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Abstract: In this paper, an advanced YOLOv7 model is proposed to tackle
the challenges associated with ship detection and recognition tasks, such as
the irregular shapes and varying sizes of ships. The improved model replaces
the fixed anchor boxes utilized in conventional YOLOv7 models with a
set of more suitable anchor boxes specifically designed based on the size
distribution of ships in the dataset. This paper also introduces a novel multi-
scale feature fusion module, which comprises Path Aggregation Network
(PAN) modules, enabling the efficient capture of ship features across different
scales. Furthermore, data preprocessing is enhanced through the application
of data augmentation techniques, including random rotation, scaling, and
cropping, which serve to bolster data diversity and robustness. The distribu-
tion of positive and negative samples in the dataset is balanced using random
sampling, ensuring a more accurate representation of real-world scenarios.
Comprehensive experimental results demonstrate that the proposed method
significantly outperforms existing state-of-the-art approaches in terms of both
detection accuracy and robustness, highlighting the potential of the improved
YOLOv7 model for practical applications in the maritime domain.
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1 Introduction

Ship recognition is a technology that analyzes image features, such as color, shape, and texture,
and has numerous applications in the field of intelligent transportation [1–3]. Due to the development
of inland waterway transport modes and the increasing density of inland waterway traffic, automatic
ship identification and tracking systems face significant challenges [4,5]. Traditional ship identification
methods are no longer sufficient to cope with the complexity of the traffic environment. For instance,
these methods cannot identify vessels without information on sailing time, direction, or speed.
Additionally, existing vessel identification methods require extensive preprocessing of image data,
leading to large data volumes and storage space requirements.
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The most commonly used ship recognition technologies in the field of intelligent transportation
include Automatic Identification System (AIS) based on computer vision [6,7], Global Positioning Sys-
tem (GPS) based on Light Detection and Ranging (LiDAR) [8,9], and Human-Aided Inertial System
(HAIS) based on Electronic Chart Display and Information System (ECDIS) [10,11]. Although these
ship recognition methods based on communication and navigation equipment have their advantages,
they also have significant limitations in traffic-intensive waters such as ports because they cannot
obtain visual images of ships. Currently, research on deep learning-based ship recognition methods
has made progress through automatic extraction of ship image features and continuous learning and
training, achieving ship recognition in maritime traffic videos and images [12–15]. Deep learning-
based ship recognition methods mainly adopt two approaches: introducing deep learning algorithms
into ship recognition and fully utilizing image information through image pre-processing. Recently,
deep learning-based object detection methods, such as You Only Look Once (YOLO), have achieved
remarkable success in ship detection and recognition. However, YOLOv7 models have limitations
in adapting to diverse ship shapes and sizes. Therefore, in this paper, we propose an improved
YOLOv7 model that addresses these challenges and achieves better performance in ship detection
and recognition.

This paper makes significant contributions in several areas. First, the YOLOv7 model structure
is improved by replacing anchor boxes with more suitable ones for ship detection and adding a
multi-scale feature fusion module to better capture ship features of different scales. Second, data
preprocessing techniques such as data augmentation and sample balancing are adopted to increase
data diversity, robustness, training efficiency, and model generalization. Third, extensive experiments
on benchmark datasets demonstrate the proposed method’s effectiveness in achieving state-of-the-art
performance in terms of both detection accuracy and efficiency. Overall, the paper provides a valuable
contribution to the field of ship detection and recognition.

The paper is structured as follows: Section 2 reviews related works on target detection. Section 3
explains the improvements made to the YOLOv7 model. Section 4 outlines the experiment methodol-
ogy. Section 5 presents the results and discussion. Finally, Section 6 provides a summary of the paper.

2 Related Works

Target detection algorithms represented by deep learning can be divided into two main categories:
two-stage target detection algorithms and one-stage target detection algorithms. Implementing two-
stage target detection involves two processes, extracting the object region and then performing CNN
classification on the region to identify it. One-stage target detection requires only one extraction of
features to achieve target detection. In contrast, one-stage target detection allows for fast detection
requirements but may be slightly less accurate than dual-stage target detection.

