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Abstract: Distributed Denial of Service (DDoS) attacks have always been
a major concern in the security field. With the release of malware source
codes such as BASHLITE and Mirai, Internet of Things (IoT) devices have
become the new source of DDoS attacks against many Internet applications.
Although there are many datasets in the field of IoT intrusion detection,
such as Bot-IoT, Constrained Application Protocol–Denial of Service (CoAP-
DoS), and LATAM-DDoS-IoT (some of the names of DDoS datasets), which
mainly focus on DDoS attacks, the datasets describing new IoT DDoS attack
scenarios are extremely rare, and only N-BaIoT and IoT-23 datasets used IoT
devices as DDoS attackers in the construction process, while they did not use
Internet applications as victims either. To supplement the description of the
new trend of DDoS attacks in the dataset, we built an IoT environment with
mainstream DDoS attack tools such as Mirai and BASHLITE being used to
infect IoT devices and implement DDoS attacks against WEB servers. Then,
data aggregated into a dataset named MBB-IoT were captured at WEB servers
and IoT nodes. After the MBB-IoT dataset was split into a training set and
a test set, it was applied to the training and testing of the Random Forests
classification algorithm. The multi-class classification metrics were good and
all above 90%. Secondly, in a cross-evaluation experiment based on Support
Vector Machine (SVM), Light Gradient Boosting Machine (LightGBM), and
Long Short Term Memory networks (LSTM) classification algorithms, the
training set and test set were derived from different datasets (MBB-IoT or
IoT-23), and the test performance is better when MBB-IoT is used as the
training set.
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1 Introduction

In 2016, Mirai infected millions of IoT devices and launched a DDoS attack on Dyne Therapeu-
tics, Inc. (DYN), causing huge economic losses. Subsequently, various malicious code variants based
on Mirai occupied the CTI or cybersecurity reports, warnings of Computer Emergency Response

https://www.techscience.com/journal/cmc
https://www.techscience.com/
http://dx.doi.org/10.32604/cmc.2023.039980
https://www.techscience.com/doi/10.32604/cmc.2023.039980
mailto:duyanhui@ppsuc.edu.cn


2096 CMC, 2023, vol.76, no.2

Teams (CERTs) in various regions. It can be said that Mirai has started an arms race for the
construction of DDoS attacks and defense systems [1]. In 2022, according to the statistics of A10
Network Security Company, there were over 423 thousand bots predicted to be used in DDoS attacks,
most of which are IoT devices [2]. A10 also pointed out that the CoAP used in IoT is considered
vulnerable to IP address spoofing and data packet amplification, and IoT DDoS attacks based on this
protocol are becoming a new attack trend [3]. IoT devices being controlled to launch DDoS attacks
has become one of the main problems to be solved in the field of IoT security.

Datasets are the key to building a DDoS detection system. Although there are many datasets in
the field of IoT intrusion detection that focus on DDoS attacks, such as Bot-IoT [4], CoAP-DoS [5],
LATAM-DDoS-IoT [6], and so on, all of them take IoT devices as the attack targets in the construction
process, and only N-BaIoT [7] and IoT-23 [8] take IoT devices as the attack source to generate the
datasets. This indicates that the current situation of IoT devices launching DDoS attacks on Internet
applications does not yet have a dataset to describe it. Therefore, to enrich the current research status
of IoT DDoS protection, this literature constructs an IoT intrusion detection dataset named “MBB-
IoT” from a new perspective. “MBB” represents the attack traffic launched by Mirai and BASHLITE,
the two most widely spread malware in worldwide, and the normal traffic of IoT devices (Benign).
Through the comparison of data statistics and model performances, the reliability of the dataset is
confirmed. The specific contributions can be summarized as follows:

• A new dataset is constructed as a supplement to the description of the new trend of DDoS
attacks, to truly reflect characteristics of low-rate traffic and rich traffic protocols of DDoS attacks in
the part of IoT botnets and for the purpose to build an intelligent IoT firewall to control the outbound
flow. The dataset is called MBB-IoT.

