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Abstract: The detection of brain disease is an essential issue in medical and
research areas. Deep learning techniques have shown promising results in
detecting and diagnosing brain diseases using magnetic resonance imaging
(MRI) images. These techniques involve training neural networks on large
datasets of MRI images, allowing the networks to learn patterns and fea-
tures indicative of different brain diseases. However, several challenges and
limitations still need to be addressed further to improve the accuracy and
effectiveness of these techniques. This paper implements a Feature Enhanced
Stacked Auto Encoder (FESAE) model to detect brain diseases. The standard
stack auto encoder’s results are trivial and not robust enough to boost the
system’s accuracy. Therefore, the standard Stack Auto Encoder (SAE) is
replaced with a Stacked Feature Enhanced Auto Encoder with a feature
enhancement function to efficiently and effectively get non-trivial features
with less activation energy from an image. The proposed model consists of four
stages. First, pre-processing is performed to remove noise, and the greyscale
image is converted to Red, Green, and Blue (RGB) to enhance feature
details for discriminative feature extraction. Second, feature Extraction is per-
formed to extract significant features for classification using Discrete Wavelet
Transform (DWT) and Channelization. Third, classification is performed to
classify MRI images into four major classes: Normal, Tumor, Brain Stroke,
and Alzheimer’s. Finally, the FESAE model outperforms the state-of-the-
art, machine learning, and deep learning methods such as Artificial Neural
Network (ANN), SAE, Random Forest (RF), and Logistic Regression (LR)
by achieving a high accuracy of 98.61% on a dataset of 2000 MRI images.
The proposed model has significant potential for assisting radiologists in
diagnosing brain diseases more accurately and improving patient outcomes.
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1 Introduction

The brain is the human body’s most complex part, with about 80 million neurons connecting
itself with different body nerves and performing diverse functions [1]. Diseases related to the brain
are considered one of the deadliest. There are different types of brain diseases depending upon the
type, location, and nature, such as Brain tumours, Brain stroke, and Alzheimer’s [2]. Cancer is the
most significant and carcinogenic health problem faced by many people around the globe, as every
sixth death is due to cancer [3]. Brain Cancer is a form of cancer considered most aggressive and
heterogeneous [4].

Magnetic Resonance Imaging (MRI) has become increasingly important in diagnosing and
treating various brain diseases [5,6]. However, human experts’ interpretation of MRI images can be
time-consuming and prone to errors [7]. Artificial Intelligence (Al) plays a vital role in healthcare,
particularly in radiology, due to its capability to learn features as it facilitates clinical decisions
and treatments [8,9]. It also incorporates and streamlines the expertise of radiologists and doctors
for detecting and categorizing the complicated patterns of diseases within images [10—12]. Machine
learning and deep learning techniques have emerged as promising solutions for the accurate and
efficient analysis of MRI images [13].

Machine learning and deep learning techniques have emerged as promising tools for improving
the accuracy and efficiency of medical image analysis [14]. In recent years, deep learning-based studies
have demonstrated impressive results in classifying medical images, including MR1 scans [15]. Various
studies have utilized pre-trained Convolutional Neural Network (CNN) models for feature extraction
and classification of brain MRI images, achieving high accuracy rates [16]. However, there are still
challenges in developing accurate and efficient deep-learning models for medical image analysis, such
as the need for high-quality labelled data and the potential risk of overfitting [17].

Several recent studies have proposed SAE-based methods for disease detection in brain MRI. For
example, Han et al. [1 8] proposed a 3D SAE with dropout regularization for brain tumor segmentation.
They achieved state-of-the-art results on the BraTS 2018 dataset, with an overall dice score of 0.854.
In addition to segmentation, SAE-based methods have also been proposed for disease classification
in brain MRI. For example, Sethi et al. [19] proposed a 2D SAE for the classification of Alzheimer’s
disease. They achieved a classification accuracy of 92.38% on the ADNI dataset. In recent years, SAE
has gained significant attention due to its ability to automatically extract relevant features from raw
data [20,21]. It has been successfully applied in various domains, including image classification, speech
recognition, and natural language processing [22].

However, the performance of SAE can be limited by the complexity and heterogeneity of medical
images. Moreover, several challenges are associated with using machine learning and deep learning for
disease detection in MRI. One of the main challenges is the availability of large and diverse datasets.
Without adequate data, machine learning and deep learning models may not accurately capture the
disease’s complexity, leading to false positives or negatives.

