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Abstract: To prevent irreversible damage to one’s eyesight, ocular diseases
(ODs) need to be recognized and treated immediately. Color fundus imaging
(CFI) is a screening technology that is both effective and economical. Accord-
ing to CFIs, the early stages of the disease are characterized by a paucity of
observable symptoms, which necessitates the prompt creation of automated
and robust diagnostic algorithms. The traditional research focuses on image-
level diagnostics that attend to the left and right eyes in isolation without mak-
ing use of pertinent correlation data between the two sets of eyes. In addition,
they usually only target one or a few different kinds of eye diseases at the same
time. In this study, we design a patient-level multi-label OD (PLML_ODs)
classification model that is based on a spatial correlation network (SCNet).
This model takes into consideration the relevance of patient-level diagnosis
combining bilateral eyes and multi-label ODs classification. PLML_ODs is
made up of three parts: a backbone convolutional neural network (CNN) for
feature extraction i.e., DenseNet-169, a SCNet for feature correlation, and
a classifier for the development of classification scores. The DenseNet-169
is responsible for retrieving two separate sets of attributes, one from each
of the left and right CFI. After then, the SCNet will record the correlations
between the two feature sets on a pixel-by-pixel basis. After the attributes have
been analyzed, they are integrated to provide a representation at the patient
level. Throughout the whole process of ODs categorization, the patient-level
representation will be used. The efficacy of the PLML_ODs is examined using
a soft margin loss on a dataset that is readily accessible to the public, and
the results reveal that the classification performance is significantly improved
when compared to several baseline approaches.
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1 Introduction

Over the last several decades, an alarming increase in the prevalence of vision-threatening OD
disorders such as age-related macular degeneration (AMD), diabetic retinopathy (DR), cataracts, and
uncorrected refractive errors, as well as trachoma, has been seen. The results of a recent study on the
vision that was carried out by the World Health Organization (WHO) indicate that the number of
individuals all over the world who suffer from some kind of visual impairment has now surpassed 2.2
billion. At least 45 percent of these potential outcomes were either avoidable or do not currently have a
remedy that is considered to be adequate [1]. Blindness and other kinds of visual impairment (such as
myopia, astigmatism, hypermetropia, and presbyopia) are most often caused by trachoma, cataracts,
and uncorrected refractive issues [2]. The WHO estimates that more than 153 million people have some
form of visual impairment as a consequence of uncorrected refractive problems; approximately 18
million people are bilaterally blind as a result of cataracts; and approximately one million people have
been identified as having trachoma. Research has shown that AMD, which is responsible for 8.7% of all
occurrences of blindness globally, is the leading cause of blindness, especially in industrialized nations
(or 3 million people). The number of cases is projected to reach 10 million by the year 2040, according
to current projections [3]. In addition, recent research [4–6] has shown that DR is responsible for 4.8%
of the 37 million cases of blindness that are reported worldwide (i.e., 1.8 million persons). According to
the WHO [6], more than 171 million people throughout the globe were living with diabetes in the year
2000. It is expected that this population would reach 366 million by the year 2030 [7]. A little under half
of people who have diabetes are unaware that they have the ailment. About two percent of those who
have diabetes will become blind, and the other ten percent will have serious visual impairment after 15
years [8]. In addition, after having diabetes for 20 years, around 75% of patients will have some form
of diabetic complication [9]. As a consequence of this, the diagnosis and treatment of ODs as soon as
possible are very necessary to forestall the irreversible loss of vision [10]. Because they cause damage to
the retina, persistent floaters have the potential to cause a loss of vision that is irreversible, and maybe
even total blindness [11–13]. Several different imaging methods have been developed throughout the
years as a means of assisting in the detection of ODs. Two imaging methods that are often used are
CFI and optical coherence tomography (OCT) [14]. The OCT creates cross-sectional images of the
retina, and eye issues may be diagnosed by measuring the thickness of the retina [15]. To identify any
possible problems, CFI performs monitoring of the inside surfaces of the eyes. Both of these diagnostic
approaches are effective in the early-stage diagnosis of ODs. CFI, on the other hand, is a more cost-
effective and efficient method, and frequent fundus examination with CFI is advised for asymptomatic
patients, particularly the elderly [16,17]. The advancement of many common types of OD, such as
diabetic retinopathy (DR), cataracts, and AMD, begins with very few early visual signs [18]. This
makes it difficult to accurately diagnose the disease in its early stages. In addition, human review of
the vast amounts of data that are supplied by CFI is a process that is both challenging and time-
consuming [19]. There is a scarcity of radiologists in less developed regions who are competent to do
manual analysis since this method is no longer economically feasible. Not only is there an urgent need
for automated models to reduce the amount of labor that ophthalmologists have to do, but they are
also required to improve the diagnostic precision of imaging-based procedures [20].

