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Abstract: Citrus fruit crops are among the world’s most important agricultural
products, but pests and diseases impact their cultivation, resulting in yield
and quality losses. Computer vision and machine learning have been widely
used to detect and classify plant diseases over the last decade, allowing for
early disease detection and improving agricultural production. This paper
presented an automatic system for the early detection and classification of
citrus plant diseases based on a deep learning (DL) model, which improved
accuracy while decreasing computational complexity. The most recent transfer
learning-based models were applied to the Citrus Plant Dataset to improve
classification accuracy. Using transfer learning, this study successfully pro-
posed a Convolutional Neural Network (CNN)-based pre-trained model
(EfficientNetB3, ResNet50, MobiNetV2, and InceptionV3) for the identifica-
tion and categorization of citrus plant diseases. To evaluate the architecture’s
performance, this study discovered that transferring an EfficientNetb3 model
resulted in the highest training, validating, and testing accuracies, which were
99.43%, 99.48%, and 99.58%, respectively. In identifying and categorizing
citrus plant diseases, the proposed CNN model outperforms other cutting-
edge CNN model architectures developed previously in the literature.

Keywords: Citrus diseases classification; deep learning; transfer learning;
efficientNetB3; mobileNetV2; ResNet50; InceptionV3

1 Introduction

A nation’s economy’s growth and improvement are greatly influenced by agriculture. It is the main
source of the world economy. Agricultural research aims to increase food quality and production while
decreasing costs and improving profitability [1]. Any state’s economic development depends on its fruit
trees. The citrus tree is one of the most identifiable fruit species of plants. It is rich in vitamin C and
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popular throughout the Middle East, Africa, and the Indian subcontinent [2]. Citrus plants provide
several health advantages, and the agricultural industry uses them as raw goods to create various
other agro-based products, such as sweets, jams, ice cream, and confectionery, among others [2,3].
The most significant fruit plant in Pakistan is citrus, which contributes significantly to the nation’s
horticultural exports. In 2018, Pakistan produced an estimated 2.5 million tons of citrus annually.
Conversely, citrus plants are prone to some diseases, including melanose, black spots, cankers, scabs,
and greening. Citrus trees can get the canker, primarily located on the leaves or fruit, and it is extremely
contagious. According to statistics, crop losses in Kinnow were about 22%, in sweet oranges 25%–40%,
in grease 15%, in sweet limes 10%, and in lemons 2%. Every year, a huge chunk of strong exportation
of citrus is discarded due to indications of citrus fruit illnesses. Therefore, early detection of citrus
illnesses can save costs and losses while raising the final product’s quality.

For many years, humans have been the main source of disease identification. The recognition and
diagnostic processes are prejudicial, prone to mistakes, time-consuming, and expensive. Consequently,
there is a critical necessity for a computerized approach to identifying citrus plant diseases. It is now
simpler to inspect and robotically identify abnormalities in a plant in actual time because of the
advancement of contemporary instruments and fast computer-based assisted processes [4]. Traditional
Machine Learning (ML) approaches have been quite effective at detecting and identifying plant
diseases, however, they can only handle the sequential image processing techniques: segmenting images
with clustering and other approaches [5,6], feature extraction [7], Support Vector Machine (SVM) [8],
K-Nearest Neighbor (KNN) method [9], and Artificial Neural Network (ANN) [10]. It’s challenging
to choose and extract the finest visible pathogenic features, demanding the use of highly skilled experts
and professionals, which is ineffective in terms of both human resources and economic support.
Instead of manually creating the structural processes of extracting features and classifications, deep
learning can automatically recognize the hierarchical characteristics of diseases. The DL techniques
are highly effective in a variety of fields, such as signal processing [10], face recognition [11], biomedical
image analysis [12], and numerous other techniques. Additionally, deep learning techniques have
shown promise in the agricultural sector, assisting more farmers and workers in the food industry, such
as in the identification of plant diseases [13], analysis of weeds [14], pest recognition [15], processing
of fruits [13], and many more, which made interacting with image processing. Convolutional Neural
Networks (CNN) are considered the most successful DL method [16]. To recognize and categorize
plant diseases, a number of CNN architectures are used, including AlexNet [17], GoogLeNet [18],
and others. In addition, numerous researchers have employed deep learning models to recognize and
categorize citrus plant diseases (Pourreza et al. [19], Barman et al. [20], and Zia Ur Rehman et al. [21]).

