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Abstract: Smart contracts have led to more efficient development in finance
and healthcare, but vulnerabilities in contracts pose high risks to their future
applications. The current vulnerability detection methods for contracts are
either based on fixed expert rules, which are inefficient, or rely on simplistic
deep learning techniques that do not fully leverage contract semantic infor-
mation. Therefore, there is ample room for improvement in terms of detection
precision. To solve these problems, this paper proposes a vulnerability detector
based on deep learning techniques, graph representation, and Transformer,
called GRATDet. The method first performs swapping, insertion, and sym-
bolization operations for contract functions, increasing the amount of small
sample data. Each line of code is then treated as a basic semantic element, and
information such as control and data relationships is extracted to construct
a new representation in the form of a Line Graph (LG), which shows more
structural features that differ from the serialized presentation of the contract.
Finally, the node information and edge information of the graph are jointly
learned using an improved Transformer–GP model to extract information
globally and locally, and the fused features are used for vulnerability detec-
tion. The effectiveness of the method in reentrancy vulnerability detection is
verified in experiments, where the F1 score reaches 95.16%, exceeding state-
of-the-art methods.

Keywords: Vulnerability detection; smart contract; graph representation; deep
learning; source code

1 Introduction

Blockchain [1], as a hot technology on the Internet, has gradually exerted its huge advantages
and has given rise to many projects, Ethereum [2] being typical. Unlike Bitcoin, Ethereum has
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joined the smart contract [3], which makes it a richer application scenario. Smart contracts are
deployed on the blockchain and cannot be changed once they are connected to the blockchain, which
effectively eliminates interference from others and ensures the independent operation of the contract.
However, the smart contract also brings some problems. Even if the smart contract is found to have
vulnerabilities, the user cannot do anything about it. Facing huge economic losses, people can only
solve the problem through a permanent divergence in the blockchain [4]. Currently, vulnerability
detection technology for smart contracts is still immature. To prevent the risk of losses caused by
threats, it is necessary and challenging to mine the vulnerabilities hidden in the contract code before
it is deployed on the blockchain.

With the development of computing power in recent years, promoting breakthroughs in artificial
intelligence, emerging deep learning technologies provide new potential for smart contract vulnera-
bility detection. Traditional machine learning methods rely on artificial features extracted from static
or dynamic analysis, which can be time-consuming and error-prone [5]. In contrast, the hierarchical
structure of deep learning models can learn abstract and nonlinear patterns, capture the inherent
structure and vulnerability characteristics of complex data, and discover vulnerability laws from
massive datasets. Deep learning to detect the vulnerabilities of smart contracts can save labor costs and
time, systematically detect vulnerabilities, and maintain the stability and development of the network.

Vulnerability detection based on deep learning has attracted much attention in recent years.
Huang et al. [6] correspond byte codes to Red, Green, and Blue (RGB) colors, convert them to images,
and use a convolutional neural network (CNN), which is widely used in the field of deep learning,
to extract the implied information. Qian et al. [7] use natural language techniques for processing,
lock the vulnerability fragments into code slices, construct contract snippet representations, and input
the fragments into a Bidirectional Long Short-Term Memory Attention-based (BLSTM–ATT) model
for vulnerability detection. Yu et al. [8] innovatively propose Vulnerability Candidate Slice and use a
modular framework to learn rich semantic knowledge in Slice. However, these representations, based
on sequenced text or binary images, leave out the rich structural information in the source code, making
it difficult to mine deep vulnerability features in the contract. Zhuang and Liu et al. [9–11] construct
a graph to show the syntactic and semantic features of the smart contract and mine the vulnerability
information in it with the help of Graph Neural Network (GNN) techniques. This takes some time to
complete the message iteration, and cannot model global information, making it difficult to perform
satisfactory long-distance information capture.

To solve the above problems comprehensively, information needs to be propagated globally,
allowing code fragments that are far apart to communicate directly, while co-learning structural infor-
mation and code context, modeling complex code, and capturing latent semantic information. Given
these considerations, this paper proposes a method based on graph representation and Transformer,
called GRATDet. The method operates at the Solidity source code level and begins by addressing
data imbalance through expansion on small sample data. Line-level code, as the basic component
of code slicing, is then taken as the minimum granularity for model learning, and multiple line-level
fragments of code are generated. To reflect the rich semantic information in the code, these fragments
are used as nodes in which different types of edges are added, and a Line Graph (LG) is constructed
to show the rich relationships inside the code. Finally, based on the transformer architecture of deep
learning, the Transformer–GP model is proposed for contract vulnerability detection to overcome the
limitations of GNN and Recurrent Neural Networks (RNN) models. The relationships between nodes
are captured using a multi-headed self-attentive mechanism to model the global information. The
information encoding of the edges in the graph is fused in the attention matrix to learn the inductive
bias in the graph and complete the modeling of structural information. Further, node embedding
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generates an additional role vector, which is bound together with the vector learned through global
attention. By utilizing the role vector to explore the graph information learned through the attention
matrix, the model can highlight vulnerability information, allowing for deeper analysis. Experiments
are conducted on reentrancy vulnerabilities which demonstrate the proposed method’s robustness and
more competitive results. The main contributions of this paper are as follows:

1. A data augmentation method is designed that solves the category imbalance problem through
syntactic analysis and function combination of Solidity source code.