CNN has made major advancements in the realm of medical imaging over the last several years
[21,22]. For the diagnosis of ODs, CNNs have shown exceptional performance in a range of fields,
ranging from the categorization of diseases to the identification of objects. To locate the fovea centers
in OCT photographs, Liefers et al. [9] used a classification method that worked pixel by pixel.
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Meng et al. [14] suggested the use of a two-stage CNN model to identify optical discs included
inside CFI. Zekavat et al. [15] were able to separate intraretinal fluid from extraretinal fluid on
OCT images by using CNNs. To segregate the multiple retinal layers and accumulated fluid in OCT
images, Gu et al. [5] built an encoder-decoder network that they called ReLayNet. Retinal vessels
were segmented in CFI by Zhang et al. [6] using a combination of CNN and connected random
fields. Despite the remarkable results, relatively little research has been done to address the problem
of multi-label OD classification using CFI [23]. Because a single patient may have numerous distinct
types of OD, this presents a problem. Because there is a larger probability that patients would suffer
from more than one OD, it is vital to optimize models that are capable of handling multi-label OD
categorization. According to a study [11], the coexistence of myopia is associated with an increase
in the number of false-negative predictions made about the classification of glaucoma patients. Even
though previous research has produced outstanding results in their respective aims, these findings
may not apply to situations that occur in the real world where it is impossible to avoid encountering
complicated circumstances.

In addition to the issues that have previously been brought out, there is a dearth of research that
identifies OD on the level of the individual patient. The great majority of current research investigates
the issue on the level of the picture by comparing and contrasting the CFI that is generated by the
left eye and the right eye when they are considered apart from one another. A patient-level diagnosis
that incorporates information from bilateral CFI should contribute to a more successful approach,
as shown by research [20], which discovered that the bilateral eyes are tightly related in terms of the
development of OD. The diagnosis made at the patient level has the potential to serve as a preliminary
screening for individuals who are at a high risk of developing the illness. The study [22] is especially
relevant in the context of situations in which it is necessary to maintain ongoing, extensive surveillance
of high-risk patients. The vast majority of current CNN-based OD classification research employs
networks created for natural picture analysis rather than networks with architectural optimization,
which leads to a drop in classification accuracy.

In this study, we discuss the challenge of classifying CFI-based patient-level multi-label OD
(PLML_OD) data. The spatial correlation network (SCNet) serves as the foundation for the
PLML_OD that has been suggested. The CFI from both the left and right eyes are used as inputs for
the model that has been presented. The outputs are the associated probability of a patient developing
a certain OD. A backbone CNN module, a SCNet module for feature refinement and fusion, and a
classification module for the creation of classification outputs are the key components that make up
the model that has been suggested. The process of feature extraction, which consists of the left and
right CFI, is the responsibility of the backbone CNN module. A public CFI dataset [23] is used to
demonstrate that our proposed PLML_OD model provides impressive classification performance. An
extensive investigation of the results was carried out for this research. In particular, we investigate the
performance boost brought about by an increase in the number of connections between nodes in a
network and show that there is a clear connection between model complexity and performance. The
major contributions of this study are given below:

1) In this study, we propose a novel PLML_OD model based on SCNet. The proposed model
contains a backbone CNN (i.e., DenseNet-169) for the classification of seven different types
of OD. In addition, SCNet is a one-of-a-kind module that was created to successfully combine
the features that were gathered from both the left and right CFI. SCNet, because it takes into
account the links between the recovered qualities, results in an improvement of those attributes.

2) On a CFI dataset that is accessible to the public, the classification performance of our proposed
model with the meticulously constructed strategy of feature correlation and fusion achieves a
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much higher level of success than the performance of several baseline methods that use direct
feature concatenation.

3) The ablation experiments demonstrate that our proposed model produces superior results as
compared to the state-of-the-art methods.

The remaining parts of this article will be presented in the following order. Section 2 discusses
recent works of literature. In Section 3, the proposed PLML_OD model for OD classification that
makes use of CFI is presented in depth. The circumstances of the experiments, the results of the
experiments, and an analysis of the suggested technique in comparison to other approaches are
discussed in Section 4. The fifth section concludes this investigation. Additionally, future directions
are suggested in this section.