Research Contributions: The significant contributions this work brings to the field of research are
the following:

• Different pre-trained models are used to train various models with and without data augmen-
tation.

• With the use of deep transfer learning techniques to classify citrus plant diseases at a reduced
cost with higher prediction accuracy.

• Using the proposed DL model, early detection of citrus plant diseases can reduce significant
production loss and financial loss.

• The effectiveness of various models is evaluated using multi-performance metrics for identifying
and classifying diseases on citrus plants.

Following is a chronological breakdown of the article: Section 2 is the body of relevant work.
Section 3 describes the suggested methodology and implementation, and Section 4 explained the
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experimental results. In the last, Section 5 presented the conclusion of the work with future work
and recommendations.

2 Related Work

There are various applications of digital image processing and deep learning in different applied
domains of computer vision [22–24]. Recent research focuses on using deep learning models [25–27].
Researchers have been trying to diagnose leaf and fruit diseases for many years. Computer vision
and machine learning researchers have suggested numerous approaches for identifying and classifying
plant diseases. Due to its enormous production, the citrus plant is given significant importance in
agriculture. To protect citrus from diseases, several techniques for identifying and categorizing citrus
diseases have been presented. Golhani et al. [28] have reported various studies on neural network
methods used to recognize and categorize plant diseases. Citrus canker and Huanglongbing (HLB)
were detected using SVM and a fluorescent imaging system by Wetterich et al. [29]. This method had a
classification accuracy of 97.8% for citrus canker and scab and a 95% detection accuracy for HLB and
zinc deficiency. A conventional image processing method for identifying and classifying citrus plant
diseases is suggested by Sharif et al. [1]. Features are extracted for segmentation using an optimized
weighted segmentation approach. Features are selected using entropy and a principle component
analysis (PCA) score-based vector after combining texture, shape, and color features. A multi-class
SVM takes the final features and classifies them. The suggested method achieved an accuracy of
90.4% on the plant village dataset. There is much space for improvement about classification accuracy.
Deep learning has recently acquired prominence in various fields, including image processing, image
recognition, classification, and agriculture. Deep learning is a worthy competitor for classifying citrus
diseases because it eliminates the time-consuming extraction of features and segmentation based on
thresholds. Xing et al. [30] proposed a detection method for pest and citrus plant illness using a
weakly thick connected convolutional network. They applied different CNN models on a citrus self-
dataset. The network in a network (NIN-16) network scored a test accuracy of 91.66% compared
to the Squeezeand-Excitation Network (SENet-16) network, 88.36%. A strong CNN algorithm was
proposed by Dhiman [31] as a technique for identifying citrus illnesses. A dense model without
data augmentation or image preprocessing techniques is used to test the proposed model. Prediction
accuracy using the proposed methodology is 89.1%. Kukreja et al. [32] presented a deep learning
approach employing preprocessing and data augmentation to automatically identify and classify citrus
illnesses. Their findings showed that the data preprocessing and augmentation techniques increased
the dataset’s size and quality, improving classification accuracy. The proposed approach had an overall
accuracy of 89.1% on the citrus fruit dataset. Khattak et al. [33] proposed two convolutional layers
of a CNN-based leaf disease identification method. Citrus fruit and leaves are classified according to
their vulnerability to disease based on the 1st CNN layer, which extracts minimal-level characteristics
from the image, and the 2nd CNN layer, which gathers strong-level characteristics. The proposed CNN
model beats comparable models by classifying citrus fruit and leaf diseases with an accuracy of 95.65%.
MobiNetV2 was trained by Liu et al. [34] to classify and detect six common citrus illnesses. Comparing
MobiNetV2 to earlier network models regarding model accuracy, model validation speed, and model
size reveals that it is superior in categorizing and identifying citrus diseases. Using Transfer Learning
(TL) and feature fusion, Zia Ur Rehman et al. [21] suggested a new method to classify citrus fruit
diseases. According to the findings, the individual characteristics of MobiNetV2 and DenseNet201
are less accurate at classifying data than the fusion and optimum set of features produced by the two
retrained classifiers. The suggested model performs better than current methodologies, with accuracy
of 95.7%. Wetterich et al. [29] analyzed and compared the effectiveness of SGDM optimization
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techniques for transfer learning-based automated citrus disease recognition. Two common models,
AlexNet and VGG19, were investigated for extracting characteristics from the photos. The datasets
for citrus fruit and leaf disease were utilized to achieve the highest classification accuracy, which was
94.3%, which was used to evaluate network performance.