2.1 Two-Stage Target Detection

The two-stage target detection framework generally consists of two stages: candidate region
extraction and detection. In 2014, Girshick et al. [16] at UC Berkeley proposed the Region-based
Convolutional Neural Network (R-CNN) algorithm, which significantly outperformed the contem-
porary OverFeat algorithm [17]. R-CNN employs the Selective Search (SS) algorithm [18] to select
candidate frames; each frame is then fed separately into the Convolutional Neural Network (CNN)
to extract features. Finally, the bounding box is predicted based on regression and Support Vector
Machine (SVM) classification. In 2015, He et al. proposed the Spatial Pyramid Pooling Network (SPP-
Net) algorithm [19], which introduces a spatial pyramid pooling layer between the convolutional layer
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and the fully connected layer. This replaces the cropping and scaling operations in R-CNN, ensuring
consistent image sizes. SPP-Net accelerates computation and reduces computational costs. In the same
year, Girshick [20] from Microsoft Research proposed the Fast R-CNN algorithm. By taking the whole
image as input and passing it through the CNN network, Fast R-CNN draws on the SPP-Net concept
and efficiently addresses the R-CNN algorithm’s need to crop and scale image regions to the same
size through the pooling layer structure of Region of Interest (ROI) Pooling. Subsequently, Ren et al.
[21] proposed the Faster R-CNN algorithm, accompanied by the Region Proposal Networks (RPN)
[22]. This reduced computational overhead and resolved the delay in generating positive and negative
sample candidate frames for the Fast R-CNN algorithm. In 2017, He et al. made another breakthrough
in the field of target detection by proposing the Mask R-CNN [23]. The Mask R-CNN algorithm
replaces the ROI Pooling layer with ROI Align and adds a branching Fully Convolutional Network
(FCN) layer for semantic segmentation based on border recognition.

2.2 One-Stage Target Detection

Two-stage target detection methods are often unsuitable for practical application scenarios due to
the need for initial extraction of target candidate regions followed by detection. This results in higher
model complexity and increased computational effort to meet system detection speed requirements.
Consequently, one-stage target detection methods, such as Single Shot MultiBox Detector (SSD) and
the YOLO series, are widely used in the industry for their fast computing speed, lightweight design,
and suitability for deployment. YOLO [24] treats target detection as a regression problem, dividing the
image into an S × S grid and predicting the detection frame information and class probability of the
object within each grid. Since then, one-stage detection algorithms, such as YOLOv2 [25], YOLOv3
[26], YOLOv4 [27], YOLOv5, YOLOv6 [28], and YOLOv7 [29], have been proposed and gained
significant attention. The YOLOv3 network is one of the more mature and classical target detection
networks, improving on various aspects of YOLO and combining the advantages of many network
structures, such as ResNet and Feature Pyramid Network (FPN). YOLOv4 provides a systematic
analysis of data pre-processing, detection network design, and prediction network processes. Based on
these analyses, it designs an efficient target detector suitable for a single graphics card. YOLOv5 offers
four different sizes of target detectors to meet the needs of various applications. Single Shot Detector
(SSD) [30] series is also representative of one-stage target detection methods. Detection of objects
at different scales is achieved by using feature maps of different layers to detect objects of varying
scales. Objects of different sizes are detected at different resolutions, with high-resolution feature maps
detecting small-scale objects and low-resolution feature maps detecting large-scale objects. In addition,
researchers have made numerous improvements to the SSD [31–34] foundation.