2 Literature Review

This section explores the many diagnostic approaches that are currently in use for OD. Addi-
tionally, we discuss the limitations that currently exist and highlight the key methods and solutions
that are provided by the suggested system to overcome the existing shortcomings. Transfer learning
was employed by Wang et al. [24] to extract characteristics of the CFI. Afterward, ML-C which was
based on issue transformation was used to apply those features. The authors made use of a multi-label
dataset that had a total of eight distinct labels. They employed the histogram equalization technique
on images taken in both black and white and color. After that, two different categorization schemes
were tried out on the two different photo collections. At last, they determined the average sigmoid
output probability by averaging the results of the two models. The poor network speed is making it
difficult for them to complete their task since the dataset they are using has a big number of odd ODs
that are categorized as “other ailments.” In addition to this, their system suffers from the problem of
data imbalance since there is insufficient information for some types of illnesses in their database. As
a result, specific information on some of the acquired qualities is unclear. Mayya et al. [25] identified
eight DR lesions in CFI by making use of a graph convolution network, also known as a GCN.
Laser scars, drusen, cup disc ratio, hemorrhages, retinal arteriosclerosis, microaneurysms, and both
hard and soft exudates were some of the eight main forms of DR lesions. For feature extraction,
they used ResNet-101, and then after that, they used two convolutional layers, each of which had a
3 × 3 kernel, stride 2, and adaptive max pooling. Finally, they used a fully supervised learning method
called XGBoost. The improved accuracy of their model as well as the values for the receiver operating
characteristic suggested an increased capacity to recognize laser scars, drusen, and hemorrhage lesions.
Their approach, on the other hand, was unable to detect microaneurysms, soft or hard exudates, or
hard exudates [12]. This is mostly because microaneurysms, which showed extremely little red dots
within the capillaries of the retina, were found to be the cause of the condition. Because of this, the
model was unable to differentiate between the backdrop of the CFI and the microaneurysms that
were present in them. On the other hand, soft and hard exudate lesions frequently followed a large
number of other fundus lesions at the same time, which made it difficult for the model to extract the
characteristics of all fundus lesions. The ODIR2019 dataset was used by Dipu et al. [26] to identify
eight ODs using transfer learning. They contrasted the findings by analyzing the functioning of many
different cutting-edge DL networks, such as Resnet-34, EfficientNet, MobileNetV2, and VGG-16.
After putting the cutting-edge algorithm through its training on the dataset that was used, the authors
subsequently reported their findings. Through the process of computing the accuracy, they evaluated
the overall performance of the models. The models were organized as a result of the accuracy being
implemented into VGG-16, Resnet-34, MobileNetV2, and EfficientNet. The authors, on the other
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hand, did not propose a unique paradigm for the identification of ODs. In addition, the computation
of ACC by itself was inadequate to evaluate the performance of the model. In a computer-aided design
(CAD) system, Choi et al. [27] suggested using random forest transfer learning in conjunction with
VGG-19. This was done to improve the system’s overall performance. By analyzing a relatively limited
dataset, they were able to distinguish eight distinct types of OD. They concluded that the number of
categories that needed to be identified could be whittled down to three while maintaining the same level
of precision. However, after increasing the number of categories to 10, they discovered that the level of
accuracy dropped by around thirty percent. The authors attempted to employ an ensemble classifier
that contained transfer learning, and as a consequence, they saw a little improvement in accuracy of
5.5% as a direct result of their efforts. Despite the enhancement, the authors were unable to obtain a
satisfactory level of performance since the data were flawed and had inconsistencies.

Based on our earlier analysis of the most current studies, we can conclude the limits of their ability
to recognize multiple ODs. These limitations are: 1) multi-label classes affect the performance of the
model, especially if there are inadequately many training data points. 2) Some systems are too cautious
and cannot be deployed in the real world because the data sets that they employ are either inconsistent
or insufficient. We provide a novel PLML_OD for correctly diagnosing the different ODs produced by
various CNN models via the use of CFI to solve the constraints that have been encountered in the past.
To increase the size of the training dataset without incurring the risks of overfitting or data imbalance,
we use a method known as the borderline synthetic minority oversampling technique (BL-SMOTE).
On the other hand, SMOTE helps to improve the overall performance of the product. Following
transformation, we employ BL-SMOTE to maintain the integrity of the labels. In addition, we provide
a one-of-a-kind PLML_OD to extract features by making use of SCNet so that we can deliver correct
results. The method that has been proposed can assess the possibility of each ailment among the seven
ODs that are shown in each image. In the end, we evaluated the performance of the system using a
total of six different metrics, and we contrasted our findings with those of other systems and models
already in existence.

3 Materials and Methods

This section contains the dataset description, proposed methodology, and the detail of perfor-
mance evaluation metrics.

3.1 Dataset Description and Data Augmentation

The PLML_OD model that we recommend is instantiated with the use of a CFI dataset that is
publically available to the public [23]. Ocular Disease Intelligent Recognition (ODIR-2019), which
is part of the 2019 University International Competition, supplies the dataset. The dataset contains
eight different categorization groups, including the normal control group (N) and seven illness
groups (diabetes (DB), glaucoma (GL), cataract (CA), age-related macular degeneration (AMD),
hypertension (HT), myopia (MP), and abnormalities (AB)). Both the CFI and other information,
such as the patient’s age, are used in the construction of the labels that are applied at the patient level.
There are 5000 examples included with the first version of the CFI, and 4,020 of those instances have
been commented on and made available to the public. The distribution of 4,020 patient cases among
eight different categories is seen in Fig. 1.