2. A new code representation LG is proposed that incorporates multiple key information of
the smart contract such as data relationships and control information, presenting the rich
semantics of the code.

3. A Transformer–GP deep learning model is proposed that fuses global feature learning with
local structure feature learning and shows excellent results in vulnerability detection.

The remainder of this paper is organized as follows. Section 2 introduces related work and the
background. Section 3 explains the method in more detail. Section 4 presents evaluation methods,
experimental results, and performance comparisons. Section 5 summarizes the work.

2 Related Work
2.1 Vulnerability Detection

There are several well-known vulnerability detection tools. Mythril [12] is an officially recom-
mended Ethereum security analytics tool that analyzes Ethereum Virtual Machine (EVM) bytecode,
using symbolic execution, satisfiability modulo theories (SMT) solving, and smudge analysis to detect
common vulnerabilities in various Ethereum smart contracts. Oyente [13] is a symbol-based execution
vulnerability monitoring tool that can statically infer the path of a program, and its modular design
allows users to insert their detection logic to check custom properties in their contracts. SmartCheck
[14] is also a static analysis tool that converts Solidity source code into an XML-based intermediate
representation and examines it against an XPath schema. Securify [15] is a security analysis tool for
Ethereum. Its analysis consists of two steps. First, it analyzes symbolically the dependency graph
of the contract to extract precise semantic information from the code. Compliance and violation
patterns are then designed to demonstrate effectively whether the contract-related attributes are secure.
Slither [16] is a static analysis framework that works by converting Solidity smart contracts into
an intermediate representation called SlithIR, which preserves the semantic information lost when
converted to bytecode. Slither allows the application of common program analysis techniques, such
as data flow and taint tracking. Manticore [17] is an analysis tool based on symbolic analysis that
executes a program with symbolic input and explores all possible states it can achieve. It can perform
simulation environments that support any number of contract interactions, detect crashes and other
failures in smart contracts, enumerate the execution status of contracts, and verify the security of
critical functions.

These tools are based on rules formulated by experts but fail to meet the current demand for
efficiency and accuracy. However, technologies based on deep learning are starting to emerge in the
development of vulnerability detection.

Li et al. [18] performed vulnerability detection based on code gadgets, which are semantically
interrelated lines of code. The sequences are encoded as vectors and input to a BLSTM to train the
model to detect the presence of vulnerabilities. Russell et al. [19] combined neural networks with
Random Forests (RF) for vulnerability detection. After mapping tokens to specific dimensions to
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obtain a vector matrix composed of tokens, the vulnerability features are extracted using CNN and
RNN models and input to a random forest classifier for the final result decision. Ziems et al. [20]
treat source code as text and use the Bidirectional Encoder Representation from Transformers (BERT)
model for vulnerability mining. The model was pre-trained on an English Wikipedia dataset containing
2.5 billion words. The model was then fine-tuned using the specific task of text classification, ultimately
achieving impressive results in the vulnerability detection task. Lin et al. [21] obtained a serialized
form of Abstract Syntax Tree (AST) by Deep-First Traversal (DFT) to reveal the code semantics.
After padding and truncation, equal-length sequences are obtained to represent the embedded code.
The serialized AST is then provided to the sequential deep learning classifier BLSTM for vulnerability
detection. Bilgin et al. [22] also performed vulnerability detection based on AST, which transformed
the initial AST into a corresponding Binary AST and used a three-dimensional tuple to represent
each node’s information. A Breadth-First Search (BFS) then traverses the binary tree starting from
the root of the tree and connects the representations of each node to obtain a vector of a specific
length containing code semantics for semantic analysis vulnerability mining using the CNN model.
Wu et al. [23] proposed a method called Peculiar. Peculiar extracts the critical data flow graph of the
contract and combines it with the use of a pre-trained model to accomplish vulnerability classification
detection, achieving good results on reentrancy vulnerability. Zhou et al. [24] proposed a vulnerability
identification model, Devign, to use GNN for vulnerability detection for the first time. The model
encodes a source code function from multiple syntactic and semantic representations into a joint
graph structure, learns data information by Gated Graph Sequence Neural Networks (GGNN), and
designs a convolutional model to extract features for classification detection in the readout phase.
Similarly, Wang et al. [25] established the vulnerability detection framework FUNDED, which uses
an extended graph neural network to model multiple code relationships such as program control and
program data, achieving a significant advantage when competing with other methods. Zhang et al. [26]
proposed a hybrid deep learning model, CBGRU, which exploits the different features of models such
as CNN and Bidirectional Gating Recurrent Unit (BiGRU) to extract feature values through two
neural networks after completing word embedding and, finally, connects the different feature values to
perform vulnerability classification detection. Wu et al. [27] proposed a hybrid attention mechanism
model to detect security vulnerabilities in smart contracts. They extract smart contract fragments,
transform them into fixed dimensional vectors, and use a single-headed attention encoder together
with a multi-headed attention encoder to perform vulnerability detection. Table 1 shows a summary
of the different vulnerability detection methods.