3 Algorithm Description
3.1 YOLOv7

The earliest YOLO algorithm (YOLOv1) was released in 2015 and achieved one-stage detection
for the first time, ensuring not only higher recognition accuracy but also faster operation than previous
two-stage methods. The YOLOv7 network consists of four modules, namely input, backbone, head and
prediction (see Fig. 1). In the real world, the input images are often of different sizes and not fixed.
When performing target detection, they need to be resized to a fixed size. The function of the input
module is to scale the image to meet the size requirements of the Backbone, which consists of several
BConv convolutional layers, Efficient Local Attention Network (E-ELAN) convolutional layers and
Mixed Precision Convolutional (MPConv) convolutional layers. The E-ELAN convolutional layer
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maintains the original ELAN design architecture and learns more diverse features by guiding the
computational blocks of different feature groups to improve the learning ability of the network without
destroying the original gradient path. The MPConv convolutional layer adds a Maxpool layer to the
BConv layer, forming two branches, the upper branch halves the image aspect through Maxpool and
halves the image channel through the BConv layer. The lower branch uses the first BConv layer to
halve the image channels and the second BConv layer to halve the image aspect, and finally the Cat
operation is used to fuse the features extracted from the upper and lower branches to improve the
feature extraction capability of the network. The Head module consists of a Path Aggregation Feature
Pyramid Network (PAFPN) structure, which makes it easier to pass information from the bottom to
the top by introducing bottom-up paths, thus achieving efficient fusion of features at different levels.
The Prediction module uses the Reparameterized Convolutional Block (REP) structure to adjust the
number of image channels for the three different scales of P3, P4 and P5 features output from PAFPN,
and finally 1 × 1 convolution for confidence, category and anchor frame prediction.

Figure 1: YOLOv7 network structure

3.2 Improved YOLOv7

Firstly, we have made improvements to the YOLOv7 model architecture. Specifically, we have
taken the following measures: Replacing Anchor boxes. In the traditional YOLOv7 model, the Anchor
boxes are fixed and cannot adapt to targets of different sizes and shapes. In order to better adapt to the
varying sizes and irregular shapes of ships in ship detection tasks, we designed a set of Anchor boxes
that are more suitable for ship detection based on the size distribution of ships in the dataset, thereby
improving detection accuracy. Adding a Multi-Scale Feature Fusion Module. To better capture ship
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features at different scales, we added a Multi-Scale Feature Fusion Module. Specifically, we added the
PAN (Path Aggregation Network) module to the YOLOv7 model to fuse feature maps from different
levels, thereby improving the accuracy and robustness of ship detection.

Secondly, we have made improvements to data preprocessing. Specifically, we have used the
following methods: Data Augmentation. To address issues such as complex lighting conditions
and image noise in maritime environments, we have used data augmentation techniques, including
random rotation, random scaling, random cropping, and other methods to increase the diversity and
robustness of the data. Through data augmentation, we can improve the model’s generalization ability
without increasing the labeled data. Dataset Balancing. To address the problem of imbalanced positive
and negative samples in the dataset, we balanced the dataset. Specifically, we used random sampling
to reduce the size of the dataset while ensuring that the ratio of positive and negative samples was
balanced, thereby improving training efficiency and the model’s generalization ability.

4 Experiment

To evaluate the ship recognition performance of the improved YOLOv7 algorithm, this experi-
ment was trained and tested on the SeaShips dataset.

Introduction to the dataset. The Seaships dataset [35] was collected to train and evaluate the
capability of the target detection algorithm in ship detection. 7000 1920 × 1080 images were collected in
SeaShips. Each image in the SeaShips dataset is annotated with the exact ship label and bounding box,
as shown in Fig. 2. The SeaShips dataset was created from images taken by an on-site video surveillance
system deployed around Hengqin Island, Zhuhai, China. The images selected for the dataset images
cover different features including different ship types, hull sections, scale, viewing angles, lighting and
different levels of occlusion in various complex environments. Different degrees of obscuration in
complex environments.

Figure 2: Different categories of Seaships
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Experimental equipment. Parameters of the model training device used in the experiments: OS,
Windows 10; GPU, NVIDIA GeForce RTX 3080 Ti; CPU, 8× Xeon E5-2686 v4; deep learning
framework, Torch 1.9.0+CUDA 11.1.

Experimental parameter settings. Due to the limitations of the experimental equipment, we scaled
the length and width of the input image to 1/2 of the original size, i.e., 960 × 540 pixels. The optimizer
used SGD, the learning rate was set to 0.01, the momentum was 0.9, the weight decay was 0.0005, the
batch size was 16, and 200 epochs were trained, with 10 training epochs and 1 test epoch alternating.