We make use of these CFI so that we can assess how well our model operates when it is applied.
Training is performed on each combination of the first two folds in the cross-validation process, and
testing is performed on the third fold in the process. This is done because the amount of data is not
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very enormous. Therefore, the BL-SMOTE technique is applied to increase the size of the CFI dataset.
The BL-SMOTE method is applied to the minority classes such as GL, CA, AMD, MP, AB, and HT.
The detailed summary of the dataset with and without using BL-SMOTE methods is presented in
Table 1. The 8,800 cases are split into three folds with a random distribution of 6,160 for training, 880
for validation, and 1,760 for testing respectively. Finally, we provide the average results of the test folds
over three different sets of cross-validation tests.

Figure 1: Sample of OD fundus images

Table 1: Summary of the OD dataset

Dataset N DB GL CA AMD HT MP AB Total

Original 1100 1100 200 200 180 150 190 900 4,020
BL-SMOTE 1100 1100 1100 1100 1100 1100 1100 1100 8,800
Training (70%) 770 770 770 770 770 770 770 770 6,160
Validation (10%) 110 110 110 110 110 110 110 110 880
Testing (20%) 220 220 220 220 220 220 220 220 1760

3.2 Proposed Model

The overall layout of the PLML_OD that has been suggested may be seen in Fig. 2. PLML_OD
is comprised of its major constituent parts, which are the CNN backbone, the SCNet, and the final
classifier.

3.2.1 Backbone CNN

The inputted pairs of CFIs are used to generate two separate sets of features, which are then
extracted using CNN. Given the left and right CFI, Ll, and Rr (where Ll, Rr ∈ OH x W x RGB, where the
height and width of the input CFIs are denoted by H and W, respectively, and RGB refers to the three-
color channels i.e., red, green, and blue), the outputs of the backbone CNN are Dl and Dr (where
Dl, Dr ∈ OH x W x F), where F represents the number of extracted features. Since the process of feature
extraction does not include the sharing or fusing of any information, there is no need that registration
to take place between the paired CFIs. As the backbone of our CNNs, we make use of a wide variety
of DenseNet approaches. These approaches do not contain layers that are completely linked to one
another.
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Figure 2: Architecture of proposed PLML_OD model

3.2.2 SCNet

SCNet takes two feature sets from the CNN that acts as its backbone and then constructs two
feature sets that correspond to these feature sets by analyzing their correlations. The scheme of SCNet
used in this study is shown in Fig. 3.

Figure 3: Proposed SCNet architecture

Through the utilization of these sets, it is conceivable to ascertain the pixelwise link that exists
between the two input feature sets Ll and Rr. In the beginning, each of the two feature sets is split up
into its constituent query (Q), key (K), and value (V) features (DlQ, DlK, and DlV for features of the
left CFI, and DrQ, DrK, and DrV for features of the right CFI, where DlQ, DlK, DlV ∈ OH x W x F ′, and DrQ,
DrK, DrV ∈ OH x W x F′ ′ ‘) by 1 × 1 convolutions (ConV). Eqs. (1)–(3) are used for extracting features from
inputted pairs of CFI.

DIQ = L(Dl; PlQ), DrQ = L
(
Dr; PrQ

)
(1)

DlK = L(Dl; PlK), DrK = L (Dr; PrK) (2)

DlV = L(Dl; PlV), DrV = L (Dr; PrV) (3)

where L denotes a linear 1 × 1 ConV and P refers to the pertinent parameters. The dimensions of
the converted Q/K and V features are denoted by F ′ and F ′ ′, respectively. The empirical value of F′
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and F ′ ′ is 1024. The pixel-wise correlation weights were calculated after that by using the transformed
features (Cl←r ∈ O(H×W)(H×W)) are calculated as the inner product adjusted by the sigmoid function (SF).
These weights are used to combine the information obtained from the right CFI with that which was
retrieved from the left CFI. Eq. (4) is used to aggregate the pairwise correlation by using SF.

Cl←r ∈ O(H×W)(H×W) = Sigmoid(DlQDT
rK) (4)

It is possible to calculate the correlation weights (Cr←l ∈ O(H×W)(H×W)) like the previous one to
combine the information obtained from the left CFI with the information gathered from the right
CFI. Eq. (5) is used to measure the correlation weights by using SF.

Cr←l ∈ O(H×W)(H×W) = Sigmoid(DlQDT
rK) (5)

The correlation weights are a representation of the interactions that take place between each CFI
site pair. After the weights have been collected, the two sets that were produced from the backbone
CNN undergo refinement to their respective values such as Dl_update ∈ OH x W x F′ ′ and Dr_update ∈ OH x W x

F′ ′ by multiplying the weight maps that correspond to each set. The following Eqs. (6),(7) are used to
measure Dl_update and Dr_update:

Dl_update = Cl←r × DrV (6)

Dr_update = Cr←l × DlV (7)

The last element of the SCNet process involves fusing the features that were acquired from
the bilateral CFI. Fig. 3 illustrates how the concatenation of four different feature sets leads to the
achievement of fusion. In this step, the left input CFI feature set Dl_update is concatenated with the
updated left input CFI feature set Dr_update. Eq. (8) is used to measure the SCNet.