Research gap: Simple ML and DL approaches have been demonstrated to be effective and
widely utilized in plant disease prediction; however, most recent studies had difficulties significantly
improving classification accuracy rates. Additionally, there is some performance degradation due to
the neural network model’s poor parameter and layer selection. Therefore, the proposed architecture
employs various pre-trained CNN-based models for classifying citrus plant diseases using transfer
learning. Additionally, the network has experimented with various pre-trained CNN models with and
without data augmentation and contrasted the results with the underlying research.

This section discusses different methods for classifying a number of citrus plant diseases. The
classification methods are based on deep learning and conventional image processing. Deep learning
approaches have gained popularity in recent years since they are less complicated than image
processing methods and produce better results in terms of accuracy.

3 Proposed Methodology

Deep neural networks have been increasingly popular in recent years for autonomous disease
detection in citrus plants. This work provides a brief overview of the suggested framework for using DL
and image processing in detecting and categorizing diseases in citrus plants. Fig. 1 shows the general
scheme of suggested deep learning models, which includes the input dataset stage, image-preprocessing
stage, and the deep CNN features extraction stage using transfer learning, the classification stage, and
the model performance assessment stage. The given methodology consists of four main modules: (i)
Dataset Collection (ii) Data Augmentation and Image pre-processing (iii) Data Splitting (iv) Proposed
Architecture.

Figure 1: General schematic of proposed system

3.1 Data Collection

A lot of data is needed for deep learning algorithms to learn effectively. This work utilized a sample
of photos from the Citrus Plant Dataset [35]. The dataset includes 759 pictures of citrus fruits and
leaves, both healthy and unhealthy. With a resolution of 72 dpi, each image has dimensions of 256 ∗
256. Four different types of citrus fruit and leaf diseases were identified from the affected photos. This
work focused on the diseases Black spot, Scab, Canker, Melanose, and Greening in data sets. Table 1
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lists the details of the dataset for each type of disease. The samples of citrus leaves and fruit diseases
are presented in Fig. 2.

Table 1: Citrus plant dataset

Citrus leaves diseases Images Citrus fruits diseases Images

Black spot 171 Black spot 19
Greening 204 Greening 16
Canker 163 Canker 78
Melanose 19 Scab 15
Healthy 58 Healthy 22
Total 609 Total 150

Figure 2: Citrus plant diseases

3.2 Image Pre-Processing and Data Augmentation

This work has been performed by Keras image preprocessing using the TensorFlow preprocessing
layers. Scaling of pixels and data normalization is all allowed by this module. For effective training
of DL networks, a huge volume of training data is necessary. Regrettably, the availability of accurate
annotated ground truths, the quantity and rarity of currently available citrus disease image collections,
and other factors still make it difficult for citrus diseases to be automatically diagnosed. The over-
fitting problem that might happen when using a small quantity of training data during the training
stage was eliminated by executing augmentation operations on the training set to increase the
training photos. Various data augmentation techniques have been used for various effects, including
translating, flipping, rotating at various angles, shifting vertically and horizontally, and zooming. Data
augmentation can also be used to generate multiple variations of a single photo. There were initially
759 original images, but after data augmentation, we acquired 3,383 images, as shown in Table 2.
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Table 2: Augmented citrus plant dataset

Categories Diseases Original images After data augmentation

Leaves Black spot 171 740
Greening 204 504
Canker 163 368
Melanose 19 210
Healthy 58 369

Fruits Black spot 19 168
Greening 16 255
Canker 78 323
Scab 15 255
Healthy 22 191

Total images 759 3383

Dataset Distribution: The dataset is split into three sections: (i) Training Data, (ii) Validation Data,
and (iii) Testing Data. Training, Validation, and Testing are done in batch sizes of 32 and data split
(80, 10, 10), respectively.

Training Data: The CNN-based different deep learning models are built using 80% of the training
data, although this ratio may alter according to the project’s requirements. The multiple models, which
attempt to learn from the training sample, are trained using this data. The training dataset consists
both the input and the desired output.

Validation Data: The validation data is 10% of the original dataset and is used to validate different
CNN-based models’ performance during training. The information obtained from this validation
approach can be used to modify the model’s hyper-parameters and configurations. To avoid overfitting,
we split the dataset into a validation dataset.