• The MBB-IoT dataset was analyzed and evaluated. To test whether the dataset label is
representative and independent and there are adequate samples of anomalies with different labels,
we set up a multi-class classification experiment in the proposed dataset. Consequently, we use cross-
validation between the MBB-IoT and IoT-23 to find a model with better generalizability. And such a
model proves the training set a better application performance.

The rest of this paper is structured as follows: Chapter 2 starts with known public datasets,
analyzes their characteristics, and lists research questions. The third chapter introduces the construc-
tion process of the dataset based on the research questions. Chapter 4 evaluates the dataset from
the perspective of data analysis and application. The fifth chapter analyzes and summarizes the
contribution of this literature and the shortcomings of the dataset.

2 Related Works

Currently, mainstream datasets include: N-BaIoT [7], Bot-IoT [4], IoTID20 [9], ToN-IoT [10],
IoT-23 [8], CIC IoT Dataset 2022 [11], CoAP-Dos [5], LATAM-DDoS-IoT [6]. The literature analyzes
these datasets.

In essence, the above datasets are all records of traffic attributes, reflecting the derivation, flow
direction, and statistical characteristics of benign traffic and anomaly traffic. Due to the non-uniform
measurement standard of statistical characteristics and high dimensionality, a comparative analysis
is of little significance, so it will not be considered. Combined with the actual attack scenario of a
botnet remotely launching an attack, the flow direction of the traffic should include: forwarding to
another network, which corresponds to “DFOF” in Table 1, that is, “Data from outbound flows”; The
target of the attack is the Internet application server, which corresponds to “NDAT” in Table 1, that is,
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“Non-IoT devices attack targets”. The derivation of traffic should include: both benign and anomaly
traffic origination from actual IoT devices, corresponding to “AFFPID” and “BFFPID” in Table 1.
The former is “Attack flows from physical IoT devices”, the latter is “Benign flows from physical
IoT devices”; more real benign traffic should also come from the participation of external users.
This feature is also emphasized in the LATAM-DDoS-IoT dataset, corresponding to “BFFREU” in
Table 1, that is, “Benign flows from real external users”. In addition, the above-mentioned datasets are
implemented in a single local area network to implement all the dataset construction steps. According
to the research background, the indicator that the Internet of Things and the hacker network are in
different networks should be added, which corresponds to “AAVIBR” in Table 1, that is, “Attackers
and victims isolated by routers”. Table 1 briefly compares MBB-IoT with the above datasets, and the
analysis of each dataset is as follows:

Table 1: Data set comparison table

DFOF NDAT AFFPID BFFPID BFFREU AAVIBR

N-BaIoT unknown � �
Bot-IoT
IoTID20 �
ToN-IoT �
IoT-23 � �
CIC2022 � �
CoAP-Dos �
LATAM-DDoS � �
MBB-IoT � � � � � �

N-BaIoT: The dataset is generated from a network of nine IoT devices infected with two kinds
of malware, Mirai and BASHLITE. The advantages lie in the use of physical IoT devices to generate
attacks with a rich variety of devices. However, the victims in the experiment are IoT devices and
located in the same local area network as the botnet, which is inconsistent with the current situation
of DDoS attacks, so the authenticity of traffic has been greatly reduced, which means N-BaIoT only
meets the conditions in AFFPID and BFFPID.

Bot-IoT: This dataset simulates real IoT devices through the Ostinato tool [12] and Node-red
[13] and generates attack traffic using open-source penetration testing software. Its advantage is that
it simulates the data imbalance characteristics of attack traffic in a real environment. However, this
dataset does not use physical IoT devices for experiments, and the attack targets are also IoT devices
and are in the same Local Area Network (LAN) as the attacker. The dataset does not satisfy all the
metrics presented in Table 1.

IoTID20: This dataset simulates a smart home environment for traffic collection. Its advantage
is that it uses physical IoT devices, and the feature distribution is relatively even. However, the attack
traffic of this dataset does not come from the physical IoT devices, and the IoT devices are not taken
as attack targets. The attacked and the attacker are located on the same LAN, which means IoTID20
only satisfies the condition in BFFPID.