M = {Al, Ar} (8)

Al = L
([

Dl, Dl_update

]T
; PAl

)
(9)

Ar = L
([

Dr, Dr_update

]T
; PAr

)
(10)

Put Eqs. (9), (10) into Eq. (8). Additionally, Al and Ar are the output of M, and M represents the
SCNet (see Eq. (11)).

M = {L
([

Dl, Dl_update

]T
; PAl

)
, L

([
Dr, Dr_update

]T
; PAr

)
} (11)

3.2.3 Classifiers

To transform the two feature sets that are produced by SCNet into two feature vectors, the process
known as global average pooling (GAP) is carried out. After that, they are merged into a single
string, and then that string is sent on to the module that does the final classification. The classifier
is composed of two fully connected layers (FCLs), of which only one is activated by ReLU and the
other is not activated by it. ReLU only triggers one of the FCLs in the classifier. The dimensionality
of the concatenated features was lowered as a direct result of the use of the first FCL. This was an
immediate consequence of using the first FCL. Consider, for instance, the DenseNet-169 backbone,
which is accountable for determining the accurate size of every feature. If one looks at the data that
CNN has supplied, one will see that the dimension of the concatenated feature is 2048. After having its
value lowered to 1024 by the first FCL, it will remain at that level for the rest of the calculations. When
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using the second FCL, the features are compressed down to an eighth dimension, which corresponds
to the many categories that are used for classification. After this stage has been completed, the eight-
dimensional features may be compared to the ground-truth disease classification labels. After this
comparison has been made, the network loss can then be determined.

3.2.4 Loss Function

After a softmax activation has been performed, the conventional cross-entropy loss algorithm
for eye diseases CFI classification is implemented. This algorithm is more useful in situations where
the categories are mutually exclusive. In light of this and taking into account the findings of previous
studies [19–21], we use a multi-label soft margin loss to solve the multi-label OD classification issue.
The loss function is mathematically expressed in Eq. (12):

L = − 1
G

∑G

G=1
r [G] log

(
σ

(
Ô [G]

)) + (1 − r [G]) log
(
1 − σ

(
Ô [G]

))
(12)

where G denotes the categories, sigmoid activation is denoted by σ , r ∈ {0, 1} the reference label, and
the output of the network is represented by Ô.

3.3 Performance Metrics

The official ODIR-2019 challenge suggests calculating the kappa score (KS), the F1 score, the
area under the receiver operating curve (AUC), accuracy (ACU), and the average (AVG) of the three
to evaluate the classification performance of various models. Eqs. (13)–(21) are used to measure these
performance metrics. The statistics are computed using the whole dataset, and then they are averaged
across all of the patients.

KS = Mo − Me

1 − Me

(13)

Mo =
∑h

h=1 TPh∑h

h=1(TPh + FNh)
(14)

Me =
∑h

h=1 TPh ∗ (TPh + FNh)

N2
(15)

F1 score = 2TP
2TP + FN + FP

(16)

AUC =
∫ 1

a=0

TPR
(
FPR−1 (a)

)
dx (17)

TPR = TP
TP + FN

(18)

FPR = FP
FP + TN

(19)

ACU = TP + TN
TP + TN + FP + FN

(20)

AVG = 1
(KS) + (F1 score) + (AUC)

(21)
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where TP and TN represent the true positive and true negative, respectively. N represents the number
of samples used in the process of testing. Additionally, FP shows the value of a false positive, and FN
is used to denote the false negative.

4 Results and Discussions

This section shows the experimental findings acquired on the publically available OD dataset,
comparing the proposed PLML_OD model to various baselines. Additionally, the ablation study of
the proposed model is also performed in this section.

4.1 Experimental Setup

To study the impact that DenseNet models of varying depths have on the process of feature
extraction, we use CNNs as the backbone of our system and use DenseNet models. Models that
have already been pre-trained on ImageNet are put to use in the process of initializing the backbone
CNNs. The CFI has differing resolutions as a result of the fact that the information was acquired
from several different sites or hospitals utilizing a variety of devices. First, each CFI is scaled down
to a resolution of 299 by 299 pixels. Random cropping of 224 × 224 photo patches is done as part of
the image improvement process that is performed during network training. During the testing phase,
the alternate method of center cropping is utilized. Keras was used in the implementation of both the
proposed PLML_OD model and the baseline models. In addition, the programming of the approaches
that are not immediately related to convolutional networks is done in Python. The experiment was
carried out using a computer running the Windows operating system, which was equipped with an 11
GB NVIDIA GPU and 32 GB of RAM.