In this paper, we propose a Feature-Enhanced Stacked Auto Encoder (FESAE) for detecting
four brain diseases in MRI and classify them into four major classes: Normal, Tumor, Brain Stroke,
and Alzheimer’s. The proposed FESAE model captures additional features from coloured images
to enhance the accuracy of detecting diseases from brain MRI. The following sections discuss the
challenges in state-of-the-art and the contributions made by this study.
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1.1 Problem Statement

Several challenges faced in state-of-the-art that need serious attention from researchers to achieve
high accuracy are discussed below.

e A grayscale image is used in most literature, leading to significant feature extraction issues.

e Features are only extracted from the spatial or frequency domain, resulting in less accuracy.

e Traditional machine learning techniques previously used with fewer features extracted from
spatial or frequency domains lead to less promising results.

e Binary class classification is used primarily.

e When using Machine learning techniques, if the whole image is given as input to the classifier,
it increases the complexity of the method.

1.2 Contribution

This study proposes FESAE to detect and classify four categories of brain disease in brain MRI.
Primarily, this study contributes in the following directions.

e First, this study uses colour images instead of grayscale images for feature extraction. Colour
images provide richer information about the scene, which can lead to better feature representa-
tion and improved accuracy.

e Second, this study explores feature extraction techniques that combine information from spatial
and frequency domains, such as wavelet transforms. This can help capture more diverse and
representative features and improve the model’s accuracy.

e Third, FESAE has shown promising results in addressing the limitations of traditional machine
learning techniques by extracting features from high-dimensional inputs and achieving high
accuracy.

e Fourth, this study uses a multi-class classification approach to provide more detailed and
nuanced predictions than binary classification.

o Finally, this study uses two thousand images for experimental evaluation with a distribution of
500 images for each category to solve the data availability issues and use Channelization for
solving complexity issues faced by state-of-the-art.

The rest of the paper is organized as follows. Section 2 provides a literature review of the relevant
work on deep learning models for detecting brain diseases. Section 3 describes the proposed FESAE
model and its architecture in detail. Section 4 presents the experimental setup and results from
evaluating the proposed model. Finally, Section 5 concludes the paper and discusses future research
directions. We believe the proposed FESAE model can contribute to developing accurate and reliable
diagnostic tools for brain diseases and ultimately improve patient outcomes.

2 Literature Review

MRI1is a widely used technique for diagnosing and evaluating brain diseases. Automated detection
of brain diseases using machine learning techniques can improve the accuracy and speed of diagnosis.
However, interpreting MRI scans can be challenging and time-consuming, requiring the expertise
of experienced radiologists. In this literature review, we will discuss using SAEs for detecting brain
diseases in MRI scans.

Several studies have investigated using SAEs for detecting brain diseases in MRI scans. One study
by Havaei et al. [20] used an SAE to detect gliomas in brain MRI scans. They trained the SAE on a
large dataset of MRI scans and found that the SAE could accurately detect gliomas with a sensitivity
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of 93% and a specificity of 94%. Another study by Chen et al. [21] used an SAE to detect Alzheimer’s
disease in brain MRI scans. They trained the SAE on a dataset of MRI scans from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI). They found that the SAE could accurately detect
Alzheimer’s disease with an area under the Receiver Operating Characteristic (ROC) curve of 0.96.

Debnath et al. [22] used the Fuzzy C-Means clustering algorithm for classifying 3D brain
tumour images. The results for tumour detection have been obtained by calculating the confidence
function values of segmented pixels. The dataset of BRATS 2018 was used and achieved 0.980%
specificity. Rasool et al. [23] introduced a hybrid approach with a CNN model and Support Vector
Machine (SVM) to diagnose three kinds of tumours in the brain. The methodology developed was
extracting features using CNN, and SVM was used to classify brain tumour images into three classes.
Shahamat et al. [24] used Deep Learning based evolutionary approach, which is three-dimensional
CNN; it classifies brain MRI scans into two groups normal and abnormal. The methodology used
in this paper for visualization is based on Genetic algorithm-based brain masking. This framework
is evaluated on Alzheimer’s and Autism patients. The accuracy rate for Alzheimer’s is 85%, and for
autism is 70%. Mallick et al. [25] used a deep wavelet Autoencoder with a deep neural network classifier
for cancer detection for brain MRI. A combination of Deep Wavelet Autoencoder and Deep neural
network proposed a classifier that tremendously affects image compression and shrinks the feature
set size. The accuracy of this classifier is 92% when compared with Probabilistic Neural Network and
Time delay neural network.

