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Abstract: The dendritic cell algorithm (DCA) is an excellent prototype for
developing Machine Learning inspired by the function of the powerful nat-
ural immune system. Too many parameters increase complexity and lead to
plenty of criticism in the signal fusion procedure of DCA. The loss function
of DCA is ambiguous due to its complexity. To reduce the uncertainty,
several researchers simplified the algorithm program; some introduced gra-
dient descent to optimize parameters; some utilized searching methods to
find the optimal parameter combination. However, these studies are either
time-consuming or need to be revised in the case of non-convex functions. To
overcome the problems, this study models the parameter optimization into
a black-box optimization problem without knowing the information about
its loss function. This study hybridizes bayesian optimization hyperband
(BOHB) with DCA to propose a novel DCA version, BHDCA, for accom-
plishing parameter optimization in the signal fusion process. The BHDCA
utilizes the bayesian optimization (BO) of BOHB to find promising parameter
configurations and applies the hyperband of BOHB to allocate the suitable
budget for each potential configuration. The experimental results show that
the proposed algorithm has significant advantages over the other DCA expan-
sion algorithms in terms of signal fusion.

Keywords: Dendritic cell algorithm; signal fusion; parameter optimization;
bayesian optimization; hyperband

1 Introduction

The DCA is one of the prevailing paradigms in the artificial immune system, which is inspired by
the functioning of the biological dendritic cells (DCs) [1]. The DCs traverses the tissue to gather the
information (signals) around, which is namely the pathogenic associated molecular patterns (PAMP),
safe signals (SS), and danger signals (DS) in immunology [2]. The primary purpose of DCs is to present
a decision on whether these organizations are dangerous or safe by fusing these signals. DCA mimics
the antigen presentation process of DCs to perform the fusion of real-valued input data and correlates
those combined data with the data class to form a binary classifier. As an excellent prototype for
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developing Machine Learning, DCA has been widely applied in classification [3,4], intrusion detection
[5–8], spam filtering [9], distributed and parallel operations [10], earthquake prediction [11], anomaly
detection [12,13], cyber-attack detection in smart grid [14], and industrial prognosis [15]. Table 1 lists
the application domains and effectiveness of DCA. Current research on the DCA has shown that the
algorithm not only exhibits excellent detection accuracy but is also expected to help reduce the rate of
misclassification and false alarms that occur in similar systems.

Table 1: Main works on the DCA application domains

References Application Effectiveness

[3] Big data classification
problems

Solve the computational inefficiencies in standard DCA.

[4] On-line supervised
two-class classification

Introduce time-varying antigen status into artificial
immunology.

[5–8] Intrusion detection Segregate some deviations from patterns of normal
behavior on traffic flow based on training from the gold
data.

[9] Spam filtering Improve self-adaptability.
[10] Distributed detection in

wireless sensor networks
Enhance the global search ability.

[11] Earthquake prediction Improve the sensitivity to anomalies through indicator
changes.

[12,13] Anomaly detection Make the DCA applicable to 2D data streams and
diversify the range of applications substantially.

[14] Smart grid cyber-attack
detection

Propose an attack detection technique based on DCA.

[15] Industrial prognosis Detect drifts for a faster adaptive learning approach.

Due to many tunable parameters, the classical DCA received a lot of criticism [16]. The reason is
that selecting these parameters is a stochastic process that brings various sources of uncertainty into
the algorithm. The classical DCA relies on expert knowledge to set these parameter values. The reliance
on expertise is undesirable and receives the criticism of having over-fitted the data to the algorithm.
Therefore, many researchers focus on how to reduce the uncertainty of DCA. Several researchers
devoted themselves to reducing the parameters in DCA, and some studied the influence of parameters
on the algorithm through experiments and mathematical reasoning.

Greensmith et al. [17] proposed a deterministic DCA (dDCA) with less tunable parameters than
classical DCA to reduce uncertainty. Greensmith et al. [18] presented a deterministic DCA version,
namely hDCA, to describe dDCA in Haskell by purely functional programming to solve the previous
inaccuracies in portraying the algorithm. Mukhtar et al. [19] proposed a fuzzy dDCA (FdDCA),
which combines dDCA, fuzzy sets, and K-means clustering to construct a signal fusion function. The
approach employed k-means clustering and a trapezoidal function to construct a membership function
for classifying the cumulative signals into three concentration levels, low, medium, and high. And
then, a rule and center of gravity were adopted to compute a crisp value for context assessment as the
results of signal fusion. They utilized fuzzy sets and K-means clustering to replace the discriminating
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cumulative signals in the signal fusion function. This approach may only sometimes lead to satisfactory
results for DCA due to relying on human experience to construct the signal fusion function.

It’s challenging to confirm which parts of the system are responsible for what aspects of the
algorithm’s function. Musselle [20] studied the migration threshold, a parameter in dDCA, and tested
versions of the standard dDCA with differing values for the migration threshold. Their experiments
showed that the standard dDCA with higher values of migration threshold could mitigate the errors.
Greensmith [21] evaluated the influence of the migration threshold parameter in dDCA to move the
DCA toward implementing a learning mechanism. And other researchers examined the DCA from a
mathematical perspective. Stibor et al. [22] adopted the dot product to represent the signal fusion of the
DCA. They proved that the signal fusion element of the DCA is a collection of linear classifiers. In view
of the linear nature [23], Zhou et al. presented an immune optimization-inspired dDCA (IO-dDCA),
which builds an artificial immune optimization mechanism for dDCA inspired by a nonlinear dynamic
model and gradient descent. However, the dDCA has not been fully studied, and the underlying
mathematical mechanism for classification is poorly understood. The IO-dDCA is highly effective
for solving a convex function but is difficult to converge on non-convex functions. Therefore, the IO-
dDCA based on gradient descent can only sometimes find the optimal global parameter configuration.
The reason is that the classification process can’t be determined as a convex function.

Moreover, several researchers applied the popular search optimization tool to search the optimal
DCA parameters. Elisa et al. [24] utilized a genetic algorithm (GA) as a search engine to find the
optimal parameter configuration and proposed an extended DCA version, GADCA, related to signal
fusion. Among these methods, some reduce the parameters and complexity of the algorithmic process;
some construct signal fusion function by undesirable expertise; some introduce the nonlinear dynamic
model and gradient descent to optimize parameters and ignore the case of non-convex functions;
others rely on heuristic optimization algorithms, the time-consuming process needs enough initial
samples.

