriented Gradient (HOG)-Support Vector Machine (SVM) method [19], proposed in 2013, detects
surface vessels by images taken by a shipboard camera. Kaido et al. [20] combined SVM methods and
edge detection techniques for ship detection and ship number identification. However, a majority of
these methods traditionally scan the entire image through a swiping window to detect objects, which
greatly limits detection efficiency.

Deep learning techniques, with their powerful image processing power and expression perfor-
mance of convolutional neural networks, are applied to obtain remarkable effects in surface object
detection. Zhang et al. [21] optimized the Faster R-CNN by fusing high-level and low-level features
of the network to enrich the real-time detection of surface objects. Panwar et al. [22] proposed the
AquaTrash dataset using deep migration learning techniques to enrich the generalizability of the
AquaTrash dataset. Li et al. [23] improved the YOLOv3 algorithm and embedded it into a water
surface garbage cleaning robot only to achieve intelligent cleaning of water surface litter. The rich
surface object dataset and constantly innovative and iterative object detection algorithms provide key
technical support for surface object detection.

2.2 YOLOv5 Method

The YOLOv5 [24] network model is made up of four main parts: Input, Backbone, Neck, and
Head network, as shown in Fig. 1. Input side uses Mosaic + Mixup data enhancement technology
to randomly crop, scale, and stitch photos from the input into enroll the background of the dataset
images, enhance the network’s generalizability. The Backbone network mainly consists of Cross Stage
Partial (CBS), CSP Bottleneck with 3 convolutions (C3), and Spatial Pyramid Pooling-Fast (SPPF)
modules, where the CBS structure consists of the Conv + BN + SiLU activation function, which
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convolves and normalizes the input images before passing them through the activation function to
the next layer of convolution. The C3 structure is a reworked version of the CSP structure made
in the correction unit, for dividing the feature mappings at the base layer before merging them via
the inter-stage hierarchy to ensure the correct rate while reducing the computational bottleneck and
strengthening the network’s learning capability. The SPPF module uses three 5 × 5 maximum pooling
to fuse feature map messages across different scales to enrich the network’s ability to abstract features
from images. The neck network uses Feature Pyramid Network (FPN) + Path Aggregation Network
(PAN) [25,26] structure to further enhance the network feature fusion capability using a combination
of top-down and bottom-up approaches. The head network screens the target candidate frames by
non-maximal suppression and is used as the output of the prediction results.

Figure 1: YOLOv5s overall network design chart

2.3 Lightweight Network

A lightweight network means that the size and parameters of the model are reduced as much as
possible by optimizing the network structure to meet the requirements of low arithmetic power of edge
devices while ensuring that the model is equally effective in detection. At present, most of the more
popular lightweight solutions of the algorithm are considered from model compression and pattern
structure design.

Model reduction aims to take an already trained network and reduce the number of parameters,
usually with schemes such as model distillation, pruning, and quantization. With the improvement
in the level of hardware conditions, the computational power of computers has grown by leaps and
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bounds, and Neural Architecture Search (NAS) network is also a technique to find the best network
using computational-level arithmetic power [27,28].

Among the model architecture design solutions, many excellent design solutions have been broadly
applied in the past few years. The more classical lightweight network structures are listed from the time
of computational introduction, such as SqueezeNet [29], which proposes Fire Module, ShuffleNet
[30,31] series of ShuffleNet Unit feature fusion schemes, etc.

Google proposed MobileNetV1 [32] object detection algorithm using a depth-separable convolu-
tion structure and in the subsequent proposed MobileNetV2 [33] and MobileNetV3 [34] algorithms,
the essence of depth-separable convolution involves splitting the normal convolution into deep and
pointwise convolution [35]. In particular, in terms of network structure, MobileNetV3 derives the main
network structure through a neural architecture search [36]. The network uses a 5 × 5 depth-separable
convolutional structure by adding the Squeeze-and-Excitation (SE) attention mechanism [37], which
assigns its weights on the feature maps through the process of network training, which is very easy to
use, plug-and-play, and has shown good performance improvement in several mainstream networks.

