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Abstract: The subcellular localization of human proteins is vital for under-
standing the structure of human cells. Proteins play a significant role within
human cells, as many different groups of proteins are located in a specific
location to perform a particular function. Understanding these functions will
help in discovering many diseases and developing their treatments. The impor-
tance of imaging analysis techniques, specifically in proteomics research, is
becoming more prevalent. Despite recent advances in deep learning tech-
niques for analyzing microscopy images, classification models have faced
critical challenges in achieving high performance. Most protein subcellular
images have a significant class imbalance. We use oversampling and under
sampling techniques in this research to overcome this issue. We have used
a Convolutional Neural Network (CNN) model called GapNet-PL for the
multi-label classification task on the Human Protein Atlas Classification
(HPA) Dataset. Authors have found that the Parametric Rectified Linear Unit
(PreLU) activation function is better than the Scaled Exponential Linear Unit
(SeLU) activation function in the GapNet-PL model in most classification
metrics. The results showed that the GapNet-PL model with the PReLU
activation function achieved an area under the ROC curve (AUC) equal to
0.896, an F1 score of 0.541, and a recall of 0.473.

Keywords: CNN; protein; PReLU; SeLU; microscopy images; subcellular
localization; multi-cells

1 Introduction

Proteins are located in a specific location to perform a particular function within the cell.
Proteins perform various physiological processes supporting human life [1,2]. The Knowledge of
protein locations in the cell is necessary to understand the protein-specific function and the overall
organization of the cell. Different subcellular distributions of proteins can lead to heterogeneity of
function between cells. An overview of human cells is shown in Fig. 1. The analysis of these differences
is essential to perceive the cells’ function, discover diseases, develop treatments, and enhance the drug
industry. Human proteins have high importance in human cells.
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Figure 1: Overall flow of the proposed architecture

In contrast, the subcellular localization of each protein can give researchers valuable information
about the objective and the construction of the protein within a cell. This topic has become important
in the current research of biological processes because of its essential role in pathology studies in the
pharmaceutical industry. A deep understanding of the cell organelles in which the protein exists can
participate in multiple biological processes, help to detect various diseases and develop appropriate
treatments [3–5].

Protein localization is the process by which a protein gathers in a specific site. The prediction
of protein focuses on determining the unknown sites of the protein. There are two methods for
predicting subcellular protein localization (PSL): 1D sequence-based and 2D image-based methods.
The image-based 2D method is used to overcome the limitations of the 1D sequence-based approach
[6]. Classifying the mixed pattern of proteins and different types of human cells is required [7].

To identify all human proteins found in cells, tissues, and organs, a program called the Human Pro-
tein Atlas started in 2003. The HPA program provided large datasets of high-throughput microscopy
images of human proteins [8]. Many Kaggle competitions have been held using these datasets.

In several areas of medical and bioinformatics, the analysis of the computerized microscopy image
plays a significant role in computer-aided prognosis. Manual analysis and evaluation of these images
are difficult. Recently, deep learning algorithms have proven to be an effective tool for processing and
analyzing microscopy images, including nuclei recognition, cell segmentation, tissue segmentation,
image classification, and other tasks. Convolutional neural networks (CNNs) are a common type of
deep learning architecture [7].

Despite recent developments in the analysis of microscopy images using CNN architectures,
classification models have faced considerable difficulties reaching high performance because most
protein subcellular images have a huge class imbalance. Also, there is a lack of studies that use and
compare multiple types of activation functions in deep learning algorithms. The contribution of the
paper is to improve the performance of the research which uses the same data, combining oversampling
and undersampling methods to solve the data imbalance rather than using only oversampling, and
trying a powerful activation function PReLU which has not been used before in protein classification
tasks.

This paper used oversampling and undersampling methods to address the data imbalance issue.
We applied a CNN model known as GapNet-PL [9] to solve the multi-label classification task based on
a Human Protein Atlas Classification (HPA) dataset [10]. This study shows that the PReLU activation
function-based model can outperform the SeLU activation function-based deep learning model and
get higher results for the most used metrics.
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We demonstrated that the oversampling and undersampling methods could balance the dataset
classes and improve classification accuracy. The PReLU activation function-based model achieved an
average of AUC equal to 0.896, an F1 score of 0.541, and a recall of 0.473 on the test dataset. While
SeLU was better in the rest of the metrics and gave an accuracy average of 0.495 and a precision average
of 0.705.