Testing Data: The CNN-based different models are tested on new data using a test set representing
10% of the original data. Once the model has received the necessary training, it is used for evaluation.
It offers a final model performance metric regarding precision, accuracy, etc.

3.3 Proposed Architecture

This study proposes a unique methodology for identifying and categorizing citrus plant diseases.
The fundamental architecture consists of four main steps: (a) data collection (b) data augmentation
and preprocessing (c) deep CNN feature extraction via transfer learning (d) final classification Fig. 3
shows the detailed flow of the suggested framework.

3.4 Feature Extraction Using CNN Based Deep Transfer Learning

Four pre-trained CNN-based architectures (EfficientNetB3, ResNet50, MobiNetV2, and Incep-
tionV3) are used in this work for feature extraction after applying transfer learning, as presented in
Fig. 4.
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Transfer Learning: Transfer Learning, which transfers pre-trained model weights to a new
classification problem, is a popular deep learning technique. Training consequently becomes easier
and more effective. The main benefit of transfer learning is detecting and classifying citrus diseases
using pre-trained models like EfficientNetb3, MobiNetV2, ResNet50, and InceptionV3.

Figure 3: Detailed architecture of deep transfer learning based system

Figure 4: Representation of DCNN feature extraction using transfer learning

InceptionV3: InceptionV3 main objective is to use less computational resources by changing the
Inception architectures first introduced in GoogleNet/InceptionV1 [36]. The Inception V3 model has
48 layers. The network comprises 11 Inception modules in total, covering five different types. Each
module has a convolutional layer, an activation layer, a pooling layer, and a batch normalization layer,
all developed by experts. These modules are combined in the Inception-v3 model to extract the most
features possible. The general architecture of the InceptionV3 model is shown in Fig. 5.

ResNet50: A novel architecture known as ResNet [37] was presented in 2015 by researchers
at Microsoft Research. This architecture introduces the idea of Residual Blocks to address the
vanishing/exploding gradient issue. They employ the “skip connections” method in this network. The
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skip connection connects layer activations to those of the next layers by missing a few layers in between.
This results in a residual block. ResNet is built by combining these residue blocks. The ResNet-50 is a
ResNet variant with 50 deep layers trained on at least one million photos from the ImageNet database,
as shown in Fig. 6.

Figure 5: InceptionV3 network general architecture

Figure 6: Residual learning block and ResNet50 network architecture

MobiNetV2: Google researchers initially presented MobileNet [38]. A convolutional neural
network design called MobileNetV2 aims to function well on mobile devices. The ImageNet, a
sizable classification dataset, served as the first training ground for the MobileNetv2 model. Residual
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connections link the bottleneck layers and are constructed on an inverted residual structure. The
middle expansion layer uses simple point-wise and depth-wise convolutions as a source of non-
linearity to select characteristics, as shown in Fig. 7. The MobileNetV2 architecture consists of 19
extra bottleneck layers in addition to the 32-filter initial fully convolution layer.

Figure 7: MobileNetV2 network general architecture

EfficientB3: Tan et al. originally suggested EfficienNet in 2019 [39], and it is an architecture for
enhancing classification networks. Most networks typically use three indicators: network expansion,
network depth, and improvement in resolution quality. To increase the accuracy, the network’s width,
depth, and resolution are tuned using the combined scaling model, as illustrated in Fig. 8.

Figure 8: Compound scaling method used in EfficientNet architecture
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The pre-trained models utilized in this study were previously trained using an ImageNet dataset.
By default, each pre-trained network on the CNN building has thousand fully connected (FC)
layer output nodes. The output FC layer was replaced with five nodes based on the number of
classes in the dataset for citrus plant diseases, and added softmax activation function. In addition,
to avoid overfitting, we added some dense layers and dropout layer (rate = 0.1). The default
hyperparameters of each pre-trained model are used with Adam optimizer (learning rate = 0.001)
and Sparse_Categorical_Crossentropy loss function. The flowchart of the entire implementation with
the algorithm is shown in Fig. 9 and Algorithm 1.

Figure 9: Flowchart of our proposed model

4 Results and Discussion

Each experiment’s findings are discussed in this section. The CNN-based InceptionV3, ResNet50,
MobileNetV2, and EfficientNetB3 architectural models were used in experiments using training and
validation data. Table 3 shows the accuracy and loss of training and validation data for each pre-
trained CNN-based model.