3 Water Surface Litter Detection Method

For water surface litter detection, the main detection process can be divided into three steps:
dataset production, model improvement, and model deployment. Since there is no publicly available
water surface litter dataset, the first step requires a homemade water surface litter dataset. After
filtering the collected images, the object garbage in the pictures is labeled with Labelimg labeling
software, with the labeled garbage categories divided into 7 categories, namely: {lunch boxes, foam,
bottles, plastic bags, leaves and branches, food packaging bags, paper drink boxes}, which are used
to generate a standard VOC dataset format. Labelimg labeling software will automatically label the
object boxes with the labeled information the generated XML file is stored in the Annotations folder,
the TXT file of the dataset division is stored in the ImageSets folder, and the JPEGImages are used to
store the original images. In the second step, the produced dataset is put into the enhanced YOLOv5s
network for training, and the network will perform Mosaic + Mixup [38] data enhancement process on
the dataset according to the pre-set ratio, and the CBAM module is inserted in the bottom position of
the improved YOLOv5s backbone network to help extract features. It is then fed into the feature fusion
network for training after the improved Focal-EIoU loss function balances the samples of positive and
negative. Finally, to evaluate the trained model with test data, and after completing the evaluation, it
is deployed into the embedded device on the water surface trash cleaning vessel to provide real-time
detection and intelligent classification of water surface trash, as shown in Fig. 2.

3.1 Improving Convolution and C3 Module of YOLOv5 Network

YOLOv5 [24] network is an open-source object detection algorithm proposed by Ultralytics and
is the fifth edition of the YOLO series developed to date. A typical single-stage object detection
algorithm, YOLOv5 is divided into four versions in order of detection accuracy and model size,
depending on network layers’ depth and feature map width: YOLOv5s, YOLOv5m, YOLOv5l,
and YOLOv5x, which they respond to the different demands of industrial applications concerning
detection accuracy, detection speed, and the module size, respectively. In this article, YOLOv5s is
chosen as the benchmark model from the perspective of edge devices oriented to low computing power.

The network structure diagram of YOLOv5s shows that the network contains many basic convolu-
tional blocks of CBS are made up of Convolution (Conv), Batch Normalization (BN), Sigmoid Linear
Unit (SiLU), and C3 structure consisting of CBS, Bottleneck, and Concat. More basic convolutional
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blocks increase network computational parameters and affect network inference speed. Therefore, in
this paper, from the perspective of lightweight, a more concise network structure is used to replace the
more computationally intensive ordinary convolutional Conv and C3 structures in YOLOv5s based
on the premise of equal detection effect. The ordinary convolutional Conv in the YOLOv5s network
is substituted by the deep separable convolutional GhostConv, as displayed in Fig. 3.

Figure 2: Detection flow chart

Figure 3: CBS comparison chart

GhostNet [39] network is an efficient network designed by Huawei Noah’s Ark Lab, whose core
idea is to use less computationally intensive Ghost modules to generate redundant feature maps that
exist in neural networks. A feature of the Ghost module is to instead of the normal convolutional layer,
it divides the normal convolution into two parts, which are divided into two parts. First, the necessary
feature condensation map of the input features is obtained using the ordinary 1 × 1 convolution that
acts similarly to feature integration; then the feature con map obtained in the previous stage to obtain
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the similar character map of feature condensation using the depth-separable convolution. By this two-
step operation, the number of model counts is reduced by obtaining redundant characteristic maps
while minimizing the number of convolutional layers, as displayed in Fig. 4.

Figure 4: Schematic diagram of the two convolution processes, (a) normal convolution (b) deeply
separable convolution GhostConv

The GhostNet network structure is composed of a GhostNet Bottlenecks section as the backbone
and a residual edge section. Bottlenecks mainly consist of a bottleneck structure with two stacked
Ghost modules. Add channels and set the expansion ratio of the number of output channels with the
first ghost module; the second ghost module decreases the channel count to match the number of input
channels. This structure can be categorized into two types, depending on the step size. A deep separable
convolution with Stride = 2 is used for twice the down-sampling. In this paper, the C3 module in the
YOLOv5s network is substituted with the C3Ghost module, which decreases and makes the overall
YOLOv5s model more lightweight and upgrades the execution speed of the model. The new network
is displayed in Fig. 5.