Due to a poor understanding of the underlying classification mechanism, the loss function
of DCA is ambiguous, and its gradients are difficult to access. Choosing the optimal parameter
configuration is a problem. Motivated to optimize the parameters of DCA, this study models the
parameters optimization as a black-box optimization. The black-box optimization aims to optimize
an objective function f: X→R without any other information about the function f [25]. This black-box
optimization property is desirable for parameter optimization in DCA with an inexplicit loss function.
There are many techniques to be developed for black-box optimization, including random searching
[26], grid searching [27], heuristic searching [28], BO [29], and multi-fidelity optimization (MFO)
[30,31]. Random-searching and grid-searching are widely used in parameter optimization but are often
considered brute-force methods. Classical heuristic search approaches have also been investigated,
such as particle swarm optimization [28] and differential evolution [32,33]. Those methods have been
broadly used to solve the numerical optimization problem, e.g., hyper-parameter optimization, job-
shop scheduling problems, and multi-objective fuzzy job-shop scheduling problem. However, these
heuristic search approaches require the entire data sets to evaluate a potential configuration rather than
dynamically allocating appropriate budget to configurations. Generally, the budget for configurations
in the early stage of the search process is the same as the valuable ones in the later process to estimate
the scores of the configurations. The strategy is time-consuming, and can easily cause a waste of
resources. To reduce running time, assorted variants of MFO are proposed, such as successive halving
and hyperband, which allocate more resources to promising configurations and eliminate poor ones.
To develop more efficient optimization methods, the problem has recently been dominated by BO.
BO is a powerful technique that can directly model the expensive black-box function and is widely
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applied to tune parameters. The core of BO is to choose a minimum number of data points to make
an informed choice. Typically, BO is given a fixed number of iterations without any awareness of the
evaluation cost. It is prohibitive and undesired in real-world problems. Falkner et al. [25] proposed a
new and versatile tool, BOHB, for parameter optimization, which comes with substantial speedups
by combining hyperband [34] with BO. The BOHB relies on hyperband to determine the budget for
each configuration and employs BO to select the most promising configurations replacing the original
random selection in each iteration of the hyperband. Due to its excellent optimization capabilities,
this study proposed a novel DCA expansion for signal fusion, BHDCA, which applies BOHB to
optimize the parameters of DCA. This approach can find the optimal parameters for DCA without
any details of the loss function while keeping the computation lightweight. The main contributions
are as follows.

• Firstly, this study provides formal definitions of the DCA through Haskell functional language
to make researchers understand the algorithm better.

• Secondly, this study models the parameter configuration and corresponding performance of
DCA as a gaussian process because of the lack of comprehensive research on the classification
mechanism. The BO is utilized to model the distribution of parameter configurations and
the corresponding loss of DCA to choose the most promising potential configurations. To
better reduce the resource consumption of the training process, this study applies hyperband
to allocate an appropriate budget for each configuration. A novel BHDCA is presented, which
employs BO and hyperband to optimize the parameters of DCA without knowing the gradient
or details of the loss function. Therefore, this approach can efficiently accomplish parameter
optimization while finding a trade-off between the budget and the optimal configuration.

• Finally, the state-of-the-art DCA expansion algorithms for signal fusion (e.g., dDCA, FdDCA,
GADCA, IO-dDCA) are discussed and compared with BHDCA on the University of Cali-
fornia Irvine (UCI) Machine Learning Repository [35] and Keel-dataset Repository [36]. The
experiment results and performance analysis show the effectiveness of BHDCA.

This paper is structured as follows: Section 2 describes the definitions of the DCA; the novel DCA
extended, BHDCA, is proposed in Section 3; our following experiment setup, results, and analysis are
described in Section 4; conclusions and future work are shown in Section 5.

2 Preliminary
2.1 Basic Definition

In the algorithm, each data item of DCA contains two inputs: signals and antigens. The antigen
is the identifier of the data item, in other words, the data item IDs. The input signals have only
three categories corresponding to the three immune signals, PAMP, SS, and DS. Each data item is
transformed into the three input signals through a data pre-processing procedure. The DCA maintains
a population of detectors, namely DCs. The DCs simulate the function of dendritic cells as a classifier
to detect whether a data item is normal or abnormal. Each data item is processed by detectors selected
from the population randomly. Finally, the algorithm synthesizes the detection results generated by
DCs to label the data item as normal or abnormal.

Definition 1 An antigen is presented as Ag = < e, t >, e is the identifier of a certain data item to
be detected, t is the timestamp.
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Definition 2 The signal is denoted as Signal = < PAMP, DS, SS >, a 3-dimensional real valued
tuple. SS is the safe signal value, DS is the danger signal value, PAMP is the value of pathogen-
associated molecular patterns.

Definition 3 The DCA is described as HDCA = (IDCA, ODCA, FDCA), the IDCA is the input data including
two components: Ags and Signals; the ODCA is the output of the DCA, either normal or abnormal; the
FDCA represents the relationship between IDCA and ODCA, as shown in Eq. (1).

ODCA = FDCA (IDCA) =
{

0, normal
1, abnormal (1)

where ODCA is the output of DCA with the binary value 0 or 1, IDCA is the input of DCA including Ags
and Signals, FDCA is the function of the mapping relationship between IDCA and ODCA.

2.2 The DCA

The DCA contains three main components: antigen sampling mechanism, signal fusion function,
and output calculation. The antigen sampling mechanism generates the three input signals from the
original data item. There are plenty of uncertainties in the whole operation of the DCA. The DCA
maintains a population of DCs that detect data items as detectors and combines all the detecting results
to determine whether the data class is normal or abnormal. For each input IDCA,i = < Agi, Signali >,
the DCA randomly chooses several DCs to sample its signal values at the same time step; and calculates
the three interim signals, known as the costimulatory molecule signal value (CSM), the semi-mature
signal value (SEMI), and the mature signal value (MAT), through signal fusion function FDCA for each
DC. Each DC can sample T inputs IDCA,i = < Agi, Signali > and accumulate their interim signals
through the signal fusion function FDCA, as shown in Eq. (2). The three interim signals of each DC
are continuously accumulated during the process of antigen sampling until reaching the condition for
stopping sampling.