Choudhury et al. [260] proposed an automatic model-based artificial neural network approach
for detecting brain tumours. Two steps adopted are segmentation and classification for analyzing the
tumour area in images. This model has 92% precision with 89% sensitivity and a 94% specificity rate.
Huang et al. [27] used a Neural network for brain MRI. A differential feature map is used along with
Squeeze and excitation blocks to enhance the performance of MRI images for brain tumour detection.
Two steps involved in this algorithm are image rectification and image classification. The experimental
analysis shows that this system has an accuracy rate of 98%. Kakhandaki et al. [28] perform brain
Haemorrhages MRI classification using Naive Bayes-Probabilistic Kernel Approach. Three stages
followed to get desired results are pre-processing, segmentation and classification. Combined features
were extracted using a minimal binary pattern and Gray-Level Co-Occurrence Matrix (GLCM).
The accuracy is not defined in the paper. Similarly, Zaw et al. [29] perform brain tumour MRI
classification using Naive Bayes classification. The stages defined in this paper are pre-processing,
segmentation, feature extraction, and classification. After applying filters at the pre-processing stage,
noise is removed, and the image is converted into a grayscale. Lastly, Bayes’ theorem of probability is
used as a classifier to classify images into two categories normal and abnormal. The overall accuracy
of this classifier is 94%.

Furthermore, Sharma et al. [30] present a Hybrid Technique which helps detect tumored brain
parts. K-means and ANN combine to give better results. The proposed system is divided into three
stages: In pre-processing, image quality is enhanced by Histogram equalization. In classification, the
dataset is trained to identify tumour images. Acharya et al. [31] perform K Nearest Neighbour (KNN)
classification. The stages involved in this paper are filtering, feature extraction, feature selection, and
classification. In the feature selection stage Student’s t-test-based process is used. The Computer-
Aided-Brain-Diagnosis (CABD) tool with the ST+KNN technique is used in the classification stage.
The accuracy provided by this classifier is 94.5%.

Fayaz et al. [32] utilized Artificial Neural Network for brain MRI classifications, malignant or
benign. The approach consists of three stages: pre-processing, feature extraction, and classification.
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A median filter is used to remove noise at the pre-processing stage. Colour moments are extracted
as mean features from images presented to a simple feed-forward artificial neural network for
classification and achieved 91.8% accuracy. Kumar et al. [33] proposed an automatic model-based
artificial neural network approach for detecting brain tumours. Two steps adopted are segmentation
and classification for analyzing the tumour area in images. This model has 92% precision with 8§9%
sensitivity and a 94% specificity rate. Halder et al. [34] exploit SVM and Fuzzy feature selection to
detect Tumor in Brain MRI. First, informative features were selected and reduced using the fuzzy c-
means algorithm to get non-trivial information. Second, an SVM helps to classify the scan images.
The proposed method aims to produce higher specificity and sensitivity than the previous methods.

Lei et al. [35] used a sparse constrained level algorithm for brain tumour segmentation in MR
images. The proposed methodology identifies common characteristics and constructs the sparse model
according to the characteristics. The accuracy rate of this model is 96%. Lu et al. [36] aim to improve
the accuracy and efficiency of fault diagnosis in rotary machinery components by developing a deep
learning-based method. They propose a Stacked Denoising Autoencoder (SDAE) algorithm that can
extract features from the raw vibration signals of the machinery components. The features are then
used to identify the health state of the components, including normal state and different fault states.
Lin et al. [37] improve the accuracy and efficiency of classifying epileptic ElectroEncephaloGram
(EEG) signals by developing a stacked sparse autoencoder (SSAE) algorithm. The algorithm can learn
the discriminative features from the raw EEG signals and then classify them into normal or epileptic
signals.

Pan et al. [38] formulated a computational model that predicts the body’s RiboNucleic Acid
(RNA) protein interaction in the same year. They diagnose RNA-protein interaction in our body and
achieve an accuracy of 0.89%. Chen et al. [39] presented a Stack denoising autoencoder framework,
which provides protein interaction with the pathogen-host to reveal the critical molecular biology of
the cell. The approach will result in achieving efficient prediction performance for pathogen-host-
protein interaction. Kannadasan et al. [40] demonstrate the potential of deep neural networks in
classifying diabetes data. Using stacked autoencoders allows for learning complex representations of
the input data, which can improve classification accuracy. Their model achieved an accuracy of 94.4%
in classifying diabetes data and an accuracy of 91.6% in classifying healthy data.