The remainder of this paper is structured as follows: A background and related work are provided
in Section 2. Section 3 describes the dataset, the classification model, and the evaluation metrics used.
Section 4 discusses the experimental setup and configurations of the deep learning model. The results
and discussion are given in Section 5. Finally, this research is concluded in Section 6 with a brief
explanation for future work.

2 Background and Related Work

Human cells can generate massive medical and microscopy images sufficient to train deep-learning
models. Therefore, deep learning techniques will replace the traditional method of evaluating and
analyzing complicated biological images [11]. Convolutional neural networks (CNN) have effectively
analyzed different types of biological and medical images. A study by Esteva et al. [12] demonstrated
how skin lesions could be classified using a CNN, which was trained from images utilizing only
pixels and disease labels as inputs. For the first time, CNN’s diagnostic abilities were evaluated by
Haenssle et al. [13] with those of a broad worldwide group of dermatologists and professionals.
CNN consistently outperformed dermatologists’ diagnoses. The artificial jellyfish’s intelligent living
behavior is used to improve ANN. This classifier, also known as JellyfishSearch_ANN, is used
for precisely classifying cervical cancer [14]. Microscopic blood slides have been used to measure
parasitemia using image analysis by CNN to improve diagnosis [15].

Deep learning models have recently been proven to be very successful in classifying microscopy
images and predicting human proteins rather than traditional machine learning techniques. The
convolutional neural network (CNN), a deep learning architecture, is widely used to replace machine
learning algorithms in classifying high-throughput microscopy data [16,17]. Although traditional
machine learning methods use only hand-crafted features extracted indirectly from protein primary
sequences, deep learning classifiers can automatically discover and extract useful feature representa-
tions, such as non-linear feature correlations, which allows enhancing the prediction accuracy. The
results showed that DeepPSL works better in prediction [18]. Another model called DeepYeast,
presented by Hu et al. [19] outperformed the support vector machine (SVM) in classifying eight
subcellular localizations of protein images. The accuracy of the DeepYeast was 47.31% compared
to the SVM (accuracy of 39.78%). The deep convolutional neural network (DeepLoc) model was
proposed to analyze images of yeast cells to classify protein subcellular localization and achieved an
accuracy of 72% [20].

While high-quality images consume memory and need a long processing time, Rumetshofer
et al. [9] presented a low-cost and time-efficient CNN architecture called GapNet-PL. This model
has three layers and uses a global average pooling layer where hints can be collected at low-level
convolutions. While high-resolution images need a large memory, they used the SeLU activation
function to reduce memory consumption. This model has been compared to many other models, such
as DenseNet, DeepLoc, FCN-Seg, etc. GapNet-PL performed better than other models, giving an
AUC of 98% and an F1 score of 78%. Customized architectures for the multi-label classification of
human protein proposed in Zhang et al. [21] study outperformed the previous architecture (GapNet-
PL) [9] by more than 2% in the F1 score.
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Mitra [22] emphasized that oversampling is essential to enhance model performance and learning
for classifying protein in multi-label microscopy images with a huge data imbalance. Protein classifi-
cation task was integrated as a minigame in a mainstream video game (EVE Online) called Project
Discovery [23]. They developed an automatic cellular annotation tool to localize proteins divided
into 29 subcellular localization patterns. They used transfer learning to achieve an F1 score of 0.72
by integrating deep learning and gamer annotations. Two types of CNNs are used for the protein
classification task, a CNN architecture and a fully convolutional network. When comparing the two
networks, FCN outperforms CNN [24]. Two main approaches are used by [5] to classify the human
protein atlas images. The first approach uses the conventional image feature extraction method and
the Random Forest algorithm as a classifier. The second approach uses two CNN models, Hybrid
Xception and ResNet50. The result of the Hybrid Xception is 0.69 for the F1 score, 0.41 for ResNet50,
and 0.61 for the conventional approach. ResNet pre-trained model achieved an F1 score of 0.3459
for the protein classification task using the HPA dataset [25]. Tu et al. [26] proposed a new method
called SIFLoc, containing two main stages. The first is self-supervised pre-training which uses a hybrid
data augmentation method and a modified contrastive loss function. The second stage applies the
supervised training.