Experiments show that EfficientNetB3 outperforms all CNN based models in terms of perfor-
mance, with a training accuracy of 99.43%. ResNet50 model ranked second with an accuracy of
98.39%, followed by MobileNetV2 with an accuracy of 97.93%, and InceptionV3 with an accuracy
of 96.39%.
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Table 3: Accuracy, Loss and time computing of proposed models

Pre-train model Data
augmentation

Training
accuracy (%)

Validation
accuracy (%)

Training loss
(%)

Validation
loss (%)

EfficientNetB3 Un-augmented
dataset

97.14 96.88 0.13 0.14

Augmented
dataset

99.43 99.48 0.021 0.019

MobiNetV2 Un-augmented
dataset

95.83 92.19 0.15 0.24

Augmented
dataset

97.93 98.44 0.060 0.049

ResNet50 Un-augmented
dataset

96.35 96.88 0.15 0.14

Augmented
dataset

98.39 98.44 0.048 0.040

GoogleNet
(InceptionV3)

Un-augmented
dataset

90.10 87.50 0.32 0.36

Augmented
dataset

96.39 97.40 0.109 0.104

Table 2 also shows the training loss for every learned CNN model. With a value of 0.021,
EfficientNetB3 is the architecture with the lowest training loss, followed by ResNet50, MobileNetV2,
and InceptionV3 with values of 0.048, 0.060, and 0.109, respectively. The accuracy and loss curves
achieved during the learning phase are shown below in Figs. 10–13.

Algorithm 1
START

1. Input: Citrus Plant Dataset (Image Files, Class Names)
2. Output: Disease Classification with high prediction accuracy.
3. BATCH_SIZE = 32, IMAGE_SHAPE = 256, num_classes = 5;
4. dataset = dataset_ from_directory(“Path of directory ”)
5. Apply Image Pre-Processing and Data Augmentation
6. Def get_dataset_ partitions_tf(ds, train_split = 0.8, val_split = 0.1, test_split = 0.1)
7. Load Pre-Trained Model
8. Freeze features learning layers and add new classifier layer
9. FOR All training examples DO
10. Re-Trained the model with a new classifier on training data and validation data
11. Test the model with Test Data
12. IF the desired accuracy achieved THEN

(Continued)
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Algorithm 1 Continued
13. Show citrus plant diseases classification results.
14. Show Accuracy, Loss, Precision, Recall, F1-Score
15. ELSE
16. Go back to step number 5.
17. END
18. END

END

Figure 10: Accuracy and loss graph of EfficientNetB3 model

Figure 11: Accuracy and loss graph of ResNet50 model
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Figure 12: Accuracy and loss graph of MobiNetV2 model

Figure 13: Accuracy and loss graph of InceptionV3 model

The performance evaluation matrix between the trained network and the test dataset is shown in
Table 4, along with the accuracy, precision, recall, and F1-Score for each model calculated by following
equations.

Accuracy = TP + TN/(TP + TN + FP + FN) (1)

Precision = TP/(TP + FP) (2)

Recall = TP/(TP + FN) (3)

F1 − Score = (2 ∗ Precision ∗ Recall)/(Precision + Recall) (4)
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where TP = True Positive, TN = True Negative, FP = False Positive, and FN = False Negative. The test
results showed that EfficientNetB3 performed better than all CNN architecture models in regards to
accuracy (99.58%), precision (100%), recall (100%), and F1-Score (100%). The ResNet50 architecture
came in second with accuracy values of 98.74, precision of 96.00%, recall of 95.00%, and F1-score
of 96.00%. Accuracy, precision, recall, and F1-Score for InceptionV2 are all 96.23%, 97.00%, and
97.00%, respectively, whereas MobileNet receives accuracy values of 97.91%, precision 97.00%, recall
98.00%, and F1-Score 99.00%.