4.2 Models Configuration

The PLML_OD model that has been presented is tuned to perfection by adjusting its many
hyperparameters. The stochastic gradient descent (SGD) optimizer is the key tool that is used while
training networks with the multi-label classification loss function specified by Eq. (11). The poly
learning rate degradation approach is now being used to bring the initial learning rate (LR) down
from its setting of 0.001 as a starting point. The intensity level is presently set at 0.90. Each experiment
is performed for a total of one hundred epochs, and the information received from the very last epoch
is the one that is recorded.

4.3 Results of Classification Using a Variety of Backbones CNNs

The process of independently obtaining features from bilateral CFI is within CNN’s purview.
Backbone CNNs with varied depths may extract features with varying degrees of abstraction from
the data. Without specifying an explicit fusion technique, the features that are generated by the
backbone CNN is instantly combined using addition, pixel-wise multiplication, or concatenation.
Table 2 provides a further explanation of the findings. Among the many different processes for fusing,
feature concatenation is the one that yields the best results. When working with a CNN that has a
deep backbone, pixel-wise multiplication is the method that works best. The second point is that
the performance of CNNs with a stronger backbone is superior. When comparing the results of
models with a DenseNet-169 backbone and feature concatenation to those with a DenseNet-201, we
find that the KS, AUC, F1-score, ACU, and final AVG are all improved by 8.8%, 2.4%, 2.4%, and
4.5%, respectively. It indicates a stronger ability of the OD to differentiate between higher abstraction
elements. In conclusion, it has been shown that models that use DenseNet-121 eventually hit a
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performance plateau, and replacing it with a DenseNet-169 backbone has minimal influence on the
situation. Research that is similar to this one reveals that the performance of a network cannot rise
linearly with the number of connections between nodes [21]. The three possible explanations for this.
The first issue has to do with the problem of the gradient disappearing. When there is more information
available, optimizing a network becomes a more difficult task [14]. The second aspect that contributes
to the inefficient use of the enormous quantity of features developed for deep networks is a decline in
the reuse of those features [15]. Because the network is not fully trained since there are only a limited
amount of training samples that may be accessed.

Table 2: Employing DenseNet architectures for OD classification without using SCNet

DenseNet
architecture

Features fusion ACU KS F1-Score AUC AVG

Pixel-wise addition 0.821 ± 0.019 0.401 ± 0.002 0.819 ± 0.002 0.826 ± 0.006 0.682 ± 0.005
DenseNet-121 Pixel-wise

multiplication
0.801 ± 0.025 0.391 ± 0.016 0.809 ± 0.012 0.806 ± 0.058 0.668 ± 0.079

Pixel-wise
concatenation

0.830 ± 0.023 0.412 ± 0.015 0.829 ± 0.010 0.838 ± 0.016 0.693 ± 0.071

Pixel-wise addition 0.940 ± 0.011 0.441 ± 0.019 0.926 ± 0.055 0.927 ± 0.082 0.764 ± 0.023
DenseNet-169 Pixel-wise

multiplication
0.936 ± 0.027 0.498 ± 0.039 0.919 ± 0.073 0.932 ± 0.096 0.783 ± 0.043

Pixel-wise
concatenation

0.948 ± 0.002 0.501 ± 0.042 0.945 ± 0.062 0.947 ± 0.016 0.797 ± 0.025

Pixel-wise addition 0.831 ± 0.020 0.411 ± 0.003 0.829 ± 0.001 0.836 ± 0.007 0.692 ± 0.012
DenseNet-201 Pixel-wise

multiplication
0.811 ± 0.026 0.401 ± 0.017 0.819 ± 0.013 0.816 ± 0.059 0.678 ± 0.016

Pixel-wise
concatenation

0.840 ± 0.024 0.422 ± 0.016 0.839 ± 0.011 0.848 ± 0.017 0.709 ± 0.019

Pixel-wise addition 0.841 ± 0.021 0.421 ± 0.004 0.839 ± 0.004 0.846 ± 0.008 0.711 ± 0.013
DenseNet-264 Pixel-wise

multiplication
0.821 ± 0.027 0.411 ± 0.018 0.829 ± 0.014 0.826 ± 0.060 0.699 ± 0.042