Data imbalance is one of the most significant barriers to the high performance of protein
classification models. Rana et al. [27] have suggested using oversampling to handle the multilabel data
imbalance in the protein localization task.

A composite loss function built by [2] merged focal loss and Lovasz-Softmax loss in training.
They used CNN pre-trained models in protein classifications; the models were SE-ResNeXt-50,
DenseNet-121, and ResNet50. They achieved an F1 score equal to 0.5292 in the testing dataset.
Another essential component of artificial neural network training is selecting an activation function.
The choice of the activation function plays a vital role in the neural network performance. In a
study by Jiang et al. [28], PReLU was combined with a CNN architecture called AlexNet, for
target recognition. Using PReLU improves performance and makes the model achieve an accuracy
of 84.02%. Wang [2] and Adweb et al. [29] used the PreLU activation function for medical image
classification. Furthermore, researchers have developed multiple novels and effective optimization
strategies to handle the optimization problem of the training [30].

The limitations of the previous works can be summarized as many papers have been published
on predicting multi-label protein using customized architectures [9,18,21]. Some researchers have
focused on outperforming hand-crafted machine learning algorithms such as SVM [18] rather than
improving the existing deep learning models. Despite the effectiveness of the PreLU activation function
in classifying images, there is a lack of research that uses PreLU in the protein classification task. While
the biggest concern of protein classification models is data imbalance, most papers use oversampling
[19,22,27]. That can lead to an increase in data size and ultimately challenges the model training.

The main objective of this research is to solve the imbalance problem of the HPA dataset
by combining both oversampling and undersampling techniques to enhance the accuracy of the
classification of protein microscopy images. Furthermore, we have examined the ability of the PReLU
activation function to produce precise annotations of the subcellular localization for thousands of
human proteins in multiple-cell images.

3 Methodology

In this paper, we will use a CNN model called GapNet-PL. Preprocessing consists of two steps:
resize the images to 299 × 299 × 4 and then apply the oversampling and under-sampling techniques
to remove the data imbalance. The whole dataset is divided using the K-fold cross-validation method
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into 5 folds. We have five models in total, and one fold is used as a validation fold while the rest is
used for training. After finishing the training of all models, we will average their results to get the final
result of the GapNet-PL model. The proposed architecture of the methodology is shown in Fig. 1.

3.1 Human Protein Atlas Image Classification Dataset

This data was presented by the HPA team and released for the Kaggle competition called Human
Protein Atlas Image Classification [10]. Fig. 2 shows a sample of images of different classes. It has 27
distinct cell types with vastly diverse morphologies, all impacting the protein patterns of the various
organelles. This dataset has 31072 images in the train.csv file having a size of 512 × 512 pixels. The
dataset images are represented by four filters (RGBY): red for microtubules, green for the protein of
interest, blue for the nucleus, and yellow for the endoplasmic reticulum. For example, a display of
different channels in the image with an ID equal to 1 is shown in Fig. 3.

Figure 2: Sample of the dataset

Figure 3: The image with ID == 1 has the following labels: 7, 1, 2, 0, and these labels correspond to
(Golgi apparatus, Nuclear membrane, Nucleoli, and Nucleoplasm)
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3.2 Data Preprocessing

For data preprocessing, we resized the images to 299 × 299 × 4. These numbers refer to the length,
width, and image channel. We chose a smaller image size than the original because training the smaller
images will be faster and converge more quickly.

Many methods exist in the literature to solve the problem of data imbalance. Two techniques are
used in this paper to handle the data imbalance: the oversampling method and the under sampling
method. Oversampling reduces the negative effect of the skewed distribution of data by duplicating
samples from the minority classes, so that the number of examples in each class is equal to or
nearly identical. In contrast, the under sampling technique reduces the negative effect of the skewed
distribution of data by randomly removing samples from the majority classes. Combining the over-
sampling and under-sampling techniques are called the hybrid method [31–33].