Khamparia et al. [41] used a Stack autoencoder for classifying chronic kidney disease data
using Softmax as a classifier and utilizing multimedia data for the classification of chronic kidney
from the UCI dataset, and its accuracy was 100%. Saravanan et al. [42] proposed Deep Learning
Assisted Convolutional Auto-Encoders Framework (DL-CAEF) is aimed at the early detection of
glaucoma and recognition of the anterior visual pathway from retinal fundus images. The framework
combines an encoder with a conventional CNN to minimize image reconstruction and classification
errors. The framework can potentially improve the early detection of glaucoma in ageing populations.
Menagadevi et al. [43] use multiscale pooling residual autoencoder to learn hierarchical representa-
tions of images and extract important features for classification. The pre-processing steps, including
modified optimal curvelet thresholding and hybrid enhancement approach, help improve the MRI
images’ quality and clarity. The high accuracy of 99.77% for Kaggle and 98.21% for the ADNI dataset
achieved by SVM is impressive, and it suggests that this approach has great potential for clinical
application.

Adem [44] diagnose breast cancer using the KNN algorithm with Stack autoencoder. The
proposed hybrid approach results in high-dimensional data set with classified accuracy of about
91.42%. Li et al. [45] classify images of thyroid nodules using Stack denoising sparse autoencoder.
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This classifier divides images into two categories and has an accuracy of 92.9%. Using SAE, the above-
predicted model gave accurate results. Stack Autoencoder is vital in detecting numerous diseases in the
human body. Wang et al. [46] diagnose diseases presented multi-source similarity information with
a Deep stack autoencoder model. This framework predicts circular RNA disease associations and
achieves an accuracy of 88.08% for training data. Correspondingly, Li et al. [47] used a Stacked Sparse
autoencoder for detecting the nucleus in pathological image analysis. This technique has a case-based
postprocessing framework, which helps detect the nucleus. The proposed model gives average accuracy
of 0.835%. Mehrnia et al. [48] present an interesting development in atrial fibrillation diagnosis and
treatment. Quantifying left atrial fibrosis using 3D Late Gadolinium Enhancement (LGE) MRI1 is an
important step towards improving patient selection for catheter ablation and predicting AF recurrence
post-intervention. However, the lack of standardization and reproducibility in current methods for
fibrosis quantification has been a limitation to their clinical application.

The use of SAEs for detecting brain diseases in MRI scans has shown promising results in several
studies [46,47]. However, further research is needed to validate these results and investigate these
models’ generalizability to different populations and disease types. One potential limitation of using
SAEs for disease detection in MRI scans is the need for large amounts of labelled training data.
Additionally, the interpretability of SAEs can be challenging, as the features learned by the model
may not be easily understandable by humans. In addition, the performance of SAE can be limited by
the complexity and heterogeneity of medical images.

2.1 Problem Formulation

Let X = {x,, X, X3,...X,} are a set of MRI images where, x; € [0, 1, 2, ..., L] grey scale levels.
Similarly, Y € [0, 1, 2, 3] four major classes: Normal, Tumor, Brain Stroke, and Alzheimer’s. The aim
is to construct a FESAE classifier such that:

fiX(@p)—= Yixy, (1)

Here, f'is a function that assign a class to input image X parametrized by « be the enhanced feature
factor and B is energy enhanced factor, as shown in Eq. (1). Primarily, the aim is to find optimal set
of parameters for FESAE so that the loss or classification error will be minimized.

LX) =53 1k m) = Y, @

where x; is the ith input image of X, /" (x;, k) is the classification function that classify input image into
one of the four classes of Y, as shown in Eq. (2). Moreover, k will be the most competitive neurons
with feature enhancement m; to enhance classification accuracy.

3 Proposed Methodology

Automatic disease detection provides disciplined innovation in medicine, efficiently automating
the system to provide faster and more consistent results. This paper implements a model named
FESAE to detect brain diseases. The standard stack auto encoder’s results are trivial and not robust
enough to boost the system’s accuracy. Therefore, the standard Stack autoencoder is replaced with a
Feature Enhanced Stacked Auto Encoder with having feature Enhancement function to get non-trivial
features from an image to improve the accuracy of the classifier. The proposed method consists of four
stages, as shown in Fig. 1.
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Figure 1: Proposed stages for disease detection in brain MRI

3.1 Pre-Processing

In this stage, the image quality for further processing is improved to make the complex process
more accessible and faster. Three steps are performed during this stage: formatting, Channelization,
and noise removal.