Pixel-wise
concatenation

0.850 ± 0.025 0.432 ± 0.017 0.849 ± 0.012 0.858 ± 0.018 0.728 ± 0.015

4.4 Improved Classification Performance Using SCNet

The potential results of activating SCNet are outlined in Table 3. Even with an increasing network
depth, the general performance trend has not changed, just as was the case before the SCNet was put
into place. When dense feature correlations are included in classification models built using SCNet,
classification accuracy is increased in a manner that is not reliant on the backbone CNNs and is
more constant. Take the model that has a DenseNet-169 for example. The use of SCNet improves the
performance of CNN in all four parameters by corresponding percentages of 4.2%, 1.9%, 1.1%, and
1.7%. Comparing the outcomes achieved with and without SCNet with the use of paired t-tests reveals,
with a p-value that is less than 0.05, that SCNet may considerably increase classification performance
as measured by the KS, the F1-score, and the final AVG score. When alternative backbone CNNs are
used, performance reaches a plateau of the same sort as when utilizing the original CNN. The average
score of networks that have DenseNet-201 as their backbone is 1.3% higher than the average score of
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networks that have DenseNet-121 as their backbone. On average, the performance of a network with
a DenseNet-169 backbone is 2.4% better than the performance of a network with a DenseNet-121
or DenseNet-201 backbone. However, as compared to networks with DenseNet-201 backbone, those
with DenseNet-264 backbone only increase AVG by a meager 0.5%. The comparison of the results
obtained using and without using SCNet are graphically presented in Fig. 4. It’s not necessary to use
the deepest possible backbone CNN, due to the additional processing complexity that comes along
with raising the network depth. This topic will be covered in the part that comes after this one.

Table 3: Employing DenseNet architectures for OD classification with SCNet

DenseNet
architecture

ACU KS F1-Score AUC AVG

DenseNet-121 0.841 ± 0.024 0.422 ± 0.015 0.830 ± 0.010 0.849 ± 0.016 0.703 ± 0.071
DenseNet-169 0.968 ± 0.001 0.551 ± 0.003 0.967 ± 0.005 0.969 ± 0.007 0.829 ± 0.004
DenseNet-201 0.861 ± 0.032 0.433 ± 0.046 0.840 ± 0.089 0.859 ± 0.062 0.710 ± 0.071
DenseNet-264 0.871 ± 0.037 0.443 ± 0.059 0.850 ± 0.072 0.869 ± 0.087 0.720 ± 0.067

Figure 4: Comparison of the performance of several backbone CNNs for classification. (a) Represents
the backbone CNN’s performance with and without using SCNet in terms of ACU, (b) Represents the
backbone CNN’s performance with and without using SCNet in terms of Kappa Score

The retrieved features were used to train four backbone CNN classifiers. The grid search approach
was used to optimize the hyperparameters. The 5-fold cross-validation method is used to train the
models that are being used. To test the model, several different performance criteria were used for
the task of detecting different types of OD. Fig. 5 presents the confusion matrices for DenseNet
architecture using SCNet. With DenseNet-169, the model identified 215 out of 220 OD instances and
incorrectly categorized two cases as CA, one case as DB, one case as HP, and one case as normal. The
model correctly predicted the class label for each normal instance. In the example of DenseNet-121
(in which extracted characteristics were utilized to train the model), the model correctly identified 199
cases of AB disease out of 220 total cases but incorrectly labeled 21 cases as normal and other OD
diseases such as AMD, CA, DB, GL, HP, and MP. There were 202 instances of AMD illness, and
DenseNet-264 correctly predicted their class label. However, 18 cases were incorrectly categorized as
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normal or other forms of OD. DenseNet-201 correctly predicted the class label for 199 out of 201 DB
illness cases. However, it incorrectly identified two instances as normal.

Figure 5: Confusion matrix; (a) DenseNet-121, (b) DenseNet-201, (c) Proposed Model, and (d)
DenseNet-264
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4.5 DenseNet Architecture Computational Complexities

Table 4 has a description of the complexity of the network, and Fig. 6 contains a presentation of
the classification metrics about the number of floating-point operations per second (FLOPs), as well
as the parameters of the network. Because of this, we can compare the outcomes of categorization in
a way that is both objective and equitable.

Table 4: Differences in computational complexities between a network with (�) and without (×) a
SCNet

DenseNet architecture SCNet FLOPS Parameters (Millions)

DenseNet-121 � 17.12 16.9
× 17.09 14.10

DenseNet-169 � 32.11 30.10
× 32.07 24.09

DenseNet-201 � 41.11 58.05
× 36.03 28.83

DenseNet-264 � 71.10 77.23
× 65.12 47.83

Figure 6: The outcomes of the PLML_OD model that has been proposed (a) Classification perfor-
mance for FLOPs (b) Configurations for model total trainable parameters

Even when FLOPs or networks are taken into contemplation, the suggested PLML_OD approach
may still be much more advanced than the baseline. Networks with a DenseNet-169 backbone and
SCNet can outperform baselines with a DenseNet-201 and DenseNet-264 backbone while using a
much lower number of FLOPs. This demonstrates that the increasing complexity of networks is not
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the sole factor contributing to the extremely accurate categorization conclusions produced by the
suggested method. It is possible to enhance the categorization of OD at the level of the individual
patient by considering the connection between the left and right CFI. To get improved classification
performance, it is very necessary to make advantage of the information that is provided by both
CFI. This is because the diagnosis at the level of the patient is of great significance [25]. Even if the
introduction of SCNet only results in a moderate rise in FLOPs, the network parameters will almost
certainly see a significant expansion. This is notably the case for baselines that are supported by the
DenseNet-201 and DenseNet-264 backbones.