In this paper, we use both over-sampling and under-sampling to handle the imbalance problem.
The true median equals 715 between class samples, but we chose 500 as a median value because it
gave a better class distribution. Then, we tried to approximate the samples to be equal or closer
to that value. To do that, we subtracted the median from each class sample and made a condition.
If the difference is positive, we will use oversampling and duplicate samples of that class using the
resulting number. Otherwise, if the difference is negative, we will do the opposite, which is the under-
sampling, and remove the resulting number from that class sample. After applying that, there is still
an unbalance problem because each class will affect the other classes. However, the distribution has
improved significantly. We used the augmentation method for the training set to avoid overfitting and
increase the model’s generalizability. Data augmentation techniques are geometric transformations,
color space transformations, and Kernel filters. In this paper, geometric transformations are used on
the oversampled data. One of the following geometric transformations is randomly applied on each
image, rotation by (0, 90, 180, 270) and flipping horizontally or vertically [34].

3.3 CNN Model Architecture

GapNet-PL is a CNN model with a two primary steps approach. The first step is an encoder
designed to handle high-throughput microscopy images. The encoder has multiple convolutional
layers; some have a stride of 2 max-pooling layers implemented to learn abstract features at various
spatial resolutions. The second step uses global average pooling to reduce the feature maps from three
layers to one-pixel size and concatenate the resulting feature vectors. This pooling layer can also help
to reduce the impact of weak labels. The resulting feature passed into a fully connected network of
two hidden layers for the final classification. GapNet-PL uses the SeLU activation function with
normalization rather than the Rectified Linear Unit (ReLU) for practical training to minimize memory
usage [9]. We illustrated the GapNet-PL architecture in Fig. 4.

This paper highlights the significance of the activation function and its impact on the neural
network’s performance. Moreover, we compare the same architecture using two different activation
functions: the SeLU activation function and Parametric Rectified Linear Unit (PReLU). PReLU
is a generalized version of the standard Rectified Linear Unit (ReLU). With almost no additional
computational effort and no overfitting risk, PReLU is an activation function with a slope for negative
values which generalizes the typical rectified unit; it enhances model fitting [35].

f (yi) =
{

yi, if yi > 0
aiyi, if yi ≥ 0

(1)
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Figure 4: GapNet-PL Architecture

The SeLU activation function provides self-normalization at the neuron level and can adapt to
sudden changes. The SeLU activation function is good for the neural networks of the denser layers,
but it is not a good choice for convolutional neural networks. PReLU activation function can be used
in convolutional deep neural networks and can avoid over-fitting. But there is no definite reason for
choosing between SeLU and PReLU activation functions that always work. Hence, comparing the
performance of both activation functions in a problem domain will decide which one is performing
better for a particular problem domain.

3.4 Evaluation Metrics

Classification of protein in cells has been evaluated using four following performance matrices:
AUC, accuracy, F1 score, precision, and recall. True Positives (TP) are the number of cases when
positive labels are predicted as positive. In contrast, False Negative (FN) is the number of instances
where positive labels are predicted as negative class. Similarly, True Negative (TN) and False Positive
(FP) are defined for negative instances. Accuracy is defined as the ratio of correct predictions and total
predictions as follows:

Accuracy = TP + TN
TP + FP + FN + TN

(2)

Precision is calculated as the ratio of true positive and all instances predicted as positive.

Precision = TP
TP + FP

(3)
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The recall, also called sensitivity, is the ratio of the true positive and all positive instances in the
dataset. It determines the sensitivity of the model and is calculated as follows,

Recall = TP
TP + FN

(4)

We defined the F1 score as a single score including recall and precision:

F1score = 2 (precision) (recall)
precision + recall

(5)

Another classification performance measurement is the AUC (Area Under The Receiver Oper-
ating Characteristics Curve) used at different threshold settings. The AUC indicates the degree or
amount of separability, whereas the ROC is a probability curve that shows how well the model can
distinguish between different classes. The better the model, the higher the AUC [36]. AUC curve plots
two parameters: True Positive Rate (TPR) or sensitivity, and false positive rate (FPR).