ToN-IoT: The intrusion detection dataset is generated by introducing fog computing and rich IoT
devices to form a complex testbed. Its advantage lies in the richness of device types and attack types.
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However, there are also limitations that physical IoT devices are not used to generate attack traffic,
and the attack target is IoT devices and is in the same local area network as the attacker, which means
ToN-IoT only satisfies the condition in BFFPID.

IoT-23: The dataset is generated through a DDoS attack towards three IoT devices by the attack
script carried on a Raspberry Pi. Its advantage is that the attack types are the most abundant in all
public datasets, and the experimental network topology is also rich and diverse. However, there are
also limitations in that the attack target is IoT devices and is in the same local area network as the
attacker. Like N-BaIoT, IoT-23 only meets the conditions in AFFPID and BFFPID.

CIC IoT Dataset 2022: This dataset is composed of traffic captured by IoT devices in scenarios
such as power-on, idle, interaction, and attack. The advantage is that the traffic of the entire IoT device
is collected through the gateway. However, there are the same limitations as previous datasets in the
generation of attack traffic, the selection of attack targets, and the design of the experimental network
topology, which means CIC IoT Dataset 2022 only meets the conditions in BFFPID and BFFREU.

CoAP-DoS: This dataset introduces the CoAP protocol commonly used by IoT devices to
construct the dataset. Its advantage is that it innovates the protocol types involved in DDoS attacks.
However, there are the same limitations as previous datasets in the generation of attack traffic, the
selection of attack targets, and the design of the experimental network topology. Although this data
set is a special data set for DDoS attacks, only BFFPID has been satisfied.

LATAM-DDoS-IoT: This data set introduces IoT devices used by external users, making traffic
more authentic. However, the attack traffic comes from open-source penetration testing software, and
no real IoT devices are used for the attack. The attack targets are also IoT devices, which are contrary
to the status quo of DDoS attacks, which means LATAM-DDoS-IoT only meets the conditions in
BFFPID and BFFREU.

Based on the above analysis, constructing a real IoT and network traffic dataset that includes
recent DDoS attack scenarios is still a topic that needs to be supplemented. More importantly, there is
no dataset involved in the description of the flow of IoT DDoS attack traffic to different networks and
an Internet application server. To enrich the research status of this dataset, this literature constructs
the MBB-IoT dataset.

3 MBB-IoT Dataset Construction
3.1 Summary of Design Ideas

The main idea of MBB-IoT dataset construction is:

(1) The core idea of building an IoT experimental scene is to use real IoT devices to avoid all
victims being located in the same local area network, and to generate normal traffic as close to
reality as possible, which corresponds to the three evaluation indicators of BFFPID, BFFREU, and
AAVIBR in Table 1. Specifically, firstly, the experimental IoT device should be a mainstream IoT
device with security vulnerabilities, but protected by the internal network isolation of the router, and
can implement services and interact with the device through an Internet application account, and
finally realize the simulation of two network scenarios of standby and high traffic, and the high traffic
scenario is used to generate the normal part of the attack traffic, and the standby scenario is used
for the comparison of the experiment and to ensure the comprehensiveness of the dataset. Secondly,
connecting devices such as switches and routers should have practical significance and be coordinated
with the access points of the broadband access network.
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(2) Infiltrate the Internet of Things, implant malicious codes, and build botnets. Since it is unrealistic
to build a complete and widely distributed botnet, we can only infer the overall characteristics of
IoT DDoS attacks by building a small network to reflect the local characteristics of the botnet. The
core idea is to create an environment for hackers to remotely control actual IoT devices and build a
small IoT botnet, corresponding to the AFFPID construction requirements in Table 1. Specifically,
first of all, the most widely used IoT penetration method should be selected, that is, to infiltrate
the IoT intranet through routers [14]. Although this is an attack on IoT devices, it does not meet
the main content of the dataset constructed in the paper (DDoS as the theme), and it is difficult to
collect the traffic of a single IoT device in a wireless environment, so it is not necessary to include
penetration traffic into the dataset. Second, choose the most representative malware to implant into
the IoT device. The implantation process should be the same as the actual attack, download it to
the corresponding IoT device through the cloud server as an intermediary, and then run it. This will
preserve the communication between the device and the cloud;