Figure 5: Structure of the improved C3Ghost network
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3.2 Introduces CBAM Module

The CBAM module is a lightweight attention network presented by Woo et al. [16] that enhances
the feature representation of the network with attention operations that can be performed in the
channel and spatial dimension. In this article, the CBAM module is integrated before the SPPF module
in the YOLOv5s backbone network to strengthen the extraction capability of small target feature
information using the CBAM module. The modified YOLOv5s network structure is displayed in Fig. 6
below.

Figure 6: Improved YOLOv5s network structure

The CBAM module contains two independent sub-modules, Channel Attention Module (CAM)
and Spatial Attention Module (SAM), and the overall structure is presented in Fig. 7. A feature map
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F ∈ RC×H×W of an intermediate layer is given as input, a 1D channel attention feature map Mc ∈ RC×1×1,
and a 2D spatial attention feature map Ms ∈ R1×H×W , with C denoting the channel of the feature map,
and H and W denoting the height and width of the feature map. The input feature map F is first
multiplied with the feature map MC of F after channel attention module operation to get F1, and then
F1 is multiplied with the feature map MS of F1 after spatial attention module operation to get F2, and
its whole calculation process is given in Eq. (1).

F1 = MC (F) ⊗ F , F2 = MS (F1) ⊗ F1 (1)

where ⊗ denotes multiplication by elements.

Figure 7: The CBAM module structure chart

The CAM is presented in Fig. 8. The input F is compressed in spatial dimension by two operations
of maximum pooling and average pooling to get two 1 × 1 × C feature maps Fmax and Favg, which are fed
into a shared network composed of Multilayer Perceptron (MLP) [40] for the calculation to obtain two
different background description maps, then make it summed at the pixel level and then use a sigmoid
function to activate it to finally get the channel attention map MC, and the operation process is given
in Eq. (2).

MC (F) = σ (MLP (AvgPool (F)) + MLP (MaxPool (F)))

= σ
(
W1

(
W0

(
Fc

avg

)) + W1

(
W0

(
Fc

max

))) ∈ RC×1×1 (2)

where C is the output vector length; σ is the sigmoid activation function; MLP is the shared fully
connected layer; W0 ∈ R

C
r ×C denotes the first layer of the shared full connectivity layer; W1 ∈ RC× C

r

denotes the second layer of the shared full connectivity layer.

Figure 8: Channel attention module (CAM)

The SAM is given in Fig. 9. Firstly, maximum pooling and average pooling are applied in the
channel dimension to acquire two H × W × 1 feature maps, then channel cascading is performed on
the feature maps, followed by a convolutional layer to downscale to a single channel, and finally the
spatial attention map MS is obtained after activation by a sigmoid function, and the operation process
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is illustrated in Eq. (3).

MS (F) = σ
(
f 7×7 ([AvgPool(F); MaxPol (F)])

)
= σ

(
f 7×7

([
Fs

avg; Fs
max

])) ∈ RH×W
(3)

where f 7×7 denotes a 7 × 7 convolutional layer.

Figure 9: Spatial attention module (SAM)

3.3 Optimization of the Loss Function

The loss function of the YOLOv5s network is made up of three loss functions, which are
localization loss (lossbox), confidence loss (lossobj), and classification loss (losscls). The magnitude of
the loss function value is the sum of the three loss functions, as given in Eq. (4). The CIoU [18] loss
function is used as the bounding box regression loss function by default in the YOLOv5s network.
The formula is shown in Eq. (5).

Loss = lossbox + lossobj + losscls (4)

LCIoU = 1 − IoU + ρ2 (b, bgt)

c2
+ αν (5)

α = ν

(1 − IoU) + ν
(6)

ν = 4
π 2

(
arctan

wgt

hgt
− arctan

w
h

)2

(7)

In the formula, IoU indicates how the predicted frame intersects the true frame; ρ2 (b, bgt) for the
calculation of a Euclidean distance between two centroids; c shows the diagonal distance between the
minimum external rectangle of the object box to be detected and the real object box; α indicates a

weighting factor; ν is a measure of aspect ratio consistency;
wgt

hgt
indicates the aspect ratio of the real

frame;
w
h

indicates the length-to-width ratio of the prediction frame.