Table 1: Summary of vulnerability detection methods

Studies Limitations

[14,16] • Reliance on rule template analysis, with a high false alarm rate
[12,13,15,17] • Explosive path state space problem, low code coverage

•Inefficient vulnerability detection
[18,19,20] • Serialized representations do not fully characterize the code
[21,22] • DFS and BFS traversals do not take full advantage of code structure information
[23] •Pre-trained models fail to train against smart contract code

• Token-based representation is missing information due to length limitations
[24,25] • Fail to capture long-distance dependencies from code statements

(Continued)
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Table 1 (continued)

Studies Limitations

[26,27] • Slow convergence and poor learning performance of GRU
•Gradients still decay between layers

2.2 Reentrancy Vulnerability

The reentrancy vulnerability, a classic vulnerability among smart contract vulnerabilities, is the
cause of the famous DAO incident [4]. A classic example of a reentrancy vulnerability is shown in
Fig. 1.

Figure 1: Example of a reentrancy vulnerability data and attacker

There are reentrancy vulnerabilities in the withdraw function of contract R, since external calls
can be made between contracts. When contract A executes the R contract withdraw function to receive
ether, the A contract fallback function will be triggered to execute the corresponding logic. If the
executor of contract A is malicious, it can write its fallback function so that it calls the withdraw
function again to take out the account balance multiple times before the account balance is updated.
The operation of performing transactions in smart contracts is not limited to call.value. Sender and
transfer are also available, but these have a gas limit and cannot perform unbridled operations. In
contrast, call.value can call all gas out of the account, so call.value can be regarded as a prominent
feature of reentrancy vulnerabilities.

2.3 Transformer

The Transformer architecture [28] is widely used not only in the field of natural language
processing but also in other fields such as computer vision and pseudocode generation [29,30]. It has
achieved astounding results, with the encoder part playing a key role.
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The architecture is formed by stacking several identical layers, each of which contains residual
connections, layer normalization, and self-attentive modules. The self-attentive module is key as it
models the relevance of all words of the input in parallel. Its input and output can be denoted by
x = (x1 , x2 , . . . , xn) and z = (z1, z2, . . . , zn), respectively, and the specific process is shown in Eqs. (1)–
(3). The output zi is obtained by weighting the xi vector after matrix mapping, and αij (0 < αij < 1),
which represents the correlation between xi and xj, is obtained by scaling eij through SoftMax. In
Eqs. (1)–(3), WV, WQ, and WK are three matrices, where WV ε Rd × dV, WQ ε Rd × dQ, and WK ε Rd × dK.

zi =
∑n

j=1
αij

(
xjWV

)
(1)

αij = exp eij∑n

k=1 exp eik

(2)

eij =
(
xiWQ

) (
xjWK

)T

√
dk

(3)

The input elements of the Transformer are capable of exchanging information with each other.
Without considering the position encoding, it is easy to think of Transformer as treating the data as a
directed complete graph, which makes it possible to manipulate graph structures with this architecture
later on.

2.4 Motivation

The work cited above [6–11,18–27] has explored the combination of code information and models
from different perspectives to apply the advantages of deep learning techniques to vulnerability
detection. However, the methods still have some limitations. On the one hand, the performance in the
smart contract example in Fig. 1 is based on structure, and some serialized data feature mining based
on natural language processing does not consider the logic of the code. On the other hand, traditional
deep learning models such as RNN and GNN are based on local information transfer, which requires
a certain amount of time to complete global information iteration and cannot fundamentally learn
the global information for vulnerability detection. To address these issues, this paper introduces the
GRATDet method based on the Transformer encoder. The method initially represents the contract as
LG, using its structured representation to capture the semantic information of the contract, and then
applies the Transformer-GP model to automatically mine the vulnerability information in the graph
representation. The model learns the local information from the contract’s graph representation and
simultaneously mines the global information of the code based on the global attention mechanism,
incorporating multiple layers to explore the vulnerability information.

3 Method

This section introduces GRATDet from the three-stage perspective of data pre-processing, graph
representation, and model learning. The general architecture of the process is shown in Fig. 2.

3.1 Data Pre-Processing

This work eliminates some factors that may affect the subsequent learning through the three-step
operation of noise removal, symbolic representation, and data augmentation.
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Figure 2: Vulnerability detection frame

3.1.1 Noise Removal

The existence of noise will interfere with the vulnerability detection of the model. This paper
addresses the problem of noise in smart contracts through two levels of processing. At the code level,
some statements that are semantically irrelevant to the code such as blank lines between codes and
human-written comments are removed. At the contract level, some code that does not affect the
fundamental operations of the contract is removed from the Solidity language level, such as event
declarations and version numbers.

3.1.2 Symbolic Representation

Unlike natural languages, which have a limited vocabulary, code can theoretically have an infinite
number of function names and artificially written variables, leading to a potentially vast code
vocabulary when performing statistical analysis. This can result in a significant waste of vocabulary
space and can also impede subsequent semantic understanding of the model. To address this issue, this
paper follows techniques used in previous works [18,31] by replacing some human-written variables
with specific symbols such as ‘FUNC’ and ‘var’ after performing a lexical analysis of the code.

In particular, this paper replaces modifier characters in the contract with ‘MOD’ to distinguish
them from ‘FUNC’. Additionally, the contract name is uniformly replaced with a specific symbol
like ‘Contract’. The replacement of the contract name has no impact on vulnerability detection, and
it ensures that the first line of code in each dataset is consistent, similarly with the ‘CLS’ character,
which allows us to classify.