(3) To control the Internet of Things to attack Internet applications, the core idea is that the victim
should be set as a non-Internet of Things target, which corresponds to the construction requirements
of NDAT in Table 1. Specifically, first, there is at least one hop between the Internet application server
and the Internet of Things, and because the Internet of Things devices are protected by the intranet,
the Internet of Things devices cannot be pinged from the Internet application server. Secondly, the
corresponding botnet attack scenarios should be set according to the classification of malware variant
types, that is, the scenario of a single device attacking an Internet server designed to simulate a botnet
controlled by malware for a certain type of IoT devices, and the scenario of multiple devices attacking
an Internet server at the same time designed to simulate a botnet controlled by malware for a certain
vulnerability.

(4) Collecting network traffic at different nodes, the core idea is to capture the traffic sent by the
IoT gateway and the traffic received by the Internet application server, that is to say, to meet the
construction requirements of DFOF in Table 1. Although the packet capture for the traffic sent by
a certain device reflects the characteristics of the IoT device more obviously, the captured traffic will
not meet the actual situation faced by the intrusion detection system, so the outgoing traffic should
be copied at the gateway to the sniffing device for capture, and the traffic in the Internet server should
also be captured.

3.2 Experimental Scene Construction

According to the design idea of Section 3.1, the experimental network topology is constructed as
shown in Fig. 1. For reflecting the typical application scenarios of the Internet of Things, the literature
selects commonly used smart home devices to construct the mainstream network topology. The interior
specifically includes two independent local area networks including the Internet of Things composed of
five smart devices and the hacker’s network. The WEB server is accessed by the two networks through
the core switch. All their traffic converges on the Internet, so they can access the instructions and
control server (Command-and-control, C&C). In addition, smartphones, smart speakers, and smart
gateways in the Internet of Things are all wireless network access devices. At the same time, smart
speakers and smart gateways are controlled by the LAN software of the Raspberry Pi.
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Figure 1: Experimental network topology of MBB-IoT dataset

According to the network activity, two network scenarios of standby and high traffic are
constructed. The first is the standby scenario. Each IoT device is kept on standby, and the client’s
access to the WEB server is stopped. The second is the high-traffic scenario. In the Internet of things,
the smartphone logs in to the app to watch the live broadcast, the smart speaker logs in to the Xiaomi
account to play the song, and the Raspberry PI logs in to the Homeassistant account to enable the
LAN control of the smart speaker and the smart gateway. For the WEB server, the python script is
used to simulate the browser to access the WEB server in the personal computer (PC) client. A random
pause of 1–15 s follows each visit. In addition, the resource subnet details of the experimental network
are shown in Table 2, and the communication subnet details are shown in Table 3.
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Table 2: Resource subnet details

Name Model IP address

Smartphone Vivo neo5 192.168.2.2
Internet camera EZVIZ CS-C6C-3B2WFR 192.168.2.8
Smart speaker Xiaomi lx05 192.168.2.6
Smart gateway Aqara Smart Hub E1 192.168.2.9
Raspberry Pi 4b (2 gb wifi version) 192.168.2.7
Hacker’s laptop Lenovo Xiaoxin 7000 192.168.1.2
C&C Huawei elastic cloud server xx.xx.xx.xx
WEB server Lenovo desktop A4600K 192.168.0.4
WEB clients Lenovo desktop A4600K 192.168.0.x
Wireshark device (w1) Lenovo desktop A4600K 192.168.0.10