While CIoU considers accounting for the intersection area, centroid distance, and aspect ratio
of the prediction frame regression, the difference in aspect ratio is reflected by ν in the formula
and is not the real difference between the width and height respectively, and its confidence level,
which sometimes prevents effective optimization of the model. EIoU [17] splits the aspect ratio
based on CIoU to explicitly measure the difference between the three geometric factors, accelerating
convergence and improving regression accuracy. Simultaneously, Focal loss is added to tweak the
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problem of unbalanced hard and easy samples. Therefore, in this paper, Focal-EIoU [17] is introduced
as the prediction frame regression loss function in the YOLO v5s network, and a suppression factor
γ is added, which is calculated as shown in Eqs. (8), (9).

LEIoU = LIoU + Ldis + Lasp = 1 − IoU + ρ2 (b, bgt)

(wc)
2 + (hc)

2 + ρ2 (w, wgt)

(wc)
2 + ρ2 (h, hgt)

(hc)
2 (8)

LFocal−EIoU = IoU γ LEIoU (9)

4 Experimental Design
4.1 Dataset Production

Currently, there is no public open-source dataset for research on water surface litter classification.
To evaluate the capabilities of the model, the types of surface litter were classified into seven categories:
bottles, paper drink containers, lunch boxes, foam, plastic bags, food packaging bags, and leaves and
branches, according to domestic litter classification standards and by combining the types, forms, and
sizes of floating litter commonly found on the water surface of rivers and lakes. All data sets used in the
experiments were acquired in the watershed of the XunSi River at the Hubei University of Technology.
To ensure the comprehensiveness and complexity of the datasets and to enhance the generalization of
the detector, the collection of photos needed to take into account different periods and weather. A
total of 3000 photos in JPG format with 480 × 480 pixels were acquired. To overcome problems of
overfitting caused by small data sets and the effects of water reflection and lighting on detection,
image processing methods such as cropping, rotation, flipping, and stitching are used to improve the
diversity of data sets and the richness of image backgrounds, which are helpful for feature extraction
of small target objects. As shown in Fig. 10.

(a) (b)

Figure 10: Schematic diagram of different scenario datasets. (a) photos of water surface debris at
different times (b) spliced photos

The images in the dataset are labeled according to the determined categories using the open-
source software Labelimg, which generates standard VOC dataset format files, including three folders
of Annotation, ImageSets, and JPEGImages, containing all the labeling information of the images. To
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avoid the problem of model overfitting, the model should have the best generalization performance.
This paper divides the produced dataset into training and test sets at the rate of 9:1, where 2700 images
are used as the training set and 300 pictures are used as the test set, and using migration training
method for 100 rounds of epoch training. As presented in Table 1.

Table 1: Table of the count of various types of water surface litter

Category Lunch boxes Foam Bottles Plastic bags

Category number 0 1 2 3
Training set 1520 1183 1768 709
Test set 166 125 218 76

Category Leaves and branches Food packaging bags Paper drink boxes

Category number 4 5 6
Training set 1868 1060 1394
Test set 212 86 163

4.2 Experimental Configuration

In this paper, the experimental environment for the Windows 10 operating system, the choice of
Pytorch 1.12 framework, the processor is intel i9-11900, the configuration of Nvidia GeForce RTX
A4000 graphics card, the specific experimental environment hardware and software configuration as
presented in Table 2.

Table 2: Experimental environment configuration

Configuration name Configuration information

Operating system Windows10
Memory 64G
CPU Inter (R) Core (TM) i9-11900@2.50 GHz 2.50 GHz
GPU Nvidia GeForce RTX A4000
Language Python 3.7
GPU acceleration Cuda11.6 Cudnn11.5
Software environment Anaconda, PyCharm, Pytorch

4.3 Model Evaluation Indicators

To objectively and accurately judge the modified model performance, this paper adopts Precision
(P), Recall (R), Average Precision (AP), and Mean Average Precision (mAP) as the hard metrics of
the model; and adopts Frames Per Second (FPS), Parameters (Params) and model Size as an auxiliary
indicator to measure the performance of the improved method. The hard indicators are calculated as
follows.