(CSM, SEMI , MAT) =
T∑

i=1

WPAMP × SignalPAMP,i

WPAMP + WDS + WSS

+
T∑

i=1

WDS × SignalDS,i

WPAMP + WDS + WSS

+
T∑

i=1

WSS × SignalSS,i

WPAMP + WDS + WSS

(2)

where the SignalPAMP,i is the ith value of input signal PAMP, the SignalDS,i is the ith value of input signal
DS, the SignalSS,i is the ith value of input signal SS, T is the size of signal sampled by an antigen,
the WPAMP is the weight for SignalPAMP, the WDS is the weight for SignalDS, and WSS is the weight for
SignalSS.

The samples number d of each DC is determined by a migration threshold Tm. The DC stop
sampling signals if the CSM ≥ Tm, and then labels all the sampled Ags according to the DC context.
The DC marks all the Ags as normal if MAT > SEMI , or abnormal if MAT ≤ SEMI . Finally, the
proportion of each Ag, labeled as abnormal to the total labeled times, is calculated as Eq. (3), namely
Mature Context Antigen Value (MCAV). There is a threshold value Tk is introduced. The Ag is labeled
as abnormal if MCAV > Tk, or normal if MCAV ≤ Tk.

MCAV = DCMAT

DCMAT + DCSEMI

(3)
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3 The BHDCA

In this section, the details of our method are described. First, this study models the parameter
optimization of DCA into a black-box optimization problem and then discusses an efficient solution,
BHDCA. Finally, summarize the key steps into an algorithm.

3.1 Problem Setting

The DCA is a classification algorithm, and classifies each input IDCA,i into a binary category
Labeli ∈ {0, 1}. In this study, IDCA,i is the ith set of input signals, Labeli is the actual label of each
data, each set of input signals IDCA,i corresponds to a particular output value FDCA

(
IDCA,i

)
, and the loss

function of DCA is shown in Eq. (4).

L (Label | IDCA) = 1
n

n∑
i=1

(
Labeli − FDCA(IDCA,i)

)2
(4)

where L (Label|IDCA) is the loss function of DCA, Labeli is the ith actual label of each IDCA,i, each IDCA,i

corresponds to a particular output value FDCA

(
IDCA,i

)
, the difference Labeli −FDCA

(
IDCA,i

)
is the distance

from the sample point to the actual value, the n is data size, the mean squared error loss function
measures the distance from the sample point to the regression curve.

The parameter configurations of DCA play a crucial role in transforming the input signals into a
binary label. Each parameter configuration c can help DCA to perform classification work to achieve
a unique value of the DCA loss function L (Label|IDCA). This study utilizes the ϕ (c), shown in Eq. (5),
to measure the performance of a parameter configuration c.

ϕ(cj) = 1 − (
Label | I , cj

) = 1
n

n∑
i=1

(
Labeli − FDCA(IDCA,i, cj)

)2
(5)

where the cj represents a set of parameter configuration for DCA from C
(
cj ∈ C

)
, including W PAMP,

W DS, W SS, migration threshold Tm, and MCAV threshold Tk.

Each pair of parameter configuration and the corresponding performance evaluation is denoted
as an observation in an observation space D = {(

cj, ϕ
(
cj

))}t

j=1
(t is the observations’ size in the space).

Therefore, the aim of parameter optimization is transformed into finding the optimal parameter
configuration c∗ which maximizes the objective function ϕ (c) as follows:

c∗ = arg maxcj∈C

(
ϕ

(
cj

))
(6)

Since a given budget B is usually limited, it’s impossible to find c∗ in practice. Instead of finding
c∗, this study can discover the c+ = argmaxcj∈Dtϕ

(
cj

)
(Dt = {(

cj, yj

)}t

j=1
is the historical observations,

t = |Dt| is the history observations’ size), and the total budget
∑t

j=1 zj is less than B. Thus, this study
aims to explore as many configurations as possible with a limited budget and select the historically
optimal configuration c+ as the final optimization result. Due to the complexity, there is no access to
any other information about the classification mechanism of the DCA. Thus, this study regards FDCA

as a black-box function. It is challenging to study the details of the mapping function ϕ (c) between
the parameter configuration and its performance evaluation in observation space D, due to the poor
understanding of the function FDCA. It is not the purpose of this study to explore the function FDCA

for optimizing parameters of DCA. This study aims to model parameter optimization as a black-box
optimization problem, and regards the mapping function as a black box.
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3.2 Model Overview

As described before, this study reduces the parameter optimization problem of DCA to a black-
box optimization problem that ignores the underlying structure of the classification mechanism in
DCA. This study aims to discover the optimal parameters configuration cj = {WPAMP,j, WDS,j, WSS,j},
migration threshold Tm,j, MCAV threshold Tk,j}, which maximizes the objective function ϕ

(
cj

)
.

However, the objective function ϕ : C → R is typically expensive to evaluate because of the enormous
resource consumption for performing the DCA with the whole data set and the specified parameters
configuration. Therefore, this study aims to find the optimal parameter configuration of DCA with
a limited budget B. The BOHB is an excellent black-box optimization method, which relies on
hyperband to use limited resources efficiently and utilizes BO to explore the most promising set of
candidate observations to reduce unnecessary exploration. To accomplish the parameter optimization,
the BOHB is hybridized with the DCA to contribute a novel DCA expansion for signal fusion,
BHDCA.

Specifically, the proposed BHDCA utilizes BO to choose the potential parameter configurations.
The BO estimates a model to describe the observations’ distribution and samples promising new
configurations to refit the model. Meanwhile, hyperband is applied to determine a suitable budget
for each configuration to evaluate its performance. The DCA is a part of the evaluation function to
measure the performance of parameter configurations. The whole process is cyclical until consuming
light the given budget. Fig. 1 illustrates the processes of our proposed BHDCA. The processes of
BHDCA contain four steps. Step 1: sample several parameter configurations randomly or based on
the function calculated by the BO; step 2: employ the hyperband to allocate a reasonable budget to
each parameter configuration; step 3: perform DCA with the given budget and particular parameter
configuration to achieve a score of the parameter configuration; step 4: refit a new model by BO to
describe these observations’ distribution. The whole process is iterative, looping from step 2 to step 4
until reaching the stop condition. The proposed BHDCA can fully utilize the previous budget to build
the model and achieve bright performance.