3.1.1 Noise Removal

The first step is removing the salt and pepper noise from the image using a median filter.

3.1.2 Formatting

The second step is formatting. In this step, the grayscale image is converted into a coloured image.
Converting the image is to gain more informative features from a coloured image.

3.1.3 Channelization

The third step is Channelization. This step divides the image into three channels red, blue and
green.

3.2 Feature Extraction

Significant features for classification are identified and extracted during this stage. Since process-
ing the whole image is very time-consuming, some important characteristics that could describe the
entire image without losing any valuable information should be used. These features should be so
informative that they can represent the whole image, retaining the most relevant characteristics. We
extract mixed features from DWT and Channelization. The features extracted from Channelization are
in colour, texture, and shape. In DWT, the LL band image is divided into 2nd level because information
could be lost by further dividing the features. The feature could be extracted by a trial and error
mechanism. Features are filtered through a classifier, and the features with greater accuracy are used
in the classification process. Finally, we have at least 500 features from Channelization and DWT.

3.3 Classification

The division of MRI images into different classes is called classification. We use deep learning
stack feature enhanced auto encoder technique as a classifier to overcome the hindrances. Before
discussing the proposed work, there is a mechanism of Stack Auto Encoder (SAE) for detecting brain
diseases, and the limitations of Stack Auto Encoder must be discussed. The core objective of the
Autoencoder is to reduce the reconstruction error, and SAE is used to diminish the features extracted
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at DWT and Channelization. These extracted features then pass to the classifier (SAE) to train the
system. Fig. 2 shows the mechanism of the standard Stack auto-encoder.

Encoder

Figure 2: Mechanism of SAE for classifying features into different classes

3.4 Extracting Non-Trivial Features during the Training Process of SAE

The purpose of using autoencoders is to minimize errors while reconstructing the input during
the training process. So it can extract features in an unsupervised manner using the simple network
structure and different parameters. During feature extraction in autoencoders, they extract those
trivial features to make an output. In simple autoencoders, there comes the point where there is no
discrimination between extracted features. This is because auto encoders play a role in extracting
features; they do not consider whether they are robust. L1 and L2 regularization is used to enhance
the ability of autoencoders to extract discriminative and non-trivial features. Finally, we proposed a
stacked feature-enhanced autoencoder with dynamic feature-enhanced factors to diagnose the salient
features from different brain images.

This paper contributes by summarizing the shortcomings faced during extracting robust fea-
tures.

e A stacked feature-enhanced autoencoder is proposed to get discriminative features.

e Feature-enhanced factors include assorted features, information related to the activation func-
tion, and weights between features for the training process.

e The proposed model differs from stacks of enhanced and dynamic enhanced feature factors.

Constraints for the training process through mutual competition and enhancement are as follows:

Competition: In autoencoders, the input and hidden neuron layers are linked by weight matrix W.
Conversely, hidden neuron and output layers are associated with each other through bias to adjust the
output. For example, based on activation energy [49], neurons are divided into positive and negative
neurons. Those neurons with the highest activation energy are considered winners (positive), and those
with the lowest activation energy are termed suppressed (negative).

Enhancement: An energy loss occurs due to inactive looser neurons, which will be compensated
by redistributing the activation energy of average looser neurons among the winner neurons. Eqs. (3)
and (4) depict the scenario to accomplish this: let « be the enhanced feature factor, K will be the most
competitive neurons, and S is energy enhanced factor [49]. Feature enhancement function is outlined
in Algorithm 1. Fig. 3 shows the transformation of a simple Auto encoder into a feature-enhanced
Autoencoder. Moreover, Algorithm 3 outlines the steps to convert SAE to FESAE.

k = [a.d] 3)
p=1/a @)
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Algorithm 1: Feature enhancement function (')

. . Fe w i = fani ani g i1 it e od i ascondine \
1: Input : Features m {mji, T, M3, . ooy m"_,} it is arranged in ascending order
2: Output : Enhanced Features E' = {e},e5,¢€5,.....,¢}}

: Training Phase :
: Calculate E(F) = ZI{-.F(.I"|Z,-I). Positive neuron k has high activation energy;

[~ I}

6: Calculate E(mi,d — k) = ml—“ Zj i‘ *(flj). The average activation energy of
negative neurons;

7: Caleulate k£ = [e.d] and energy enhanced factor g = [!—1.] The average activation
energy of negative neurons;

g:forj=d—k+1—>ddo

9: z(l3) = m1; + B.E(m},d — k) ;