P = TP
FP + TP

(10)
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R = TP
FN + TP

(11)

AP =
⎧⎨
⎩

∫ 1

0
P (r) dr, PR continuous

N∑
n=1

P (n) �r, PR discrete
(12)

mAP =
∑K

i=1AP (i)
K

(13)

In the formula, TP (True Positives) means the count of positive samples which are correctly
identified; FP (False Positives) means the count of positive samples detected incorrectly; FN (False
Negatives) means the count of negative samples identified incorrectly; K means the total count of
identified categories (7 in this paper); AP(i) means the AP value of the ith category; mAP is the average
value of the detected APs of various types of surface litter. The larger of mAP value, the higher the
model detection accuracy.

5 Results and Analysis
5.1 Network Training

Before the network starts working, it needs to set some parameters of the network, so that
the improved YOLOv5s network can reach the best training effect. This paper used the migration
training idea to use the training weights of YOLOv5s over the COCO dataset as pretraining weights
of the model backbone network and prevent random values of backbone weights to raise feature
extraction. To further strengthen the generalization of the dataset, use the Mosaic + Mixup data
boosting technique at the input side, and the data boosting technique is performed in the first 70
rounds according to the probability of 50% in each round. The input picture resolution is 480 × 480,
and the model training batch size is 8. Meanwhile, the Adam optimizer with random gradient descent
was selected to train the network optimally, setting the momentum to 0.937, the initial learning rate
to 0.001, and the weight decay coefficient to 0 for 100 rounds of training.

To test the advantages of the modified method, the training process is visualized using the
visualization tool Tensorboard, as shown in Fig. 11. The horizontal axis denotes the count of training
rounds while the vertical axis denotes the corresponding parameters. From the figure, the improved
model has a faster and more stable accuracy increase in the initial stage, and the overall improvement
effect is slightly superior than before, and the advanced model has smaller loss values and faster
convergence of the loss function.

5.2 Ablation Experiments

To verify the usefulness of the various methods proposed in this paper, we did ablation experiments
based on YOLOv5s using the same hyperparameters and training strategies, as shown in Table 3.
Experiment 1 is the original YOLOv5s, compared with Experiment 1, Experiment 2 replaces the Ghost
module; Experiment 3 adds the CBAM module; Experiment 4 changes the CIoU loss function to the
Focal-EIoU loss function; Experiment 5 combines the three improved methods. It can be seen from
Experiment 2 that the model Size, GFLOPs, and Param are reduced by almost 50% after replacing
the module with Ghost, but the reduction of model parameters leads to a decrease in accuracy. The
results of Experiment 3 and Experiment 4 show that the addition of the CBAM module and the
improvement of the Focal-EIoU loss function have improved the accuracy of the algorithm. The final
results of Experiment 5 show that the model incorporating the three improved methods has a 3.1%
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improvement in mAP, a 39% reduction in Size, a 44% reduction in GFLOPs, and a 40% reduction in
Params compared to the original YOLOv5s model. Therefore, the comprehensive performance of the
enhanced algorithm proposed in this paper is superior to the original YOLOv5s about surface litter
detection, and it is also more appropriate for application in the computing devices of litter-cleaning
vessels.

Figure 11: Comparison of model performance visualization before and after improvement. (a) average
precision value (mAP) (b) loss function (Loss)

Table 3: Ablation experiment

Experiment Models G C E mAP_0.5 Size/MB GFLOPs Params (M)

1 YOLOv5s 0.952 14.4 16.0 7.039
2 YOLOv5s-G √ 0.937 7.8 8.1 3.692
3 YOLOv5s-C √ 0.974 15.4 16.6 7.553
4 YOLOv5s-E √ 0.969 14.4 15.8 7.029
5 YOLOv5s-GCE √ √ √ 0.983 8.8 8.9 4.216

5.3 Comparison Experiments

In addition, based on the above parameter settings, the same datasets were used to train on the
original YOLOv5s, YOLOv7-tiny, YOLOv3, SSD, and Faster R-CNN algorithm models, and the
metric comparison of each model is listed in Table 4.