Figure 1: The model of the proposed BHDCA

3.3 BHDCA: Sampling Function

This study transforms parameter optimization into a black-box optimization problem and aims
to find the optimal configuration c∗ that maximizes the function ϕ

(
cj

)
. Since the given budget B is

limited in practice, it’s impossible to perform unlimited optimization work. Therefore, the aim of this
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study is transformed to find the c+ that maximizes the function ϕ
(
cj

)
with the limited budget B. To

explore the observation space D more strategically, this study applies BO to model the relationship
between parameter configurations C and ϕ (C) as a gaussian process regression. The core theory of
BO is to predict the posterior data through the prior information constantly. Generally, the distribution
function ϕ (C) of observations is unobservable in DCA. The BO treats it as a random function
with a prior over it, samples some observations, updates the prior, refits the model based on those
gathering parameter configurations and evaluations, and repeats those processes until reaching an
ending condition.

Specifically, this study collects the performance evaluation for each parameter configuration
together into a vector

[
y1, y2, . . . , yj, . . .

]
. The BO assumes that each value in the vector is drawn

at random by nature from some prior probability distribution. BO takes this prior distribution to
be multi-variate normal with a particular mean vector μ and covariance matrix K. In this study, a
functional relationship between the configurations and its performance evaluation accords with the
gaussian distribution. The prior distribution of the functional relationship can be considered as the
joint distribution of (infinitely many) random variables, as shown in Eq. (7).

P (ϕ) = G (ϕ; μ, K) (7)

where the P (ϕ) is denoted as the probability distribution of the function, G describes the gaussian
process regression, the ϕ is the functional relationship between the parameters and its performance
evaluation, the μ is the mean function of ϕ, the K is the covariance function of the performance
evaluations.

The BO assumes that the mapping function ϕ follows a gaussian distribution, and its conditional
distribution also follows a gaussian distribution. Therefore, when the distributions of some observa-
tions are known, the function still follows a gaussian distribution as shown in Eq. (8).

P (ϕ|Dt) = G
(
ϕ; μϕ|Dt , Kϕ|Dt

)
(8)

where P (ϕ|Dt) is denoted as the conditional distribution of the function, Dt is a set of known
observations, μϕ|Dt is the mean function of ϕ with the known Dt, Kϕ|Dt is the covariance function of
ϕ with the known Dt.

To construct the functional relationship more accurately, this study uses the Tree Parzen Esti-
mator (TPE), which uses a kernel density estimator to model the function Eq. (8). The TPE uses a
threshold α to divide observations and construct different distributions. In other words, divide the
entire observations into two parts: a hyperparameter probability distribution for good grades and a
hyperparameter probability distribution for bad grades. Unlike the classical gaussian process, the TPE
uses Eq. (9) as the surrogate to express the functional relationship between parameter configurations
and its performance evaluations:

P (ϕ|Dt) =
{

l (c) = P (y < α|c, Dt)

g (c) = P (y ≥ α|c, Dt)
(9)

where α is the threshold to divide observations into two parts, l(c) is the prior distribution of the
observations with bad grades, g(c) is the prior distribution of the observations with good grades.

BO utilizes an acquisition function based on the model P (ϕ|Dt) to select the most promising
parameter configurations to explore for the next iteration. This study uses a standard acquisition
function, expected improvement (EI), to choose the one with the most significant expected progress
over the current max ϕ (c+). In the acquisition function, the selected configuration is based on the
following equation:
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c∗ = arg minc EI
(
max

{
ε, μϕ|Dt (c

∗) − y+} |Dt

)
(10)

where μϕ|D (c∗) is the posterior mean of the surrogate G
(
ϕ; μϕ|D, Kϕ|D

)
, y+ is the current max actual value

that has been encountered so far, and ε is a real value to express the difference between the posterior
mean and the actual value. The acquisition function aims to find the parameter configuration which
is greater ε than the current maximum y+. In essence, this study selects the point that minimizes the
distance to the current maximum configuration. The ε determines the amount of exploration of the
EI acquisition function. The EI function is as follows:

EI (c) =
∫

max
(
ε, μϕ|Dt (c) − y+)

dp (ϕ|Dt) (11)

According to the work in [37], the max EI in Eq. (11) can be obtained by maximizing the ratio
l(c)/g (c). By maximizing the EI function, a promising configuration can be obtained. The whole
process of sampling is shown in Algorithm 1.

Algorithm 1: Pseudocode for the sampling function of BHDCA using BO as a subroutine.
Input: Nmin is the minimum number of observations, percentile α for dividing samples into good
and bad.
and Dt = {(c1, y1) , . . . , (ct, yt)} is the historical observations.
1 t = |Dt|
2 If t < Nmin return random configuration
3 Fit a new function P (ϕ|D) according to Eq. (9)
4 c∗ = arg max (l(c)/g (c))
5 Return c∗

3.4 BHDCA: Evaluation Function

Exploring configurations is undoubtedly a high cost if each potential configuration is allocated to
the whole budget. Due to the expensive resource consumption, this study defines a cheap-to-evaluate
approximate value ϕ̃

(
cj, b

)
, which is the value of ϕ

(
cj

)
with the budget b ∈ [bmin, bmax], to represent the

original ϕ
(
cj

)
. With the maximum budget b = bmax, this study denotes that ϕ̃

(
cj, b

) = ϕ
(
cj

)
. In essence,

performing DCA with specified parameters configuration cj and the budget bmax can obtain the actual
value of ϕ

(
cj

)
. If b < bmax, the ϕ

(
cj, b

)
is the approximation value of ϕ

(
cj

)
, whose quality typically

increases with the budget b.