3.1.3 Data Augmentation

The dataset [23] contains significantly less vulnerable data than non-vulnerable data, so the sample
size of a few classes needs to be increased. Considering the characteristics of smart contracts, this paper
borrows the EDA method [32] in natural language processing and combines the three steps of swap,
insertion, and symbolization to augment the data.

Swap: Due to the nature of smart contracts, a contract contains multiple function definitions.
Often, however, there are vulnerabilities in only one or a few functions, and swapping several of these
functions sequentially has no impact on the nature of the contract itself. Therefore, to augment the
vulnerability dataset, we select the functions in the vulnerability contract for random exchange to
obtain Data 1.
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Insertion: Due to the characteristics of smart contracts, the introduction of functions without
vulnerability data will not change the nature of the contract. Therefore, functions from each contract
without vulnerability are randomly selected to form a functioning pool, and functions from the
functioning pool are randomly selected to insert into Data 1 and obtain Data 2.

Symbolization: After the first two steps of processing, the final operation is to perform a symbolic
representation for Data 2. Even if two contracts are the same, after the functions inside are exchanged,
the positions of some variables deviate, and changed variable names will be obtained. These variables
are semantically close; hence, finally, two contracts that are close in the vector space will be generated.

3.1.4 Example

The specific process of data pre-processing is shown through an example. In Fig. 3, this work
performs symbolic representation for the contract in Fig. 1, using the tree-sitter tool [33] to analyze
the code and replace the variables of type identifier in the source code with specific symbols. From
another point of view, this is also a filter to limit the number of keywords. Fig. 4 shows two smart
contracts obtained by data augmentation of the contract in Fig. 3. A function from the functioning
pool is randomly selected and inserted into the contract, and the two functions of the original contract
receive different names in the two contracts derived from the augmentation due to the exchange of
function positions.

Figure 3: Example of symbolic representation

3.2 Graph Representation

This paper uses graphs as intermediate representations of code, building a ‘bridge’ between origin
data and their corresponding vector representations [18]. Graph structure information is a better fit
for the syntactic–semantic information contained in the code and helps in vulnerability detection,
compared to sequential representations [18–20]. Code slicing is a pre-processing technique to obtain a
more refined code fragment through data flow and control flow analysis, ignoring some unimportant
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code and narrowing the scope of vulnerabilities. However, this operation not only requires professional
tools to assist in the analysis but also may miss some relevant code due to the point-of-interest cut;
therefore, code slicing is not used in the data pre-processing here. Nevertheless, this paper draws on the
idea that, although slicing is derived from various dependency analyses, in practice it is a combination
of lines of code, and therefore it is reasonable to assume that there are rich relationships between lines
of code.

Figure 4: Example of data augmentation

Building on this idea, this paper proposes an innovative line-level graph representation, called Line
Graph (LG). Compared with a traditional graph representation (where the token is the main node
in the graph), the line-level graph representation increases information capacity, reduces the number
of nodes, and provides a more compact representation, making it better suited for smart contracts
containing a large amount of code. At the same time, since the programmer subconsciously performs
line breaks on these codes when writing, it can be seen as a natural organization and feature division
of the data, while representing each line of code as a node in the graph is more conducive to learning
the overall semantics of the code.

LG is a directed graph, and nodes are connected by different kinds of edges. On the one hand,
the different information in the code is reflected and fused in the graph representation by these edges,
which better shows the semantic information of the code and helps to detect vulnerabilities. At the
same time, these connections break the balance between the original nodes, making the nodes have
different neighbors and forming a potential group, which helps the model to conduct targeted learning
in the follow-up by judging and ignoring some unimportant code. In terms of data, control, and basic
code structure, the following six edges are constructed in LG:

Function edge (Type 1): The function edge connects the first and last sentences of the function’s
declaration, which can help determine the important separator elements of the code.

Control edge (Type 2): There are some special code blocks in a function such as if , for, and while,
which contain control information. These code blocks are connected end to end, which helps the model
to obtain better information from the code.
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Sequential edge (Type 3): Given a code segment, the sequential edge forms connections from top
to bottom in the order of the code, which enables us to capture some sequences of operations.

Variable edge (Type 4): The variable edge connects nodes containing the same variables, which
helps determine the migration of data.

Modifier edge (Type 5): The modifiers of smart contracts contain some control information,
which can often restrict subsequent function operations. Therefore, the definitions of these modifiers
are connected with the corresponding uses, which is useful for judging the corresponding control
information.

Reentrancy edge (Type 6): Nodes have different levels of importance, and nodes containing
call.value are considered to be more important than other nodes. Reflecting on the structure of the
graph, this specific type of edge is introduced to associate the code lines of call.value with all other
code nodes that belong to the same function.

The code in Fig. 3 is shown in Fig. 5 after graph representation, and the node numbers represent
the corresponding line numbers before the code is transformed into a node.

Figure 5: Graph representation of the code in Fig. 3

This paper uses G = (V, E) to denote the graph, where V = {v1, vi, . . . vn}, vi represents node i, n
is the number of nodes, and E = {

β11, βij, . . . βnn

}
, is a set of edges, where βij denotes the set of directed

edges from node i to node j. Theoretically, there can be different kinds of edges pointing from node i
to j, so βij ⊆ {

T1, Ti, . . . Tp

}
, where Ti are the edges of type i, and p is the total number of different edge

types. In this work, p = 6.