10: end for

11: fori=k+1—ddo

12: e(ly) = 215 + a. E(mi,d — k) ;

13: end for

11: Return Ef = {f*l s ERs e r.':'i}

Feature Enhanced SAE", f Decoder i SoftMax

Y1
X2 —

Y2
b, ¢ B

Y3

Y4
Xp—T*

f(zlx) \ g flxiz)

Figure 3: Structure of autoencoder along with enhanced features

Fig. 4 depicts that feature-enhanced auto encoders combine to form feature-enhanced layers to
achieve discriminative and robust features from original images. Each layer has multiple features
m* € {1,2,3...L} where [ is the /" feature or any other value. Firstly x"' is given as the input
layer of autoencoders. In the second layer, the feature-enhanced factor E*' is obtained by updating
o' = {W,., W,,b.,b,} where W, and W,, are weights and b,, b, are bias to adjust the results. In the
next layers, the features are successively updated as / = {1,2,3,...,L}.

The input x* of the /" FESAE is E*~'. Finally, the input of the Softmax layer is the final out
achieved by L" layer of FEAE. Softmax layer is employed to predict that there are some categorical
data of label y', the divergence between )’ and y'6. shown in Eq. (5) is computed by the cross entropy
loss function L.. It will cost minimum error by updating the weight 6, of Softmax layer [50], as shown
in Fig. 4.

-1 M NT i
L, = ~ Zizl(y) log '6, (5)
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Algorithm 2: Feature enhanced stacked auto encoder (FESAE)

1:

32:
33:
34:
35:
36:

S oo e W

Input : FESAE: Number of epochs EP; Batch size B; training sample set S; hidden
features h; features m: Enhanced features E: Input activation function f. output
activation function g

: Output : Classified Image Using FESAE

: Stage 1:
: Train=AutoEncoder (x, hiddenSizel);
: Define= Max Epochs Specification, L2WeightRegularization, Sparsity Regularization,

and Sparsity Proportion;

: Stage 2:
: Training= Unsupervised training layer by layer. where, L is the length of extracted

features:

: forl=1— Ldo

if L ==1 then
display= x (training images)
else
T = Ei.l—l
end if
forep=1— EP do
for b=1— [S/B] do
Set (hiddenSizel)=100, the size of the hidden layer for AutoEncoder:;
h= f(Wez +b.). Eli.l) = feature.nhancement(h'i,l),
2li, 1) = g(Wgh + by)

Update= #' to reduce the error rate between input and output equations;

end for
end for

: end for

4: Stage 3: Train= The second AutoEncoder by repeating the above steps:

5: Stage 4:Train (soft net) = Softmax Layer (feat2, tTrain,"MaxEpochs’, epoch value);
5: forep=1— EP do

Predict= yyc', Update= 6. by minimizing Le

: end for

: Stage 5: Stacking AutoEncoders with Softmax layer for classification;

: stackednet = stack(autoencl. autoenc2.softnet);

: Stage 6: Compute the results on the test set, Get the number of pixels in each

image, and Turn the test images into vectors and put them in a matrix;
xTest=zeros(inputSize.numel(xTestImages));
for i = 1 — numel(xTestlImages) do
xTest(:, i) = xTestImagesi(:)
end for
Return Test image with Label

Consequently, the stacked multiple FESAE layers obtained, which have nonlinear features from
higher and lower layers, are enhanced without human effort. The final structure of the model obtained
had three layers with a 500-100-50 structure where 500 shows the size of the first layer, 100 shows the
size of the second layer, and 50 shows the size of the last hidden layer. The number of epochs for the first
hidden layer varied from 300 to 800 hundred with an increment of 100. Similarly, the second hidden
layer has epochs from 250 to 500 with an increment of 50. The epochs of the last layer were 50 to 300
with an increment of 50. L2 weight regularization, sparsity regularization, and sparsity proportion are
kept constant for each layer to simplify the system execution.
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Figure 4: Structure of FESAE with dynamic feature enhanced function

4 Experimental Evaluation

This section discusses the experimental evaluation performed in this study on MRI using FESAE.
Experiments are performed using two different dataset partitions with 70:30 and 60:40 splits. More-
over, state-of-the-art evaluation measures are used to evaluate the proposed model’s performance.
Finally, a comparison is performed with state-of-the-art to check the effectiveness of the proposed
model.