TPR = TP
TP + FN

(6)

FPR = FP
TN + FP

(7)

AUC is the area under the curve of these two parameters. So mathematically:

AUC =
∫ 1

0

TPRd (FPR) (8)

4 Experimental Settings

A public HPA dataset called Protein Atlas Image Classification [10] is used. This dataset has 28
distinct classes and 31072 total images in the train.csv file with a size of 512 × 512 pixels. From Fig. 5,
we can see how many targets are the most common in the dataset. It is apparent from the graph that
most images only have one or two target labels, and it is unusual to have more than three targets. From
the distribution of the classes among the data set in Fig. 6, there is a clear data imbalance. We resized
the data images to a smaller size 299 × 299 × 4. The first number refers to the length, the second is
for the width, and the third is for determining the image channel. The smaller image size is fast in
training and converges more quickly. Also, we can train the model on a large batch size. Nucleoplasm
has the largest sample size of 12885, while the lowest is Rods and rings, with a size of 11. We have
applied the technique mentioned in Section 3.2 to solve the data imbalance problem. Fig. 7 represents
the unbalanced dataset distribution, and Fig. 8 shows the data distribution after using the balancing
method. The ratio between minatory classes to the majority classes before applying the balancing
method was 1:1163 and 1:9.5 after applying the balancing method. It has significantly improved.

We divided the dataset at the ratio of 80:20 and repeated each experiment using five-fold cross-
validation. Table 1 summarizes the chosen values for training hyperparameters, and loss is a binary
cross-entropy loss for the multi-label classification task. We used the Stochastic Gradient Descent
(SGD) for optimization; it is fast and can converge smoothly. The learning rate is reduced by half
when model performance reaches a plateau to achieve the best result.
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Figure 5: Number of targets per image

All model experiments were implemented using TensorFlow. TensorFlow is a machine learning
system that runs on several computing devices, including multicore CPUs, general-purpose GPUs,
and Tensor Processing Units (TPUs) [37]. TensorFlow covers a wide range of applications, focusing
on deep neural network training and inference. The models were trained via Colab Pro + kernels.
Technical specifications include a single NVIDIA Tesla P100 GPU with 8 CPU cores and 52 Gigabytes
of RAM.
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Figure 6: The occurrence of protein in HPA images

Figure 7: Multiple cells data classes distribution before the balance method
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Figure 8: Multiple cells data classes distribution after the balance method

Table 1: Training hyperparameters

Hyperparameter Value

Batch size (Training set) 80
Batch size (Validation set) 16
Learning rate 0.1
Momentum 0.9
Epochs 80
Optimizer SGD

5 Result and Discussion

We have used the GapNet-PL model using PReLU and SeLU activation functions to predict pro-
tein localization labels in the multiple cell images dataset. We have evaluated the model performance
using 5-fold cross-validation. Table 2 shows the results after calculating the metrics that quantify the
model’s performance. Also, we compared the performance of the two activation functions to decide
which would give the best results in all performance parameters.

To start with, we obtained good results when we tried the PReLU activation function, as shown
in Table 2. The PReLU model surpassed the SeLU model in most metrics. While using the PReLU
activation function, the mean of the AUC metric is 0.896, which is 0.4% better than the SeLU activation
function. The average classification accuracy for SeLU is 0.495. It outperformed the PReLU model
by 1.6%. While the F1 score average is 0.541 for the PReLU model, surpassing the SeLU model by
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9.4%. The recall metric’s mean is 0.473, which is better than the SeLU model by 20.7%. Finally, the
mean of precision using SeLU is 0.705. It exceeded the mean of PReLU activation by 9.5%. From the
previous comparison, we can infer that the PReLU activation function surpassed SeLU activation in
three metrics: AUC, F1 score, and Recall. In contrast, SeLU activation outperformed PReLU in the
Accuracy and Precision metrics.