3.3 Model Learning

This paper improves on the original Transformer architecture by adding two modules to accom-
modate graph representation and vulnerability detection tasks, as shown in Fig. 6.

3.3.1 Graph Structure Module

The transformer structure is originally designed for natural language, and the position encoding in
it reflects the sequence–structure information. However, it is difficult to fit the position encoding data
with graph attributes of the code, and the position encoding cannot reflect the rich semantic features of
the code. This work believes that the essence of position encoding is to transform the attention matrix,
on which much work has been carried out [34,35]. In this paper, the edges of the graph are encoded
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into the attention matrix instead of the position encoding. This approach offers an additional benefit:
nodes are more likely to prioritize nodes that are closely connected to themselves during the learning
process. The more edges there are between nodes, the more information is exchanged, the stronger
their connection becomes, and the more attention they allocate to each other.

Figure 6: Transformer–GP model architecture

This paper makes some additions to Eq. (3) to enable it to capture edge information, which is
equivalent to adding a graph structure module to the original model, and results in Eq. (4):

eij =
(
xiWQ

) (
xjWK

)T

√
dk

+ bij (4)

In Eq. (4), bij denotes the information encoded by the set of edges between node i and node j,
added to the attention matrix as a scalar, consisting of information about different types of edges, as
follows:

bij = k1γ1 + kiγi + . . . + kpγp (5)

In Eq. (5), ki is a factor that controls whether an edge of type i can be introduced; if an edge of
type i does not exist in the set of directed edges from node i to node j, then the model does not learn
the edge information for this type i. Thus:

ki =
{

1 if Ti ∈ βij

0 if Ti /∈ βij
(6)

In Eq. (6), γi is a scalar that represents the embedding information of the edge of type i, as follows:

γi = φ1 (Ti) W�
i + ci (7)

In Eq. (7), φ1 is a function that converts the edge into a vector, where φ1 (Ti) ∈ Rv and v is the
dimension of the edge features. This paper uses the embedding layer to act as φ1. Also in Eq. (7), Wi is



1450 CMC, 2023, vol.76, no.2

a learnable mapping matrix that performs a feature transformation on the vector of the edge of type
i, with Wi ∈ Rv, and ci is a learnable scalar that will serve as a bias term, with ci ∈ R.

As input to the model, xi is the vector embedding of the node vi, xi ∈ Rd, and xi = φ2

(
ti

0, ti
1, . . . , ti

f

)
,

where ti
0 denotes the first token of line i of the code, and ti

f denotes the last token in line i of the code.
All tokens on line i are transformed into specific dimension vectors after φ2. They are represented here
using the doc2vec algorithm [36]. This means that unsupervised learning can be carried out on all data,
and the learned model can convert any data into fixed-length vectors.

3.3.2 Tensor-Product Module

Although the introduction of the graph structure module can encode edge information to give an
additional gain to the model, the model may rely too much on this information and neglect learning
the overall structure. As the task of this paper is to detect vulnerabilities, which involves capturing
deeper semantic information, it is difficult to learn the deeper structural properties of the model by
simply summing up the information.

Based on these two considerations, this work enhances the model by introducing a further module
after graph structure learning. The Tensor-Product Representation [37] is introduced into the model as
a Tensor-Product module and Eq. (1) is modified to better accommodate the structure representation,
as follows:

zi =
[∑n

j=1
αij

(
xjWV

)] � (
xiWR

)
(8)

In Eq. (8), the dimensions of WR and WV are the same (WR ∈ Rd×dv). The main idea of Tensor-
Product Representation is to bind together the ‘role’ vector (representing the filled roles) and the ‘filler’
vector (the content of the components) to form a vector of components defined by them together. In
this case, the ‘filler’ vector V is learned through the graph structure module

(
v = [∑n

j=1 αij

(
xjWV

)])
,

while generating an R vector
(
R = (

xiWR
))

that plays the role of the ‘role’ vector.

The tensor product of two vectors tends to change the dimension. To control the dimension,
vector R is multiplied by the corresponding position of vector V (a Hadamard product). The traditional
attention mechanism itself can be seen as a linear reorganization of the previous layer of vectors.
However, the R and V communicate information by element-wise multiplication, which enhances the
feature expression of the V vector by transforming its features in different dimensions. This provides
further potential for establishing deeper abstract representations. Structural knowledge learned in
V has been further combined and can be more comprehensively learned by the model. Therefore,
this paper uses the Tensor-Product module to mine richer vulnerability features that help the model
perform vulnerability detection.

4 Experiments
4.1 Dataset

For these experiments, the dataset-wild collated in [23] was used as the experimental dataset, which
originated from [38]. After the noise removal, the data [23] was analyzed using the tree-sitter tool which
found after parsing that some of the codes had ERROR type nodes. Therefore, to avoid interference
from unknown features and ensure the reliability of the experiment, it was decided to eliminate these
codes. Finally, more than 170,000 pieces of data were obtained. Twenty percent of the vulnerability
dataset was randomly selected for data augmentation to 4750 pieces, and 4750 pieces were randomly
selected from the non-vulnerability dataset to form Test Set 1, giving a total of 9500 data items. To
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investigate whether the performance of the model is related to the over-matching of keywords, we
selected all data from the remaining dataset that contained call.value but had no vulnerabilities. Then
20% of these data were randomly selected for enhancement, resulting in 1890 items. This was combined
with the 4750 vulnerability data in Test Set 1 to form Test Set 2. After expanding the remaining
data, the training set was finally composed of 22,054 pieces of vulnerability data, 9,930 pieces of
non-vulnerability data containing keywords, and 171,322 pieces of non-vulnerability data without
keywords. The sample data were expanded in the manner shown in Fig. 4, and the overall change in the
dataset is shown in Fig. 7. After data augmentation, there was a significant increase in the proportion
of underrepresented data in the dataset.