Table 3: Communication subnet details

Name Model IP address or description

Switches (s1) Ruijie S2910 switch Layer 2 switches
Routers (r1, r2) Ruijie RSR20 router 192.168.0.2, 192.168.0.3
AP1, AP2 rg-ap850 Wireless Access Points
Hub (h1) Speedlink ethernet hub Physical Layer device

3.3 Botnet Construction

According to the research background, Mirai and BASHLITE are the most influential malicious
code frameworks, and the source codes have been disclosed by hackers on the Internet. This literature
downloads the original version of Mirai from GitHub [15] and the variant of BASHLITE (gummy)
from the “crack.io” website [16]. The code is statically compiled and linked on the C&C cloud server
to obtain executable files for various architectures. Then obtain the root authority of the router by
brute-force attack to infiltrate the intranet, so that the “wget” or “tftp” command could be used to
download the executable files from the C&C cloud server to the three IoT devices in Fig. 1, the smart
speaker, the smart gateway and the network camera. After running the executable files, the malware
implantation of the IoT devices comes to the end. This literature selects attack types according to each
network layer, see Tables 4 and 5 for details.

3.4 Attack Scenario Construction

The two kinds of malware used in the experimental botnet construction have many variants
circulating in the network, which can be roughly divided into malware targeting a certain type of
IoT device and malware targeting a certain vulnerability indiscriminately. Therefore, combined with
the research background of IoT devices launching attacks on Internet application servers, two attack
scenarios are set up:
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Table 4: Mirai attack types

Mirai attack types Layer number (OSI model) Descriptions

User datagram protocol
(UDP) plain flood

4 UDP flood with fewer options.
Optimized for higher PPS

SYN flood 4 Send repeated SYN packets to every
port on the targeted server

Generic routing encapsulation
(GRE) IP flood

3 Encapsulate IP messages inside
virtual point-to-point links

GRE ethernet flood 2 Encapsulate ethernet frame inside
virtual point-to-point links

Hypertext transfer protocol
(HTTP) flood

7 Send repeated HTTP responses

Table 5: BASHLITE attack type

BASHLITE attack types Layer number (OSI model) Descriptions

Transmission control protocol
(TCP) flood

4 Send repeated TCP packets with all
flags to a specific port on the target
server

UDP flood 4 Send repeated UDP packets to a
specific port on the target server

Rand hex 7 Send a large amounts of spam data
to the target server

Combo 4 Send spam data and build a
UDP/TCP connection with the
target server

(1) A single device attacks the WEB server. It is used to simulate the attack launched by the Internet
of Things botnet controlled by the first type of malware. The hacker host connects to the C&C server
to control one of the cameras, speakers, and gateways to launch the DDoS attacks listed in Tables 4
and 5 one by one on the WEB server. For Mirai, the experimental input attack command is “udpplain
192.168.0.4 3600” (taking UDP plain flood attack as an example), this command corresponds to the
format of “attack type + destination address + duration”, and “udpplain” is the abbreviation of attack
type; “192.168.0.4” is the IP address of the WEB server, and Mirai also supports DNS resolution, so
the domain name of the WEB server can also be filled in here; “3600” represents the duration of a
single attack in seconds, which can be set any value from 1 to 3600. For BASHLITE, the experimental
input attack command is similar to Mirai, such as “tcp 192.168.0.4 3600 80” (take TCP flood as an
example), and the port number of the attack is added at the end. Since the experiment launches attacks
against the WEB server, the port number is set to 80. Since the upper limit of each attack time of the
two malware is 3600 s, “3600 + 600 = 4200” seconds is used as the cycle of each attack to simulate the
discontinuity of the hacker’s attack, and at the same time reduce the impact of network delay on packet
capture;
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(2) Multiple devices attack the WEB server at the same time. It is used to simulate the attack
launched by the Internet of Things botnet controlled by the second type of malware. The hacker host
connects to the C&C server and controls three devices to launch the DDoS attacks listed in Tables 4
and 5 one by one. The attack commands are the same as those shown in (1). The attack period is also
set to 4200 s.