Table 2: Performance evaluation of the multiple cells classification using PReLU

Fold number Activation
function

AUC Accuracy F1 score Recall Precision

Fold 1 PReLU 0.888 0.503 0.549 0.476 0.659
Fold 2 PReLU 0.897 0.556 0.556 0.496 0.641
Fold 3 PReLU 0.889 0.534 0.534 0.464 0.641
Fold 4 PReLU 0.895 0.541 0.541 0.479 0.632
Fold 5 PReLU 0.896 0.526 0.526 0.454 0.636

Mean of the standard
deviation

0.893 ± 0.003 0.487 ± 0.016 0.541 ± 0.010 0.473 ± 0.014 0.641 ± 0.009

Fold 1 SeLU 0.894 0.523 0.519 0.412 0.723
Fold 2 SeLU 0.882 0.480 0.470 0.359 0.705
Fold 3 SeLU 0.885 0.492 0.483 0.374 0.698
Fold 4 SeLU 0.900 0.477 0.494 0.391 0.686
Fold 5 SeLU 0.888 0.505 0.498 0.388 0.714

Mean of the standard
deviation

0.889 ± 0.006 0.495 ± 0.016 0.492 ± 0.016 0.384 ± 0.017 0.705 ± 0.012

Fig. 9 shows the confusion matrix for the PReLU model. We used a library called MLCM (Multi-
Label Confusion Matrix) proposed by [38] for defining the confusion matrix for multi-label classifiers.
This method presented the multi-class confusion matrix’s well-known structure while meeting the
requirements for a 2-dimensional confusion matrix with extra raw and column. The additional column
denotes the no predicted labels (NPL), which refers to a circumstance in which there is a combination
of true and predicted labels, but no incorrect prediction.

In contrast, one or more true labels are not predicted. The additional row shows the no true labels
(NTL), which refers to a circumstance in which there is no true label in the combination of true and
predicted labels. The percentage in the diagonal refers to the true classified classes, and the dark colors
represent the highest percentage.

Table 3 summarizes the average of the model’s performance for each class using the PReLU
activation function.

Parameter Comparison of True Positive (TP), False Positive (FP), False Negative (FN), and True
Negative (TN) for each label in Table 4.
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Figure 9: Confusion matrix for GapNet-PL with PReLU

Table 3: Performance evaluation of each class using the PReLU activation function

Class Name Precision Recall F1 score

Nucleoplasm 0.274 ± 0.016 0.634 ± 0.019 0.38 ± 0.016
Nuclear membrane 0.753 ± 0.020 0.562 ± 0.043 0.644 ± 0.025
Nucleoli 0.392 ± 0.411 0.27 ± 0.031 0.316 ± 0.024
Nucleoli fibrillar center 0.631 ± 0.090 0.31 ± 0.057 0.414 ± 0.063
Nuclear speckles 0.646 ± 0.557 0.556 ± 0.039 0.594 ± 0.013
Nuclear bodies 0.2 ± 0905 0.096 ± 0.028 0.13 ± 0.045
Endoplasmic reticulum 0.356 ± 0.040 0.506 ± 0.048 0.416 ± 0.041
Golgi apparatus 0.604 ± 0.080 0.233 ± 0.041 0.338 ± 0.051
Peroxisomes 0.940 ± 0.038 0.443 ± 0.076 0.600 ± 0.065
Endosomes 0.976 ± 0.033 0.676 ± 0.060 0.798 ± 0.049
Lysosomes 0.866 ± 0.041 0.765 ± 0.052 0.812 ± 0.047

(Continued)
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Table 3 (continued)