Figure 7: The effect of data enhancement

This work mainly studies the effect of the model on Test Set 1, as this is more in line with the real
data distribution, and uses Test Set 2 as an aid to help determine the learning characteristics of the
model itself.

4.2 Experimental Environment and Hyperparameters

The experimental environment is shown in Table 2 and the experimental hyperparameters are
shown in Table 3.

4.3 Evaluation Metrics

This paper regards smart contract vulnerability detection as a binary classification problem and
uses Precision (P), Recall (R), Accuracy (ACC), and F1 to evaluate performance.
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Table 2: Hardware and software in the experiment

Hardware/Environment Description

GPU TITAN RTX
OS Ubuntu18.04
Framework Pytorch
RAM 32 G
CPU Intel(R) Xeon(R) Gold 5120 CPU @ 2.20 GHz

Table 3: Experimental hyperparameters

Models layer 6
Embedding dimension 512
Hidden dimension 512
Learning rate 0.0001
Optimizer Adam
Batch size 16

The Precision metric measures the proportion of correctly predicted vulnerability samples com-
pared to all samples predicted to be vulnerable:

P = TP
TP + FP

(9)

The Recall metric measures the proportion of correctly predicted vulnerability samples compared
to all samples labeled as vulnerability:

R = TP
TP + FN

(10)

The Accuracy metric measures the proportion of correct prediction samples compared to all
samples:

ACC = TP + TN
TP + TN + FP + FN

(11)

As Precision and Recall are usually not positively correlated and often contradictory, F1 was used
as an overall measure of model performance metrics:

F1 = 2 ∗ P · R
P + R

(12)

To demonstrate the validity of the method proposed in this paper and to fully evaluate its
performance, experiments were conducted to answer the following questions:

RQ1: How does the method proposed in this paper compare with current mainstream methods?

RQ2: Do the modules added to the model enhance its effects?
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RQ3: Is the proposed method robust?

RQ4: Does data enhancement work?

4.4 Results and Analysis
4.4.1 Experiment for RQ1

This paper compares the results of the model on Test Set 1 with ten different methods. Among
them, SmartCheck [12–17] is the mainstream analysis tool at present; BLSTM-ATT and TextCNN
are the classic deep learning models; CGE [10] is currently the best-performing graph neural network-
based approach; and Peculiar is a method that has performed well in recent times for reentrancy
vulnerability detection. For some models that are difficult to reproduce, we refer to the experimental
effects in their original papers. As demonstrated in Tables 4 and 5, the six traditional methods [12–
17] show poor performance in vulnerability detection tasks, with high rates of false positives and
negatives. This is because the traditional detection methods follow a single pattern and cannot capture
deeper contract features as well as the relationship between vulnerabilities compared to deep learning
methods. Compared to the deep learning-based baseline methods, GRATDet achieved the best results
in F1 and other metrics. The combination of global information and structural information in
GRATDet allows the model to capture long-distance information relationships better and to learn
from vulnerability information fragments, outperforming models such as LSTM and CNN. GRATDet
outperformed the most competitive method, Peculiar, by improving F1 scores by 1.83% and 7.55% on
Test Set 2 and Test Set 1, respectively. The proposed method combines multiple types of relationships,
such as data relationships and control relationships, in contract representation. Compared to the
Peculiar, which integrates a single relationship in its code representation, this approach can better
reflect the rich semantic information in contracts. This enables the model to explore vulnerability
features in contracts from multiple perspectives, resulting in better vulnerability detection capability.

Table 4: Vulnerability detection capability of different methods on Test Set 1

Method Precision Recall F1 Accuracy

Mythril 0.5010 0.5539 0.5044 0.5915
Smartcheck 0.7250 0.6804 0.7002 0.7131
Oyente 0.6666 0.5723 0.6007 0.6814
Slither 0.5099 0.6326 0.5103 0.6054
Securify 0.5234 0.5758 0.5348 0.6203
Manticore 0.4986 0.5000 0.4993 0.5773
Peculiar 0.8888 0.9895 0.9333 0.9189
BLSTM-ATT 0.9088 0.8903 0.8891 0.8968
TextCNN 0.8836 0.8503 0.8470 0.8505
CGE 0.8524 0.8762 0.8641 0.8915
Ours 0.9559 0.9517 0.9516 0.9522
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Table 5: Vulnerability detection capability of different methods on Test Set 2

Method Precision Recall F1 Accuracy

Mythril 0.4466 0.4690 0.3697 0.4004
Smartcheck 0.5345 0.5321 0.4962 0.5125
Oyente 0.5411 0.5194 0.4010 0.4555
Slither 0.6510 0.6069 0.5305 0.5356
Securify 0.6238 0.5535 0.4294 0.4609
Manticore 0.1996 0.4978 0.2850 0.3843
Peculiar 0.8247 0.7790 0.8012 0.8125
BLSTM-ATT 0.8055 0.8648 0.8178 0.8178
TextCNN 0.7709 0.8321 0.7730 0.7684
Ours 0.8650 0.8924 0.8767 0.8768

Further analyses were conducted on the precision and recall of the proposed method for each
category on Test Set 2. As shown in Table 6, the precision for Class 1 is higher than the recall, indicating
that the model is more cautious and does not forcibly link keywords with vulnerability information.
It can effectively determine the cases where there are keywords in the contract but there may not
necessarily be a reentry vulnerability. The keywords and vulnerabilities can be analyzed separately.