Table 4: Performance evaluation of trained models with testing data

Pre-trained model Data
augmentation

Precision Recall F1-score Accuracy (%) ETA

EfficieNtnetB3 Un-augmented
dataset

0.91 0.94 0.91 92.78 19 s

Augmented
dataset

1.00 1.00 1.00 99.58 47 s

MobiNetV2 Un-augmented
dataset

0.93 0.91 0.91 93.81 6 s

Augmented
dataset

0.97 0.99 0.98 97.91 10 s

ResNet50 Un-augmented
dataset

0.85 0.88 0.86 89.69 19 s

Augmented
dataset

0.96 0.95 0.95 98.74 47 s

GoogleNet
(Inceptionv3)

Un-augmented
dataset

0.91 0.91 0.91 92.97 19 s

Augmented
dataset

0.97 0.97 0.97 96.23 48 s

The confusion matrix with data testing for the EfficientNetB3 architectural model is shown in
Fig. 14. As illustrated in Fig. 14, no data from the sample tested were incorrectly classified. Table 4
illustrates the accuracy, precision, recall, and F1 Score values. Fig. 15 shows the confusion matrix on
testing data for the ResNet50 architecture. There are 2 sample data that are incorrectly classified out
of the 32 sample data tested. A sample of two Greening class data points were incorrectly classified.
Fig. 16 displays the confusion matrix for the MobileNet architecture model on testing data. One
sample of the 32 tested data were incorrectly categorized. One sample of incorrectly classified Greening
class data. The confusion matrix with data testing for the InceptionV3 architectural model is shown
in Fig. 17. One sample data is incorrectly categorized out of the 32 sample data analyzed.
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Figure 14: Confusion matrix of EfficientNetB3

Figure 15: Confusion matrix of ResNet50
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Figure 16: Confusion matrix of MobiNetV2

Figure 17: Confusion matrix of InceptionV3

Fig. 18 compares the testing accuracy and loss of the EfficientNetB3, MobiNetV3, ResNet50, and
InceptionV3 models on the augmented and non-augmented dataset. Fig. 18 shows that EfficientNetB3
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gives the highest performance, with 99.58% testing accuracy and 0.021% loss, which is maximal
compared to other models. With an accuracy of 99.58%, Fig. 18 also demonstrates that the model
created using EfficientNetB3 is the most accurate for detecting and categorizing citrus plant diseases.
Additionally, the proposed approach is compared with current methods for the classification and
diagnosis of diseases affecting citrus plants, as illustrated in Table 5. Based on classification accuracy,
precision, recall, and F1-score the suggested technique outperforms the existing techniques.

Figure 18: Models accuracy and loss comparison on test data

Table 5: Proposed model comparison with other studies

References Year Accuracy (%) Precision Recall F1-score

Xu et al. [26] 2020 89.1 —— —— —–
Mampitiya et al. [27] 2021 95.65 98.00 98.00 98.00
Wetterich et al. [29] 2022 94.3 94.1 93.9 94.3
Proposed model 2022 99.58 100.0 100.0 100.0

5 Conclusion

To increase citrus plant productivity, it is critical to identify and classify citrus plant diseases
in a timely, effective, quick, automated, less expensive, and precise manner. Deep learning and
CNNs have successfully addressed many fundamental issues associated with classifying plant diseases.
Transfer learning techniques are quite effective for identifying and classifying plant diseases. This
study used the most recent transfer learning-based models on the Citrus Plant Dataset to improve
classification accuracy. This study successfully proposed a deep transfer learning-based pre-trained
CNN model (EfficientNetB3, ResNet50, MobiNetV2, GoogleNet (InceptionV3)) for citrus plant
disease recognition and classification. The existing model distinguishes between healthy and unhealthy
citrus plant diseases. To assess network performance, the researchers discovered that transferring an
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EfficientNetb3 model previously trained on an ImageNet database effectively creates a deep neural
network model for the early diagnosis and classification of citrus plant diseases. The proposed model
obtained the highest training, validating, and testing accuracies with the transfer of an EfficientNetb3
model, which was 99.43%, 99.48%, and 99.58%, respectively. In addition, the proposed model is
compared to other methods for the automated diagnosis and classification of citrus plant diseases.
The results show that the recommended CNN model outperforms recent modern CNN techniques
developed in previous research for citrus plant disease detection and recognition.

Future Work and Recommendations: The main challenge with this study is a lack of available
data, which is mitigated somewhat by including a data augmentation phase. Other data augmentation
methods, more training, and other pre-trained models could help achieve higher accuracy and lower
loss in future studies for this dataset. The proposed method is based on data from five citrus
diseases. Future research could investigate different citrus datasets to analyze other disease classes. The
proposed method is based on four pre-trained CNN-based models; no other deep-learning models
were used. Other deep learning models can also be used to improve accuracy and computational
efficiency.
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