4.1 Dataset

This section discusses the dataset collected from the Kaggle and the Harvard medical college
website [27]. The total number of MRI images used was two thousand, with a distribution of five
hundred for each category of normal images, images with brain stroke, Alzheimer’s disease brain
tumour. These images are pre-processed with the skull removed and noise removed with median filters
to improve the image quality. Fig. 5 shows the MRI images of normal, tumour, Alzheimer, and brain
stroke under discussion.

4.2 Performance Measures

This study uses five state-of-the-art evaluation measures (accuracy, Sensitivity, Specificity, Recall,
Fl-score, and Receiver Operating Characteristic (ROC)) to evaluate the proposed methodology
[51,52]. Table 1 shows the evaluation measure used in this study. True Positive (TP) demonstrates that
a patient was accurately diagnosed, whereas True Negative (TN) demonstrates that a person who does
not possess a disease was correctly identified. False Negative (FN) reveals that the patient has a disease
despite being expected to be healthy. Additionally, the patient is healthy, according to False Positive
(FP), despite the diagnosis of the disease. Accuracy depicts the diseases that are correctly classified.
Sensitivity is the aptitude to categorize images with diseased areas. Specificity is used to recognize
images with no symptoms of a diseased area. The harmonic mean of a classifier’s accuracy and recall
is used to create the F1-score, which integrates both metrics into a single number. F1-score is employed
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to access the performance of two classifiers. Finally, ROC visually compares two classifiers by plotting
TP and FP rates at various thresholds.

Figure 5: Brain MRI Images [27]

Table 1: State-of-the-art evaluation measures used in this study

Performance metric Formula

Accuracy (TP + TN)/(TP + TN + FP + FN)
Recall/Sensitivity TP/(TP 4+ FN)

Precision TP/(TP + FP)

Specificity TN/N

Fl-score (2 = Precision x Recall)/(Precision + Recall)

4.3 Experimental Results

This section discusses the results of the proposed model under different experimental setups.
Table 2 shows the comparative analysis of the proposed approach with state-of-the-art Machine
learning and deep learning algorithms (Logistic regression, Artificial neural network, Random Forest,
and Stack autoencoder). The proposed model, FESAE, has the highest accuracy of 98.82% compared
to other state-of-the-art algorithms. Moreover, the proposed approach achieved the highest precision,
recall, specificity, and F1-score (0.9933, 0.9737, 0.9965, and 2.9731).
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Table 2: 70-30 training samples

Model Accuracy Precision Recall Specificity F1-score
LR 90.48 0.9322 0.9010 0.9377 2.8121
ANN 84.63 0.8491 0.8328 0.8526 2.1003
RF 86.55 0.8973 0.8560 0.8611 2.2371
SAE 95.11 0.9732 0.9564 0.9731 2.9431
FESAE 98.82 0.9933 0.9737 0.9965 2.9731

Fig. 6 shows the ROC curve that comprehends different algorithm statistical measures (True
positive and False positive). The proposed approach obtained the highest Area Under Curve (AUC)
of 0.9, which means FESAE has a high true positive rate.
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Figure 6: Statistical comparison of five classifiers having a 70-30 ratio for training

Tables 2 and 3 show the supremacy of the proposed approach compared to state-of-the-art in the
training and testing phase with 98% accuracy, 0.9844 precision, 0.9795 recall, 0.9751 specificity, and
2.9687 Fl-score. In the 70-30 division, the testing ratio for the dataset is 30%. Fig. 7 illustrates the
ROC curve as FESAE has the highest True positive and ANN has the highest false positive rates for
a testing sample of a 70-30 ratio. This graph helps to comprehend and compare the diagnostic power
of different algorithms in this paper.

Table 3: 70-30 testing samples

Model Accuracy Precision Recall Specificity F1-score
LR 87.55 0.9109 0.8732 0.9032 2.7312
ANN 83.16 0.8322 0.8217 0.8461 1.9613

(Continued)
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Table 3 (continued)

Model Accuracy Precision Recall Specificity F1-score
RF 84.05 0.8613 0.8456 0.8531 2.1032
SAE 94.50 0.9438 0.9840 0.9450 2.9521
FESAE 98.61 0.9844 0.9895 0.9751 2.9687
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Figure 7: Statistical comparison of five classifiers having a 70-30 ratio for testing

Table 4 shows the evaluation of the proposed approach at 60-40 division of the dataset for training
and testing. The proposed approach (FESAE) outperforms with 97.90 accuracy, 0.9768 precision,
0.9912 Recall, 0.9774 Specificity, and 2.9736 F1-score. Fig. & depicts the proposed approach’s accuracy
and superiority compared to state-of-the-art algorithms with the highest True positive rate.