However, for a fixed b, it is not clear a priori whether more configurations (Nsample is large)
should be considered with a small average training time, or less configurations (Nsample is small) with
longer average training times. In essence, a suitable budget b for performing DCA with promising
configuration is crucial for economizing resources and is difficult to determine without a clear prior.
The hyperband can address the problem by performing a grid search over the feasible value bmax

and employing a principled early-stopping strategy to allocate more resources to more promising
parameter configurations. This study uses Hyperband to determine the budget for each parameter
configuration and confirms the promising parameter configurations that should be allocated more.
The hyperband of BHDCA is shown in Algorithm 2, which maintains two loops: the inner loop and the
outer loop. The inner loop follows the way of Successive Halving with a fixed budget. In the inner loop,
this study samples promising configurations by bayesian optimization, allocates fewer resources to
each parameter configuration, evaluates the objective function values of all configurations, and repeats
until reaching the stop condition. By continually cyclic iterative, more resources are concentrated on
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the observations of follow-up exploration to obtain their objective function values. The outer loop
allocates max budget bmax and the max observation number Nsample for each inner loop. This study
expects to focus more budgets on more promising configurations. With the bayesian exploration,
it will get closer and closer to the globally optimal configuration. Thus, with iteration, the outer
loop sets up fewer configurations Nsample to explore and a larger maximum budget bmax used to satisfy
ϕ̃

(
cj, bmax

) = ϕ
(
cj

)
.

Algorithm 2: Pseudocode for evaluation function of BHDCA using hyperband as a subroutine.
Input: maximum budget bmin, minimum budget bmax, η is a proportion to control the sampling
quantity and the allotments of budgets for each iteration.

1 Smax =
⌊

logη

bmax

bmin

⌋

2 D = Null
3 For s ∈ {Smax, Smax − 1, . . . , 1} do:
4 Nsample = �Smax/s × ηs�
5 r = bmax/bmin × η−s

6 For i ∈ {0, . . . , s} do
7 Ni = Nsample × η−i

8 ri = r × ηi

9 L = SamplingFunction (Ni)
10 L = {k-fold-cross-DCA (cj, ri) cj ∈ L}
11 D = D ∪ L
12 Return the best observation form D

The proposed BHDCA is shown in Algorithm 3, containing two loops: inner and outer. The inner
loop is considered a pool of workers, and the outer loop allocates a suitable budget for each pool. In
other words, the hyperband maintains a pool of workers and allocates a suitable budget for each pool.
Each iteration with a given budget is considered a worker. The BO is used to choose the promising
potential configuration for each worker until exhausting all the workers in a pool. The BO treats the
objective function as a random function with a prior and utilizes a surrogate in Eq. (9) to model the
actual function. Based on the surrogate, the BO can choose the promising potential configurations
through an acquisition function. The worker uses the given budget and configuration to calculate its
performance evaluation and refits the model based on the new observation. The two processes are
iterative until reaching the ending condition.

Algorithm 3: Pseudocode for BHDCA.
Input: budget bmin, bmax, η is a proportion to control the sampling quantity and the allotments of
budgets for each iteration, Nmin is the minimum number of observations, percentile α for
dividing samples into good and bad.

1 Smax = get_Iterations (bmin, bmax, η)
2 D = Null
3 For s: Smax to 1 do:
4 Nsample = get_SampleNumber (Smax, s, η)
5 r = get_MaxBudget (bmax, s, η)
6 For i = 1 to s do:
7 ri = get_Budget_ParameterConfiguration (r, ηi)

(Continued)
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Algorithm 3 (continued)
8 Ni = get_ ParameterConfiguration_Number (NSample, ηi)
9 For j = 1 to Ni do:
10 If t = |Dt| < Nmin: cj = RandomConfiguration ()
11 Else: cj = arg max(l(c)/g(c))
12 yj = k-fold-cross-DCA (cj, ri)

13 D = add (D, (cj, yj))
14 Fit a new function p (ϕ|D) according to Eq. (9)
15 Return the best observation form D.

4 Experimentation
4.1 Data Sets

This study employs the data sets from UCI Machine Learning Repository [35] and Keel-dataset
Repository [36] to validate the proposed BHDCA. The description of those data sets is shown in
Table 2.

Table 2: Description of data sets

Data set Ref Attributes Instances Imbalance rate

Breast cancer wisconsin BCW 11 700 1.9
Yeast (2 vs. 4) Yeast2 8 514 9.1
Mushroom Mushroom 23 5644 1.1
Abalone (Imbalanced: 19) Abalone19 8 4174 129.4
Musk1 Musk1 168 476 1.3
KDD (land vs. portsweep) KDDlp 41 1061 49.5
Spambase SP 57 4601 1.5
Insurance company benchmark (COIL 2000) ICB2000 85 9822 15.8

As shown in Table 2, this study organizes three dimensions: feature dimension, data set size,
and balance rate. Each dimension contains two data sets. Therefore, this study employs eight
different data sets, including a balanced small-sized low-dimensional data set (BCW), an imbal-
anced small-sized low-dimensional data set (Yeast2), a balanced large-sized low-dimensional data set
(Mushroom), an imbalanced large-sized low-dimensional data set (Abalone19), a balanced small-sized
high-dimensional data set (Musk1), an imbalanced small-sized high-dimensional data set (KDDlp), a
balanced large-sized high-dimensional data set (SP), and an imbalanced large-sized high-dimensional
data set (ICB2000). Through performing classification on these data sets, the performance of BHDCA
can be thoroughly tested.

In this work, non-numerical features are transformed into numerical parts. Due to the significant
effect of singularities on the algorithm, this study utilizes Quartile to find them out. The Quartile uses
Eq. (12) to divide the values of each feature into four parts.⎧⎨
⎩

Q1 = 
(n + 1)/4�
Q2 = 
(n + 1)/2�
Q3 = 
3 (n + 1)/4�

(12)
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Quartile segments any distribution that’s ordered from low to high into four equal parts. Q1 is the
value below which 25% of the distribution lies, Q2 is the middle half of a data set, and Q3 is the value
below which 75% lies. Eq. (13) is used to find the singularities. If a data point in a feature whose value
is less than its Minimum or more significant than its Maximum, it is denoted as a singularity and is
replaced with the mean of this feature.{

Minimum = Q1 − 3 (Q3 − Q1)

Maximum = Q3 + 3 (Q3 − Q1)
(13)

Before experiments, this study filters the features with a high percentage of missing values and
the elements with only one unique value. Reference [38] proposed an “80% rule” suggested retaining
a variable with at least 80% nonzero measurement values and removing the other variable with more
than 20% missing data. Meanwhile, the data imputation techniques may not work well for data sets
with a high rate of missing values. Thus, this study filters those features with more than 20% missing
data. For features with less than 20% missing data, this study used the mean value to complete the
missing data. Those features with one unique value cannot be helpful for machine learning because of
their zero variance. Thus, this study filters out those features which have only one value. Subsequently,
Min-Max Normalization is used to scale data into a proportionate range.

za,b = (
xa,b − μa

)
/σb (14)

where xa,b is the value of ath data item in bth attribute, za,b is the normalized value of xa,b that range is
from 0 to 1, μb is the mean of the bth feature, σb is the variance of the bth feature.