3.5 Network Traffic Collection

There are two key points in the traffic description of IoT devices as the attack source, namely the
IoT gateway and the attack target. It can be known from “DFOF” in Table 1 that the traffic sent from
the Internet of Things to the attacked network should be captured, so the following two packet capture
operations are performed:

(1) Capture the original traffic of IoT DDoS attacks through port mirroring. Set up port mirroring
in the core switch (s1), copy all the outbound traffic of the Internet of Things and forward it to the
network sniffing host (w1) equipped with Wireshark, and capture data respectively in each attack cycle
(4200 s), to realize the native IoT DDoS attack traffic capture, which includes attack packets generated
by infected IoT devices, normal traffic of IoT services, and a small amount of traffic generated by
network routing;

(2) Capture the composite traffic of the IoT DDoS attack on the WEB server side. Open Wireshark
on the server equipped with WEB applications, and capture all received traffic in each attack cycle
(4200 s), including attack traffic from the Internet of Things, access load from clients, and a small
amount of traffic generated by different network exchanges.

Last but not least, to ensure the integrity of the experiment, it is also necessary to capture the
normal traffic sent by the two basic scenarios of standby and high traffic constructed in Section 3.2:
stop the attack and capture the normal traffic when the network activity is stopped or the network
activity is in progress according to the same packet capture principle. Traffic saved as “benign1” and
“benign2” respectively. Use the “tree” command to view the packet capture folder structure as follows:

Among them, the BASHLITE and Mirai folders contain Packet Capture (PCAP) files named
“‘device name’_‘DDos attack type’_‘malicious code type’ _70 min_‘out/web’.pcap”, and the benign
folder contains “benign1” Two PCAP files with “benign2”. According to the attack type, the data
volume is counted, and the results are shown in Table 6.
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Table 6: Data collective volume statistics

Outbound’s (GB) WEB server (GB)

Mirai UDP plain flood 10.2 3.62
Mirai SYN flood 9.27 4.03
Mirai GRE IP flood 6.63 4.29
Mirai GRE ethernet flood 8.52 4.11
Mirai HTTP flood 5.53 4.25
BASHLITE TCP flood 7.76 10.5
BASHLITE UDP flood 32.3 29.5
BASHLITE Rand hex 17.2 16.9
BASHLITE combo 31.4 30.3
Benign1 0.558 0.817
Benign2 1.54 0.952

4 MBB-IoT Dataset Analysis and Evaluation
4.1 MBB-IoT Dataset Analysis
4.1.1 Description of Low-Rate DDoS Attacks in Local IoT Botnet

The packet-sending ability of IoT devices is much lower than that of general desktop computers,
and the collected data sets also reflect the actual characteristics of IoT traffic. Therefore, the average
traffic and packet sending speed of the MBB-IoT dataset should be much smaller than that of the
data set that simulates the DDoS attack of the IoT using a desktop computer equipped with virtual
software. To quantify this feature, check the captured file properties through Wireshark [17] to obtain
the average packet transmission speed, average packet size, and average bit rate. These three statistics
are often used to measure the size of the captured traffic [18–20], that is, the experimental network
throughput. Most datasets provide captured PCAP files (data files created using a network sniffer) as
well as Comma-separated Values (CSV) files. BoT-IoT [4] provides the DDoS attack traffic received
by the entire Internet of Things for comparison with MBB-IoT attack scenario 2. See Tables 7 and 8
for detailed information. CIC IoT Dataset 2022 [11] provides the traffic files of specific devices under
attack. Like MBB-IoT, the experiment uses network cameras and gateways. The statistical information
of corresponding devices is shown in Tables 9–12.