Table 4: 60-40 training samples

Model Accuracy Precision Recall Specificity F1-score
LR 86.22 0.9003 0.8622 0.8967 2.3087
ANN 79.54 0.8265 0.8019 0.8132 1.8971
RF 82.76 0.8354 0.8133 0.8333 1.9825
SAE 94.85 0.9732 0.9849 0.9739 2.9548
FESAE 97.90 0.9768 0.9912 0.9774 2.9736

The proposed FESAE again outperforms compared to state-of-the-art algorithms. The results of
testing samples of a 60-40 ratio as shown in Table 5. However, the 70-30 training and testing ratio gave
better results than the 60-40. Fig. 9 shows the ROC curve of the 60-40 testing that the true positive
rate for FESAE is highest compared to the state-of-the-art.
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Figure 8: Statistical comparison of five classifiers having a 60-40 training ratio

Table 5: 60-40 testing samples

Model Accuracy Precision Recall Specificity F1-score
LR 84.55 0.8756 0.8478 0.8645 2.1254
ANN 77.66 0.8043 0.7856 0.7986 1.8345
RF 80.71 0.8027 0.7828 0.7744 1.9133
SAE 90.21 0.9122 0.9233 0.9345 2.9139
FESAE 96.55 0.9323 0.9523 0.9365 2.9354
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Figure 9: Statistical comparison of five classifiers having a 60-40 testing ratio
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4.4 Comparison of the Proposed Approach with State-of-the-art

This section compares the proposed approach with state-of-art under the same experimental setup.
It is evident from Table 6 and Fig. 10 that the proposed method outperforms the state-of-the-art by
achieving 98.61% accuracy. This study also used the same hyperparameters for comparative analysis.

Table 6: Comparison of the proposed approach with state-of-the-art

Study Model Accuracy Precision Recall Specificity
[53] LeNet 88 87.50 84.72 86.45
[54] VGGI16 96.20 95.40 93.20 94.87
[55] CNN-SVM 98.40 97.90 97.13 96.98
[56] PatchResNet  98.10 96.85 97.60 96.97
Proposed FESAE 98.61 98.25 98.50 98.11
86.45
(53] 84.72 = Accuracy = Precision = Recall g Specificity
5% 1875
| 88
94.87
. 93.2
[54] ] 95.4
] 96.2
96.98
97.13
[55] : ]97.9
] 98.4
96.97
w 97.6
[56] ]96.85
] 98.1
98.11
Proposed ] EI}I\}Z_.:
] 98.61

84 86 88 90 92 94 96 98 100

Performance achieved on each evaluation measure

Figure 10: Comparison of the proposed method with state-of-the-art

5 Conclusion

This paper has targeted a critical drawback associated with the Stack Auto Encoder algorithm
with special reference to Feature Enhanced Stacked Auto Encoder (FESAE). In the prior algorithm,
features with less or redundant information were added to an image, resulting in less accuracy.
However, this issue is resolved in the proposed methodology by introducing some modifications at
the Feature Extraction stage. In the FESAE feature, an enhanced factor is introduced to discriminate
features with less activation energy to get non-trivial features to train the Autoencoder more effectively
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and accurately. Feature-enhanced auto encoders combine to form enhanced feature layers to achieve
discriminative and robust features from original images. Each layer has multiple features which are
further trained by the FESAE classifier. Experimental results have been obtained for two different
ratios of the dataset (70-30 and 60-40), but the maximum accuracy for the proposed system is obtained
on a 70-30 ratio for four different classes (normal, Alzheimer, brain tumour, and stroke) of the dataset.
This study outperforms compared to state-of-the-art machine learning and deep learning algorithms
by achieving 98.82% accuracy on the training sample and 98.61% on testing samples. The proposed
model has significant potential for assisting radiologists in diagnosing brain diseases more accurately
and improving patient outcomes.

However, there are also some limitations to using the FESAE model for disease detection in brain
MRI. One limitation is that the model requires a large amount of labelled data to be trained effectively,
increasing its computational complexity. This can be a challenge in medical imaging, where obtaining
labelled data can be time-consuming and expensive. Additionally, the model may not generalize to
unseen data if the training data does not represent the studied population. Finally, the model may be
unable to detect all types of diseases or have difficulty distinguishing between similar types.
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