Assessment methods. Evaluation metrics are essential for assessing the performance of a model.
In this paper, Precision, Recall, and mAP (mean average precision of the entire class) have been chosen
as evaluation metrics. All three metrics have a range of values from 0 to 1, where the closer the value is
to 1, the better the detection accuracy and model performance. The experiments employed mAP@0.5
(mean Average Precision, with IoU threshold greater than 0.5) as the evaluation metric to compute
the mean average precision for all classes. We chose to use precision instead of accuracy because, in
many cases, precision is a more suitable metric for evaluating machine learning models, particularly
when working with imbalanced datasets where the number of positive and negative samples is unequal.
Accuracy can be deceptive in such cases, as it may appear high solely due to the abundance of negative
samples, while the model’s ability to correctly identify positive samples may be poor.

Precision = TP
TP + FP

(1)

Recall = TP
TP + FN

(2)

In the above equation, TP indicates the number of predictions that agree with the true class; FP
indicates the number of samples where the true class is negative but the prediction is positive; and FN
indicates the number of samples where the true class is positive but the prediction is negative. The full
class average precision is obtained by taking a weighted average of the average correctness of all class
tests, and its value can also be expressed as the area enclosed by Precision and Recall as the two axes
of a right-angle coordinate system respectively.

5 Result and Discussion

During the training phase of the model, the changes in Recall can be observed from Fig. 3a, while
the changes in Precision can be seen in Fig. 3b, and the changes in mAP can be derived from Fig. 3c.
After 100 epochs of training, the magnitudes of changes in Precision and Recall gradually decreased.
However, due to certain labeling errors and uneven data distribution in the experimental dataset,
Precision and Recall fluctuated greatly during the training process. The changes in mAP gradually
decreased after about 50 iterations of the model. After 200 iterations of the improved YOLOv7
algorithm, the final mAP of the model was maintained at 90.15%.

Fig. 4 presents the precision-recall (P-R) curve plots for each model in the field of ship identifi-
cation. It is evident that the area enclosed by the P-R curve formed by the improved YOLOv7 model
is significantly larger than the other two models. It is well-known that the area enclosed by the P-
R curve and the coordinate axis is the mAP value, and a higher mAP value indicates better detection
performance of the model. Therefore, the results demonstrate that the improved YOLOv7 outperforms
the other models in the field of ship identification detection.
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Figure 3: Improved YOLOv7 performance evaluation metrics

Figure 4: P-R curve comparison

Fig. 5 displays the category accuracy and mAP values of the three models for six different
categories of boats. As shown in the figure, the detection accuracy of the improved YOLOv7 algorithm
reaches 90.15%, with a particularly high mAP for small fishing boats at 91.89%, which is significantly
better than the SSD and YOLOv7 models. This result highlights the advantages of the improved
YOLOv7 model in inland waterway ship identification detection, which can meet the detection needs
for intelligent ship navigation.

Figure 5: mAP for each ship category under different algorithms
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Fig. 6 showcases some of the ship detection results obtained by the improved YOLOv7 algorithm.
The results demonstrate that the algorithm is capable of accurately detecting different types of ships,
regardless of their size. In Figs. 6b and 6d, we can see that the algorithm can identify both large
and small ships with high confidence. Moreover, the improved YOLOv7 algorithm is capable of
detecting multiple targets in a single image and accurately identifying each target category separately,
as demonstrated in Fig. 6f. These results showcase the effectiveness and robustness of the proposed
algorithm in detecting ships in complex environments.

Figure 6: Ships detection results by improved YOLOv7

6 Conclusion

In summary, the proposed improved YOLOv7 model with specifically designed anchor boxes, a
novel multi-scale feature fusion module, and enhanced data preprocessing with data augmentation and
balanced sampling, has shown significant improvements in ship detection and recognition tasks. The
experimental results demonstrate that the improved YOLOv7 model outperforms existing state-of-the-
art approaches in terms of both detection accuracy and robustness, with a final mAP of 90.15%. The
model has demonstrated high accuracy and mAP values for small fishing boats, making it a suitable
option for inland waterway ship identification detection. Additionally, the algorithm can accurately
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detect different types of ships of varying sizes, even in complex environments, and can identify multiple
targets in a single image with high confidence. These findings highlight the potential of the improved
YOLOv7 model for practical applications in the maritime domain.
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