Table 7: Bot-IoT packet information

Type (attacker: hping3) Average (Avg). packets/sec Avg. packet size (bytes) Avg. bytes/sec

DDoS_HTTP 8260.852 655 5410 k
DDoS_TCP 17081.338 146 2494 k
DDoS_UDP 31777.181 209.36 6653 k
(Avg) 19039.790 336.787 4852 k
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Table 8: MBB-IoT dataset scenario 2 packet information

Type (attacker:3 IoT devices) Avg. packets/sec Avg. packet size (bytes) Avg. bytes/sec

DDoS_HTTP 942.5 768 723 k
DDoS_TCP 2188.1 1230 2691 k
DDoS_UDP 1396.9 1169 1633 k
(Avg) 1509.2 1056 1682 k

Table 9: CIC IoT dataset smart gateway packet information

Type (attacker: LOIC) Avg. packets/sec Avg. packet size (bytes) Avg. bytes/sec

DDoS_HTTP 3960.257 66 261 k
DDoS_TCP 4285.110 952.74 4083 k
DDoS_UDP 4577.772 74 339 k
(Avg) 4274.380 364.247 1561 k

Table 10: MBB-IoT smart gateway data packet information

Type (attacker: gateway) Avg. packets/sec Avg. packet size (bytes) Avg. bytes/sec

Mirai GRE Ethernet flood 947 676.26 640 k
Mirai GRE IP flood 922 529.55 488 k
Mirai HTTP flood 802 684.88 549 k
Mirai SYN flood 1145 1005.68 1151 k
Mirai UDP plain flood 1103 1013.15 1118 k
Bashlite TCP flood 2152 1210.52 2532 k
Bashlite UDP hex 2173 1176.72 2555 k
Bashlite Rand hex 3295 276.04 909 k
Bashlite UDP flood 2088 1240.67 2591 k

Table 11: CIC IoT dataset webcam packet information

Type (attacker: LOIC) Avg. packets/sec Avg. packet size (bytes) Avg. bytes/sec

DDoS_HTTP 2155.8 765 1648 k
DDoS_TCP 2016.5 756 1525 k
DDoS_UDP 1859.7 764 1421 k
(Avg) 2010.7 762 1531 k
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Table 12: MBB-IoT webcam packet information

Type (attacker: Camera) Avg. packets/sec Avg. packet size (bytes) Avg. bytes/sec

Mirai GRE Ethernet flood 67 668.53 45 k
Mirai GRE IP flood 72 682.91 49 k
Mirai HTTP flood 63 651.71 41 k
Mirai SYN flood 113 677.46 76 k
Mirai UDP plain flood 108 663.85 72 k
Bashlite TCP flood 812 1221.54 992 k
Bashlite UDP hex 822 1200.32 987 k
Bashlite Randhex 1539 241.35 371 k
Bashlite UDP flood 802 1238.16 993 k

The longitudinal comparison shows that, due to different Central Processing Unit (CPU) capa-
bilities, the average packet transmission speed (PPS) of simulated attacks using open-source software
on desktops is much higher than that of attacks from Internet of Things devices, while the average
packet size and average bit rate are affected by data link bandwidth and other factors, and do not
show any regularities. Meanwhile, the horizontal comparison shows that DDoS attacks at the same
logical layer (layer4: TCP flood & UDP flood; layer5: GRE IP; layer6: GRE eth; layer7: HTTP) have
similar average packet transmission speed, average packet size and average bit rate on a certain device,
with less variation across IoT devices and greater variation with desktops.

The average packet transmission speed, average packet size, and average bit rate have a significant
impact on the features extracted by many popular feature extraction software such as Netflow [21],
CICFlowMeter [22], NFStream [23]. Therefore, it is reasonable to believe that the study of attack
traffic generated by real physical network devices can improve the intrusion detection system. The
dataset prepared in this paper and the method of making the dataset are valuable.

4.1.2 Description of Rich Protocols in IoT DDoS Attacks Traffic

Due to the variety of IoT devices, manufacturers do not have a unified production standard,
and data packets sent by IoT devices contain multiple protocol types. Through the protocol layer
analysis function of Wireshark [17], the collected data packet protocol layer could be counted, and its
percentage is also calculated, which has a quantitative display of the protocol richness and distribution
characteristics. However, this kind of statistic is more intuitive only when the traffic contains fewer
data loads because the number of bits occupied by the protocol header is much smaller than the data
loads. When the traffic contains a large data load, the order of magnitude of the proportion of each
protocol will become very small. To more intuitively compare the difference between MBB-IoT and
public datasets, Table 13 is made according to the number of protocol types contained in different
attack types of different datasets.