Class Name Precision Recall F1 score

Intermediate filaments 0.667 ± 0.020 0.337 ± 0.021 0.447 ± 0.020
Actin filaments 0.677 ± 0.051 0.362 ± 0.100 0.463 ± 0.092
Focal adhesion sites 0.696 ± 0.068 0.38 ± 0.038 0.485 ± 0.033
Microtubules 0.927 ± 0.017 0.642 ± 0.043 0.76 ± 0.029
Microtubule ends 0.97 ± 0.01 0.688 ± 0.024 0.803 ± 0.016
Cytokinetic bridge 0.308 ± 0.077 0.217 ± 0.029 0.25 ± 0.038
Mitotic spindle 0.683 ± 0.047 0.400 ± 0.081 0.504 ± 0.072
Microtubule organizing center 0.446 ± 0.135 0.115 ± 0.033 0.180 ± 0.052
Centrosome 0.188 ± 0.035 0.779 ± 0.024 0.110 ± 0.030
Lipid droplets 0.758 ± 0.090 0.440 ± 0.043 0.554 ± 0.038
Plasma membrane 0.426 ± 0.022 0.298 ± 0.018 0.35 ± 0.006
Cell junctions 0.555 ± 0.097 0.266 ± 0.021 0.358 ± 0.019
Mitochondria 0.424 ± 0.018 0.490 ± 0.028 0.451 ± 0.011
Aggresome 0.767 ± 0.049 0.48 ± 0.0641 0.588 ± 0.055
Cytosol 0.248 ± 0.014 0.405 ± 0.018 0.304 ± 0.011
Cytoplasmic bodies 0.556 ± 0.070 0.322 ± 0.070 0.404 ± 0.067
Rods & rings 0.996 ± 0.008 0.602 ± 0.052 0.75 ± 0.041

Table 4: True Positive (TP), False Positive (FP), False Negative (FN), and True Negative (TN) of each
class using the PReLU activation function

Class Name True Positive
(TP)

False Positive
(FP)

False Negative
(FN)

True Negative
(TN)

Nucleoplasm 14865 3109 5441 8848
Nuclear membrane 22963 539 606 750
Nucleoli 22641 995 2963 1072
Nucleoli fibrillar center 23182 570 1178 531
Nuclear speckles 22561 1120 923 1152
Nuclear bodies 23451 494 2511 262
Endoplasmic reticulum 23162 1264 557 551
Golgi apparatus 22991 316 2402 722
Peroxisomes 23688 73 31 25
Endosomes 23549 33 79 164
Lysosomes 23583 54 39 130
Intermediate filaments 23315 391 800 398
Actin filaments 23434 448 476 279
Focal adhesion sites 23454 405 415 259
Microtubules 22895 115 446 818
Microtubule ends 23618 84 43 95
Cytokinetic bridge 23576 779 493 137

(Continued)
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Table 4 (continued)

Class Name True Positive
(TP)

False Positive
(FP)

False Negative
(FN)

True Negative
(TN)

Mitotic spindle 23621 662 135 92
Microtubule organizing
center

23599 459 849 114

Centrosome 23589 346 1460 124
Lipid droplets 23612 271 126 101
Plasma membrane 22452 949 3049 1261
Cell junctions 23491 425 616 222
Mitochondria 22122 813 1705 1591
Aggresome 23559 298 172 154
Cytosol 20023 2627 5370 3690
Cytoplasmic bodies 23605 633 231 108
Rods & rings 23650 19 43 63

Table 5 compares the performance of the GapNet-PL model using the PReLU activation function
with other published results. We can notice that our trained model’s classification accuracy using SeLU
and F1 score using PReLU are better than the published results even when using the same data.

Table 5: Comparison with published results

Study Same Data Accuracy F1 score

Mitra [22] Yes Not used 0.465
Chang et al. [25] Yes Not used 0.3459
Tu et al. [26] No Not used 0.403
Wang [2] No Not used 0.5292
Hu et al. [19] No 0.4731 Not used
This study 0.495 0.541

6 Conclusion and Future Work

This research uses a deep learning architecture to handle large and complex data. In addition, we
use a CNN model called GapNet-PL to classify multi-cell microscopy images into 28 protein classes,
while each image can have one or more labels. This study examines another activation function called
PReLU and compares it to the SeLU activation function. We applied oversampling and undersampling
methods to solve the massive imbalance of data classes. The PReLU model performs perfectly in three
metrics, achieving an average AUC of 0.896, an F1 score of 0.541, and a recall of 0.473. The SeLU
model performed better in the rest of the metrics and gave an accuracy average of 0.495 and a precision
average of 0.705.

F1 score is preferred to be used when there is a significant data imbalance. PReLU outperformed
SeLU in F1 score metric, thus we can say that PReLU is better than SeLU in classifying protein
images that have imbalanced data distribution. We will try different CNN architectures and other HPA
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datasets in the future. Moreover, use other activation functions such as Relu and Elu. We also aim to
use different sizes of dataset images with different resolutions, as presented in the Kaggle competition.
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