Table 5 presents the training time of the proposed model and other backbone models. The results
show that DenseNet-121 takes 500 seconds (s) to train on the entire dataset. The DenseNet-169 and
DenseNet-201 models take 433 and 693 s, respectively, to train. The DenseNet-169 model takes less
training time as compared to other models. The reason behind this is the total trainable parameters of
DenseNet-169 are less than other models (see Fig. 6b).

Table 5: Training time of the models

Models Training time in seconds (s) Testing time in seconds (s)

DenseNet-121 500 s 95 s
DenseNet-169 433 s 26 s
DenseNet-201 693 s 62 s
DenseNet-264 725 s 87 s

4.6 Ablation Study

In this research, we worked to design the novel model by including the SCNet, in addition
to developing more advanced versions of the DenseNet-169 and the multi-label soft margin loss
function. We used the control variable strategy to statistically analyze the experimental data while
simultaneously controlling a variable to determine whether or not the proposed PLML_OD model is
valid for use with eight OD, including the normal condition. At the time of experiments, the accuracy
and kappa score values of each model were investigated and compared with the assistance of metrics
to establish the significance of the enhanced module to the model. Experiment 1 demonstrates the
basic SCNet model, Experiment 2 demonstrates the implementation of the DenseNet-169 model, and
Experiment 3 compares the DenseNet-169 model with a multi-label soft margin loss function and
SCNet. Table 6 presents the detailed results of the experiment.

Table 6: Integration of the model’s many different components, including SCNet and DenseNet-169

Experiments SCNet DenseNet-169 Multi-label
soft margin

Image
resolution

Accuracy Kappa
score

1 � × × 299 × 299 × 3 83.98% 0.40
2 × � × 299 × 299 × 3 85.13% 0.43
3 � � � 299 × 299 × 3 96.80% 0.55

When the results of Experiment 1 are compared with Experiment 2, it is clear that DensNet-
169 leads to an improvement of 1.15% in the model’s average OD classification accuracy. When we
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combined the SCNet and DenseNet with multi-label soft margin loss function to develop the proposed
PLML_OD model in Experiment 3. The results reveal that the proposed model improved by 11.67%
as compared to Experiment 2 in classifying OD.

4.7 Comparison with State-of-the-arts

In this subsection, the superior performance of the proposed PLML_OD model is verified by
comparing it with state-of-the-art methods. Wei et al. [28] designed a novel inception-v3 model and
achieved an accuracy of 0.84 for classifying the ocular disease. In a study [29–31], they developed a
CNN model for the detection of glaucoma using a fundus image. They attained an accuracy of 0.91, a
Kappa score of 0.42, and an F1 score of 0.90. Wang et al. [32] proposed a novel model named MBSaNet
and achieved an accuracy of 0.89. A detailed comparison of the proposed model with previous studies
in terms of many evaluation metrics is discussed in Table 7.

Table 7: Performance comparison of the proposed PLML_OD model with previous studies

Reference Year Methods Accuracy Kappa score F1-Score

Wei et al. [28] 2019 Inception-v3 0.8411 0.44 0.85
Fan et al. [29] 2023 CNN 0.9123 0.42 0.90
Park et al. [30] 2022 CNN 0.7425 0.52 0.89
Gour et al. [31] 2021 Two I/P VGG16 0.8515 – 0.86
Wang et al. [32] 2023 MBSaNet 0.8916 0.44 0.88
He et al. [23] 2021 DCNet 0.9154 0.52 0.89
Wang et al. [24] 2020 EfficientNetB3 0.7356 0.50 0.88
Ours – PLML_OD 0.9680 0.55 0.94

5 Conclusion

A classification model for PLML_OD eye illnesses was constructed with the aid of three
fundamental modules for this research investigation. These modules included a CNN backbone, a
SCNet, and a classifier for the creation of classification scores. The most cutting-edge component of
our network’s architecture is called SCNet, and it enables pixel-wise feature correlation to be carried
out by making use of the two sets of data acquired by the backbone CNN from both the left and the
right CFI. After this stage, the processed features are merged to provide a patient-level representation
of the features to be ready for the final patient-level OD classification. The classification performance
of the proposed model has been evaluated on the publically available dataset of seven different OD.
The proposed model achieved a classification accuracy of 96.80% in classifying OD. The result reveals
that the proposed model performs superior as compared to the baseline models as well as the state-
of-the-art classifiers. We believe that our model would assist the eye specialist in identifying OD. The
limitation of the study is that a dataset contains a less number of images and is imbalanced; however,
to handle this issue BL-SMOTE is applied. In the future, we will develop a federated learning-based
collaborative model with the help of several hospitals by keeping in mind patient data privacy.
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