4.2 Experiment Setup

To study the feasibility and superiority of the proposed approach, this study compares the
BHDCA with the other state-of-the-art DCA expansion algorithms for signal fusion: dDCA, FdDCA,
GADCA, and IO-dDCA. This study uses 10-fold cross-validation to estimate the performance of
algorithms. Each data set is divided into two disjoint parts: training and testing. The accuracy,
specificity, precision, recall, F-measure, the area under the curve (AUC), and receiver operating
characteristic (ROC) are calculated to evaluate the performance of the above approaches. Generally,
the parameter optimization of hyperband and bayesian is time-consuming, contrary to the lightweight
running time of DCA. Thus, the time complexity of the above approaches is also analyzed.

In this work, the size of the DC poll is 100, and up to 10 DCs sample each antigen. The migration
threshold of DCA is calculated by Eq. (2) with the configuration of the weight values and the max
signal values. For classification, this study adopts the proportion of the anomalous items in a data set
as the threshold of MCAV. In this study, the budget of BHDCA is the number of data items to build
a model, the minimum budget bmin is 1/81 of the training data, and the maximum budget is the total
training data. The η is 3 for BHDCA. The antigen sampling mechanism is not the focus of this study.
Thus, this study adopts the same antigen sampling mechanism for all the DCA versions. This study
utilizes principal component analysis as the antigen sampling mechanism for each data set to map all
the attributes into three input signals. The mean of the features assigned to an input signal is calculated
as the signal values.

4.3 Results and Analysis

Tables 3–6 show the experimental results of the five algorithms (dDCA, FdDCA, GADCA, IO-
dDCA, and BHDCA) on the eight data sets. The mean and standard deviations of the accuracy
obtained by the five algorithms are shown in Table 3. Table 4 shows the mean and standard deviations
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of precision obtained by those five algorithms. Moreover, this study computes the specificity and F-
Measure obtained by the five algorithms, and the results are presented in Tables 5 and 6. The number
in bold represents the best result among the five algorithms in all the tables.

Table 3: Mean accuracy with standard deviation acquired by the five algorithms

Data set dDCA FdDCA GADCA IO-dDCA BHDCA

BCW 84.25% ± 0.83 87.13% ± 0.83 91.38% ± 0.83 93.11% ± 0.93 96.04% ± 0.87
Yeast2 79.58% ± 0.97 81.55% ± 1.09 87.26% ± 1.17 86.12% ± 1.48 95.59% ± 1.1
Mushroom 88.99% ± 0.25 88.31% ± 0.35 93.06% ± 0.11 89.28% ± 0.23 94.14% ± 0.11
Abalone19 87.31% ± 0.95 89.88% ± 0.43 90.21% ± 0.52 90.49% ± 0.79 96.94% ± 0.28
Musk1 77.48% ± 1.30 80.97% ± 1.34 87.35% ± 0.90 85.3% ± 1.21 89.75% ± 1.19
KDDlp 86.21% ± 0.83 89.47% ± 1.27 92.81% ± 0.98 94.68% ± 1.28 97.01% ± 1.23
SP 85.16% ± 0.41 87.11% ± 0.46 92.79% ± 0.23 91.95% ± 0.27 94.92% ± 0.17
ICB2000 86.55% ± 0.47 89.88% ± 0.51 91.07% ± 0.26 90.56% ± 0.29 93.05% ± 0.11

Table 4: Mean precision with standard deviation acquired by the five algorithms

Data set dDCA FdDCA GADCA IO-dDCA BHDCA

BCW 73.57% ± 1.22 77.89% ± 1.28 84.61% ± 1.38 87.56% ± 1.57 92.67% ± 1.52
Yeast2 30.05% ± 1.21 32.77% ± 1.63 43.12% ± 2.67 40.80% ± 3.0 70.85% ± 5.41
Mushroom 82.58% ± 0.37 81.64% ± 0.51 88.7% ± 0.15 83% ± 0.35 90.37% ± 0.19
Abalone19 5.64% ± 0.48 7.08% ± 0.29 7.27% ± 0.33 3.15% ± 0.65 20.14% ± 1.41
Musk1 71.84% ± 1.44 75.86% ± 1.56 83.49% ± 1.13 81.0% ± 1.46 86.52% ± 1.49
KDDlp 11.19% ± 0.61 14.81% ± 1.78 20.9% ± 2.68 27.36% ± 4.95 42.31% ± 11.69
SP 77.1% ± 0.54 79.77% ± 0.64 88.05% ± 0.34 86.81% ± 0.4 91.39% ± 0.25
ICB2000 27.67% ± 0.91 35.31% ± 1.37 39.31% ± 0.74 37.87% ± 0.78 45.94% ± 0.42

Table 5: Mean specificity with standard deviation acquired by the five algorithms

Data set dDCA FdDCA GADCA IO-dDCA BHDCA

BCW 84.18% ± 0.8 87.09% ± 0.83 91.31% ± 0.83 93.09% ± 0.92 96.04% ± 0.86
Yeast2 79.58% ± 0.95 81.59% ± 1.07 87.28% ± 1.21 86.1% ± 1.50 95.59% ± 1.14
Mushroom 88.24% ± 0.28 87.53% ± 0.36 92.62% ± 0.11 88.55% ± 0.26 93.74% ± 0.13
Abalone19 87.22% ± 0.94 89.82% ± 0.45 90.14% ± 0.49 90.9% ± 0.77 96.91% ± 0.27
Musk1 76.08% ± 1.32 79.82% ± 1.41 86.54% ± 0.97 84.37% ± 1.28 89.15% ± 1.25
KDDlp 86.21% ± 0.83 89.49% ± 2.15 92.91% ± 0.96 94.70% ± 1.27 97.01% ± 1.21
SP 82.86% ± 0.45 85.11% ± 0.54 91.67% ± 0.24 90.7% ± 0.3 94.11% ± 0.19
ICB2000 87.13% ± 0.46 90.33% ± 0.49 91.07% ± 0.26 90.58% ± 0.29 93.05% ± 0.11
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Table 6: Mean F-Measure with standard deviation acquired by the five algorithms