From the comparison of the performance of each model in Table 4, the improved algorithm in
this paper performs better than other algorithms in aspects of mAP, precision, recall, and model size.
mAP improved by 3.1% over the original YOLOv5s algorithm, 1.6% over YOLOv7-tiny, 6.7% over
YOLOv3%, 9.4% over Faster R-CNN, and 7.6% over SSD; A 39% reduction in model size compared
to the original YOLOv5s and a 25% reduction compared to the YOLOv7-tiny; FPS on the GPU is
13 higher than the original YOLOv5s and slightly lower than the YOLOv7-tiny. Params has much
smaller than YOLOv3, Faster R-CNN, and SSD, and 30% less than YOLOv7-tiny. By comparing
the performance of these models, the improved model has higher detection accuracy while ensuring
real-time detection and lightweight volume of the algorithm.
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Table 4: Comparison of metrics of mainstream algorithm

Models mAP_0.5 P/% R/% Size/MB FPS GFLOPs Params (M)

YOLOv3 0.916 91.25 82.99 235.2 71 87.4 61.556
SSD 0.907 92.04 67.56 93.7 50 155.1 24.414
Faster R-CNN 0.889 56.22 95.72 108.4 16 919.0 28.337
YOLOv5s 0.952 91.96 92.19 14.4 108 16.0 7.039
YOLOv7-tiny 0.967 92.62 95.61 11.7 128 13.1 6.024
YOLOv5s-GCE 0.983 97.70 97.17 8.8 121 8.9 4.216

5.4 Experiment Analysis

For verifying the actual detection effect of the revised algorithm, test validation is performed using
test set images with complex backgrounds. The confidence threshold for the test set is set to 0.5, and
the practical detection capacity of the algorithm before and after enhancement is presented in Fig. 12.
From the detection comparisons in Figs. 12a and 12b, the detection accuracy of the improved method
is greater than before. The original algorithm is prone to miss-detection when detecting images with
more complex backgrounds, especially small target categories, and obscured target categories, while
the improved algorithm in this paper adopts the CBAM module and optimized loss function, which
can detect targets more accurately and effectively decline the miss-detection rate while significantly
enhancing the feature acquisition capability of the network. Therefore, the algorithm proposed by this
paper has better detection accuracy and detection speed while maintaining a small size, which is both
feasible and superior and can fulfill the practical demands of real-time detection.

Figure 12: Comparison chart of model detection results. (a) original YOLOv5s test results (b) improved
YOLOv5s detection results
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6 Conclusion

For the traditional manual cleaning of water surface litter is time-consuming and inefficient, we
proposed a lightweight water surface litter detection method by improved YOLOv5s to provide core
technical support for water surface litter cleaning vessels. Based on the YOLOv5s network model, this
model introduces a lightweight GhostNet network to replace the ordinary convolutional blocks and
C3 modules in the original network, decreases the count of network parameters and computational
overhead; embeds the CBAM module in the network to reinforce the network’s capability to extract
object feature information; optimize the loss function and use the Focal-EIoU loss function to enhance
the regression accuracy and solve the positive and negative sample proportion imbalance problem.
After practical testing, the mAP of the improved algorithm reaches 98.3% and the model size is
8.8 MB, which is 39% less, with 44% fewer GFLOPs, and 40% fewer parameters compared to the
original model. The single image test speed is about 8 ms, which has high detection accuracy and
detection speed while maintaining lightweight volume, it can fulfill the needs of real-time detection
and processing of water surface litter.

After that, it will further enrich the count of categories in the water surface litter dataset, improve
the generalization capability of the model, optimize the network structure, compress the model volume,
facilitate the subsequent terminal deployment, and realize real-time detection in mobile.
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