Table 6: Effect of GRATDet on different categories

Precision Recall F1

Class 0 0.7783 0.8833 0.8275
Class 1 0.9518 0.9015 0.9259
Macro avg 0.8650 0.8924 0.8767

Conclusion to RQ1: The effectiveness of the proposed method is demonstrated by experiments on
two test sets.

4.4.2 Experiment for RQ2

To answer RQ2, ablation experiments were performed to explore the contribution of different
modules.

Firstly, to verify the role of the graph structure module, comparative experiments were conducted
on three models: the classic Transformer model; the Transformer–NON model with position encoding
removed; and the Transformer–G model with position encoding replaced using the graph structure, as
shown in Fig. 8. Compared to the classic Transformer, the Transformer–NON, which eliminates posi-
tion encoding, showed better performance in detecting vulnerabilities. This suggests that the sequence
feature learning represented by position encoding is not well-suited for this task, and removing the
position encoding allows the model to focus more on other important features and relationships,
thus improving the performance of vulnerability detection. Introducing a graph structure in the
Transformer-G model leads to further improvement over the Transformer-NON model, as indicated
by an increase in F1 scores on two datasets by 3.14% and 4.33%, respectively. This demonstrates
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that the introduction of a graph structure module can enhance the effectiveness of vulnerability
detection, as the model can use the rich information in the graph to better link vulnerability fragment
information, improve contract semantic understanding and enhance the learning of vulnerability
features.

Figure 8: F1 score with and without graph structure module

Secondly, the role of the graph structure module in this paper is implemented in a way that changes
the attention matrix, which could theoretically be accomplished using other approaches. To further
explore whether the graph structure module can be replaced, this paper introduces two other additive
models for comparative reference and the exploration of other possibilities, as follows:

Transformer–G1: Replace Eq. (4) in Transformer–G with eij =
(
xiWQ

) (
xjWK

)T + bij√
dk

.

Transformer–G2: With reference to [36], replace Eq. (4) in Transformer–G with

eij =
(
xiWQ + bij

) (
xjWK

)T

√
dk

.

The study included four models for comparison, namely Transformer–G, Transformer–G1,
Transformer–G2, and Transformer–NON. The results are shown in Fig. 9. Among the three models
with different ways of adding information, two of them have improved the effect compared with the
one before the addition, and it is obvious that the change to the attention matrix helps the model
to improve the effect in most cases. Transformer–G achieves the best results among the models with
different additions. The attention mechanism is a critical component of the Transformer architecture,
allowing it to selectively focus on input data. By increasing information in the attention matrix,
this mechanism guides the model toward targeted learning. Analysis of these results suggests that
incorporating information on the outer layer of the attention matrix is more effective in influencing
the model’s feature learning and encourages it to focus on vulnerability segments, ultimately enhancing
vulnerability detection performance.
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Figure 9: Different combination effects on two test sets

Thirdly, more useful forms of graph structure modules were also explored. We produced a model
stacked with six layers in total by combining our modified module with the original Transformer
module. Three combinations of structures were designed: 1–5, 5–1, and 3–1–2. Number 1 represents
the layer to which the graph information is added. The other numbers represent the layers of the
original Transformer, and the combination of numbers represents the stacking order of the model
from bottom to top. Conducting module combination experiments on the two best-performing models
in the previous experiment separately, the effects were tested on two test sets. The effects of the
model combinations, measured by the F1 score, are presented in Fig. 10. Our findings suggest that
introducing more graph information into the model does not always lead to better outcomes. The
good performance achieved by the 1–5 architecture may be attributed to the initial layers playing
a key role in learning the structural information of the model, which is consistent with the study by
Wang et al. [39]. The initial layers of the Transformer directly encode the input information and convert
it into an internal representation. Therefore, the training results of the initial layers have a great impact
on the overall performance of the Transformer model. If the parameters of the initial layers are not
able to capture the semantics of the input information well, then the subsequent attention layers and
classification layers may also fail to generate effective results. Similarly, in this work, implementing
beneficial information guidance at the initial layers can improve the performance of the model in
detecting vulnerabilities.

Finally, to verify the role of the Tensor-Product module, a representative group of mod-
els was selected for tests: Transformer–NON, Transformer, Transformer–G, Transformer–G2,
Transformer–G (1–5), and Transformer–G2 (1–5). Using these six models as a base for comparison,
the Tensor-Product module was added to create six new models: Transformer–NONP, Transformer–P,
Transformer–GP, Transformer–GP2, Transformer–GP (1–5), and Transformer–GP2 (1–5). The final
results for all models are shown in Fig. 11. The Transformer–GP model achieves the best results with
F1 scores of 95.16% and 87.67% on the two test sets, which are 1.05% and 1.95% higher, respectively,
compared to the model without the Tensor-Product module added. However, it was also found that not
all Tensor-Product module additions are effective. The Tensor-Product module does not achieve any
improvement compared to some competitive models, such as Transformer–G (1–5) and Transformer–
G2 (1–5). The comparisons indicate that this is not a general module that can improve any model.
When used in isolation, it increases the overall complexity of the task and reduces the effectiveness
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of vulnerability detection. However, when combined with a graph structure module, its deep-level
feature extraction based on Tensor-Product representation benefits from the rich graph information as
a backdrop, supporting it with enough knowledge to perform optimally and improve the vulnerability
detection task.