Data set dDCA FdDCA GADCA IO-dDCA BHDCA

BCW 78.12% ± 1.04 81.79% ± 1.04 87.44% ± 1.12 89.78% ± 1.27 93.83% ± 1.22
Yeast2 43.19% ± 1.41 46.3% ± 1.84 57.2% ± 2.54 54.93% ± 3.06 80.77% ± 3.9
Mushroom 85.72% ± 0.32 84.93% ± 0.41 90.69% ± 0.12 86.09% ± 0.29 92.03% ± 0.14
Abalone19 10.56% ± 0.85 13.1% ± 0.51 13.43% ± 0.58 5.68% ± 1.16 33.23% ± 1.94
Musk1 74.88% ± 1.37 78.53% ± 1.42 85.38% ± 0.98 83.14% ± 1.28 87.99% ± 1.29
KDDlp 19.59% ± 0.95 25.12% ± 2.66 33.73% ± 3.67 41.89% ± 6.02 57.75% ± 11.43
SP 82.0% ± 0.45 84.17% ± 0.52 90.67% ± 0.26 89.71% ± 0.31 93.19% ± 0.18
ICB2000 40.39% ± 1.1 49.13% ± 1.5 54.49% ± 0.77 52.99% ± 0.82 61.07% ± 0.41

Tables 3–6 show that the proposed BHDCA consistently performs better on the eight data sets
than the other DCA versions (e.g., dDCA, FdDCA, GADCA, and IO-dDCA). With the eight
data sets, Table 3 illuminates that the difference in accuracy between BHDCA and the other DCA
expansion for signal fusion is especially remarkable. For instance, the classification accuracy of
BHDCA is at least 2% higher than that of the other DCA versions in the eight data sets. In addition,
when the data categories are imbalanced, the precision and F-measure of all algorithms are not ideal,
especially on the three data sets: Abalone19, KDDlp, and ICB2000. The reason is that the category
ratios of these three data sets are extremely unbalanced (129.4, 49.5, and 15.8, respectively). Table 3
shows that the error rate of the category with a large number of samples is tiny. Still, its total number is
large relative to the full sample size of another category due to the unbalanced data sets. Therefore, the
precision and F-measure of the DCA versions are not as ideal as the indicator accuracy. However, on
the unbalanced data sets, the proposed BHDCA is significantly better than the other DCA versions
on the two indicators of precision and F-measure.

To better analyze the results, this study utilizes the t-test to analyze whether significant differences
exist in the experiments between the BHDCA and other signal fusion algorithms of DCA (called
“Comparisons”) under the condition z = 0.05, as follows:

H0 : μBHDCA = μComparisions

H1 : μBHDCA �= μComparisions (15)

where H0 is the null hypothesis expressing no significant difference between BHDCA and other DCA
expansions in accuracy; H1 is the alternate hypothesis expressing a significant difference between
BHDCA and other DCA expansions in accuracy.

The critical t-value is 2.262 when the degree of freedom is nine and the significance level of
the t-test is 0.05. Therefore, if the result is below 2.262, hypothesis H0 can be acceptable; otherwise,
hypothesis H1 can be acceptable, indicating that significant differences exist. Table 7 shows the t-test
results on accuracy and illuminates all the t-value exceeding 2.262. It can be concluded that in terms
of classification accuracy, our algorithm BHDCA and the other signal fusion algorithms of DCA
exhibit significant differences on all the test problems. The results accordingly prove once again, from
a statistical point of view, that our algorithm is the best in all test problems compared with the DCA
expansion algorithms.
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Table 7: T-test results of the signal fusion algorithms of DCA on accuracy

Data set dDCA FdDCA GADCA IO-dDCA BHDCA

BCW 5.88 11.15 22.13 31.08 –
Yeast2 16.15 14.12 24.08 42.91 –
Mushroom 48.49 37.16 41.44 49.73 –
Abalone19 22.02 31.76 45.11 28.35 –
Musk1 9.38 4.08 16.41 22.94 –
KDDlp 4.11 6.38 11.81 17.95 –
SP 31.48 34.6 46.22 85.09 –
ICB2000 25.63 19.01 21.15 39.63 –

Fig. 2 illustrates that the proposed BHDCA always has a good advantage in terms of AUC. The
proposed BHDCA has the most significant AUC with all eight data sets compared to other DCA
expansions for signal fusion. Thus, it can be concluded that the proposed BHDCA is superior to the
state-of-the-art DCA versions (e.g., dDCA, FdDCA, GADCA, and IO-dDCA) over all the UCI and
Keel data sets in a statistically significant manner.

Figure 2: (Continued)
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Figure 2: Analysis of the DCA expansions for signal fusion in ROC space

4.4 Complexity Analysis

In this section, the effect of the proposed BHDCA is analyzed in detail about running time. Table 8
shows the detail of all the primitive operations of the BHDCA. In Table 8, each line contains one
operation, and the number of times that operation is executed corresponds to Algorithm 3.