Figure 10: Different combination effects on two test sets

Figure 11: F1 score with and without Tensor-Product module

Conclusion to RQ2: It is difficult to perform excellent results with individual modules, but
combining them can produce a better performance.

4.4.3 Experiment for RQ3

The third question concerns the model’s robustness. In the data containing nodes of type ERROR,
analysis found that most of the code samples had ERROR type nodes due to some specific characters
that could not be parsed by the tree-sitter. Only a small amount of code, such as the data in [23] with the
serial number ‘106247’, could not be compiled successfully owing to some minor errors. (For instance,
the missing ‘{’ character in data No. 106247 causes a parsing error and thus an ERROR node.) These
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codes are rich in semantic information and usually have no impact on our judgment of the nature of
the data. Inspired by this example, we designed six common error templates to further explore the
robustness of the method, as follows:

1) The number of } characters exceeds the contract requirement.

2) The number of { characters exceeds the contract requirement.

3) Missing } characters in the contract.

5) Missing { characters in the contract.

5) Strange characters appear in the contract.

6) Strange characters appear in the functions.

Applying these error patterns to the code in Fig. 3 produces the results shown in Fig. 12.

Figure 12: Six error templates

In a series of experiments, three types of code were selected that the model has predicted either
correctly or incorrectly, giving a total of 6 kinds of data. Specifically, the types were vulnerability
codes, non-vulnerability codes with keywords, and non-vulnerability codes without keywords. The
error templates were then applied to these data several times, and the changes in model predictions
before and after application were compared, as shown in Table 7.

The results reveal that the model’s predictions remained unchanged before and after these code
modifications, indicating that minor deviations do not affect vulnerability detection. The proposed
graph representation provides a comprehensive analysis of the code, combining multiple information
to determine potential vulnerabilities. As a result, the presence of some incorrect code does not
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interfere with the model’s overall core semantic learning, and has no impact on the effectiveness of
vulnerability detection.

Table 7: Test on error code

Error templates Total Unchanged number Changed number

Template 1 72 72 0
Template 2 72 72 0
Template 3 72 72 0
Template 4 72 72 0
Template 5 96 96 0
Template 6 96 96 0

Conclusion to RQ3: When targeting problematic data, the proposed method demonstrates its
robustness.

4.4.4 Experiment for RQ4

The fourth question concerns data enhancement. For this experiment, the enhanced data from
the training set (Train Set 1) was removed while the unenhanced data was retained to obtain Train Set
2 as the training data set. The model was trained with the same training rounds using the Train Set 2
dataset, and the detection effect was verified on Test Set 1. The model with the best results in multiple
experiments is retained and compared with the model trained with the enhanced dataset, Train Set 1.

As shown in Table 8, the models trained with the enhanced data demonstrate a significant
improvement in all aspects of the vulnerability detection task, including accuracy and F1 scores,
compared to the models without the data enhancement. With data augmentation, the number of
minority class samples is increased, which allows the model to see more examples of different patterns
and relationships in the data. There is a better understanding of the underlying patterns in the data,
and this improved understanding translates into improved performance for vulnerability detection
classification tasks. Due to the severely unbalanced distribution of data classes, which interferes with
model learning, the model trained by Train Set 2 is not very effective in detecting vulnerabilities. After
data augmentation, the number of vulnerability samples is enhanced, reducing the interference of a
priori information such as sample proportion, and the model can focus more on vulnerability feature
learning during the learning process, thus improving the vulnerability detection effect.

Table 8: Test on data enhancement

Dataset Precision Recall F1 Accuracy

Train Set 1 0.9559 0.9517 0.9516 0.9522
Train Set 2 0.7326 0.6552 0.6841 0.7842

Conclusion to RQ4: Data enhancement can improve the model’s vulnerability detection effect.
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5 Conclusion

This paper has presented a vulnerability detection method based on graph representation and
Transformer, called GRATDet. The method incorporates the idea of code slicing and represents data
as LG, which presents data and control information in the code in the form of a graph. The work uses
an improved Transformer–GP model to learn code representations, which combines global semantic
information with local structural information during the attention learning phase, integrates multi-
level features, and then binds the information with vectors encoded by node information to enhance
the feature representation ability of the vectors. Further, the method contains a data enhancement
approach to Solidity language to deal with the data imbalance problem. Experiments show that the
proposed method has a better vulnerability detection effect compared to other methods, and tests on
problematic data demonstrate its robustness.

Although the method has achieved satisfactory detection results, this work has only explored
the effect of reentrancy vulnerabilities due to the lack of data on publicly available smart contract
vulnerabilities. Therefore, future research will work on data collection to verify the effectiveness of the
method on more types of vulnerabilities, including unhandled exceptions and timestamp dependency.
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