Table 8: Details of primitive operations of BHDCA

Line no Description Times

1 Smax = get_Iterations (bmin, bmax, η) 1
2 D = Null 1
3 For s: Smax to 1 do: Smax

4 Nsample = get_SampleNumber (Smax, s, η) Smax

5 r = get_MaxBudget (bmax, s, η) Smax

6 For i = 1 to s do:
∑Smax

s=1 s
7 ri = get_Budget_ParameterConfiguration (r, ηi)

∑Smax
s=1 s

8 Ni = get_ ParameterConfiguration_Number (NSample, ηi)
∑Smax

s=1 s
9 For j = 1 to Ni do: Ni × ∑Smax

s=1 s
10 If t = |Dt| < Nmin: cj = RandomConfiguration () Ni × ∑Smax

s=1 s
11 Else: cj = argmax (l (c)/g (c)) Ni × ∑Smax

s=1 s
12 yj = k-fold-cross-DCA

(
cj, ri

)
k × r2

i × Ni × ∑Smax
s=1 s

13 D = add (D,
(
cj, yj

)
) Ni × ∑Smax

s=1 s
14 Fit a new function p (ϕ|D) according to Eq. (9) Ni × ∑Smax

s=1 s
15 Return the best observation form D. 1

The BHDCA wraps a search task around the DCA. The runtime of BHDCA depends on the
iteration number of hyperband, the iteration number of bayesian, and the runtime of DCA. According
to work by Gu et al. [39], the runtime complexity of DCA is bounded by O

(
n2

)
(n is the data size).
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Generally, the hyperband and bayesian iteration number depend on the initial budget [bmin, bmax] and
the proportion η. Thus, the runtime complexity of the BHDCA is calculated as follows:

T(n) = 3 + 3 × Smax + 5 ×
∑Smax

s=1
s + 5 × Ni ×

∑Smax

s=1
s + Ni × k × r2

i ×
∑Smax

s=1
s (16)

where Ni is the number of the parameter configurations, the max Ni is Nsample, Nsample is the maximum
sampling quantity, the maximum Nsample is

⌈
Smax × ηSmax

⌉
, k is set as 5 in this study, ri is the size of the

data set for each configuration, the max ri is the data size n. Thus, the runtime is calculated as follows:

T(n) = 3 × Smax + 5 × Smax ×
∑Smax

s=1
s + 5 × Smax × ηSmax ×

∑Smax

s=1
s + k × n2 × Smax × ηSmax ×

Smax∑
s=1

s

=> Smax + (
ηSmax + k × ηSmax × n2

) × Smax ×
Smax∑
s=1

s

T(n) ≈ Smax (Smax + 1)

2

(
n2 × Smax × ηSmax

)
≈ n2 × S3

max × ηSmax (17)

As shown in Eq. (17), BHDCA has a worse-case runtime complexity of O
(
n2 × S3

max × ηSmax
)
.

To further verify the performance of BHDCA, this study calculates the running time of the DCA
versions performing classification on the eight datasets. Fig. 3 depicts that the BHDCA maintains the
runtime advantage compared with FdDCA, IODCA, and GADCA on most data sets (especially the
large-sized high-dimensional data sets). The FdDCA requires an additional Fuzzy c-means algorithm
to supersede the original signal fusion, and the Fuzzy c-means algorithm is very time-consuming.
Both the GADCA and IO-dDCA require a certain number of iterations to complete parameter
optimization. In each of their iterations, they utilize the whole data to evaluate the performance of
parameter configurations. However, the BHDCA can allocate suitable data for each configuration, not
the entire data. Therefore, the BHDCA needs less runtime than GADCA and IO-dDCA with the same
iterations. Although dDCA requires less running time, the reason is that it only involves experience
to set the parameters without the training phase. However, it’s undesired and does not produce stable
results. Compared with dDCA, BHDCA can automatically adjust the parameters according to the
application field and adapt to a broader range of application fields. Thus, in light of the performance
improvement offered by the BHDCA, our algorithm BHDCA is the best in all test problems.

Figure 3: Mean execution time (in seconds) acquired by DCA versions
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5 Conclusion

Due to a poor understanding of the underlying classification mechanism, optimizing the objective
function ϕ is complex. Therefore, this study models the work of parameter optimization into a black-
box problem. By analyzing the DCA procedure, this study confirms all the parameters to be optimized
in signal fusion. To discover the optimal parameter configuration, the BOHB is applied to model
the distribution of observations to sample promising configurations and then allocate a reasonable
budget for each chosen configuration. A novel DCA expansion algorithm, BHDCA, is proposed
to automatically perform parameter optimization in DCA without any information about the loss
function, which hybrids DCA and BOHB. The proposed BHDCA applies BO to explore the searching
space with all potential parameter configurations and chooses the promising configurations to allot a
reasonable budget by hyperband. To verify the performance of BHDCA, this study implemented two
parts of experiments. In the first part, the proposed BHDCA is compared with the state-of-the-art
DCA expansion algorithms for signal fusion (e.g., dDCA, FdDCA, GADCA, and IO-dDCA). The
classification results indicate that BHDCA is superior to other DCA-derived classification algorithms
on all test problems. The other part discusses the runtime of these DCA versions (e.g., dDCA,
FdDCA, GADCA, IO-dDCA, and BHDCA). This study analysis the time complexity of BHDCA and
compares the runtime of all the DCA versions on each data set. The experimental results show that the
proposed BHDCA maintains its advantage on most tests (especially the large-sized high-dimensional
data sets) regarding runtime. The findings reported here shed new light on two parts. Firstly, model the
parameter configures and their corresponding performance as a gaussian process and utilize BO to
construct a surrogate to express the functional relationship for exploring the observations. Secondly,
apply hyperband to allocate a suitable budget for each selected observation. The BHDCA can ignore
the unnecessary parameter configuration and allocate a suitable budget instead of the entire dataset.
The finding will be of interest to optimize the parameters of DCA without any domain expertise for
extending more domains; reduce the training time of DCA for scaling evolution up to large-scale
data sets.

Since the steps of the algorithm are run serially, a limitation of this study is that the calculation
time could be more optimistic. To evaluate the parameter configurations, this study performs the
classification of DCA many times in each iteration of the hyperband, and each evaluation is inde-
pendent of the other. These works run serially and consume the most runtime of BHDCA. For future
work, employing a parallel strategy to run BHDCA is the next step to reduce the runtime better. The
DCA classification in each hyperband iteration will run concurrently to reduce runtime. In addition,
hybridizing the heuristic algorithms (i.e., elephant herding optimization (EHO) [40], moth search
(MS) algorithm [41], and particle-swarm krill herd (PKH) [42]) and hyperband algorithm is also our
next research direction. Combining the heuristic algorithm’s convergence ability with the hyperband’s
dynamic resource allocation can reduce resource consumption.
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