Obviously, the complexity of the protocol stack of the data packet obtained by using the open
source penetration testing software in the desktop computer is much lower than that of the DDoS
attack carried out by the IoT device having been infected. This is also one of the reasons why IoT
Profiling has become a relatively hot research field recently. The various services carried out by various
brands of IoT devices lead to complex traffic composition, so the construction of datasets must use
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real IoT devices in real scenarios. The MBB-IoT dataset truly reflects the rich characteristics of IoT
DDoS attack traffic protocols.

Table 13: Comparison of protocol complexity

Flow types Tcp protocol suite Udp protocol suite Others

Bot-IoT
TCP flood 2 2 2
UDP flood 1 2 1
HTTP flood 2 1 1

CIC IoT dataset
TCP flood 1 1 2
UDP flood 0 1 1
HTTP flood 1 1 2

MBB-IoT
TCP flood 9 14 9
UDP flood 14 9 9
HTTP flood 12 9 9

4.2 MBB-IoT Dataset Application Evaluation

By analyzing the detection application of DDoS attacks launched by the Internet of Things,
the support of this dataset for subsequent applications is demonstrated. In this section, two stages
of experimental analysis will be carried out. First, the training and testing are carried out inside
the dataset, and the evaluation conclusions on the quality of the MBB-IoT data set are obtained
by multi-class classification; Second, the model trained by MBB-IoT is verified by using the public
comprehensive dataset as the test set. At the same time, the model trained by the comprehensive dataset
is verified by MBB-IoT.

To complete the first phase of the experiment, the specific model which may have a more outstand-
ing state-of-the-art than other classic models should be selected, and [24] proved the Random Forest to
be a good choice. Moving on to the performance evaluation, mean precision (P), mean recall (R), and
mean f1 score (F) are utilized as evaluation criteria. To complete the second phase of the experiment,
it should be considered that the heterogeneity of the data set is better than that of MBB-IoT, and it
is easy to find a common feature subset. IoT-23 [8] contains the most abundant attack types and the
most diverse experimental scenarios in the current public datasets. The features contained in it are
shown in Appendix B. Through conversion, we can get “ip_num_per_mac”, “src2dst_first_seen_ms”,
“src2dst_last_seen_ms”, “src_port” and other features in Table 14 and Appendix A that perform well
in feature selection, so IoT-23 meet the conditions for cross-validation.

4.2.1 Data Processing and Analysis

Data processing refers to the process of extracting features from the PCAP file obtained in
the experiment and performing a series of preprocessing operations, including feature generation,
feature extraction, labeling, and preprocessing, and then performing a certain algorithm or statistical
knowledge on the obtained feature files to remove features with weak influence on machine learning
to improve the quality of the model and reduce the training cost.
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Table 14: List of new features

Feature Data type Description

ip_num_per_mac Int IP types grouped by source mac address
before the flow is idle

if_same_vlan_or_not Bool If the vlan_id is the same as the flows
whose source IP is the attack target

multi_category_name_&confidence Int 7x + 8y, x from “category_name” feature, y
from confidence feature

(1) feature generation

There are many network traffic feature generation tools to choose from, including YAF [25],
pmacct [26], CAIDA CoralReef [27], SoftFlowd [28], nProbe [29], etc. However, they are often not
comprehensive enough, and some cannot perform real-time packet parsing. Some do not parse
the application layer, and some do not support decoding the encapsulation protocol. The feature
selection of the MBB-IoT dataset is based on the latest network flow analysis framework—NFStream
[23], which has the advantages of comprehensive functions, and good scalability, and supports the
expansion of machine learning algorithms for traffic analysis. The MBB-IoT data set selects the basic
information generated by the framework, tunnel decoding, application layer dialysis, and time series
statistical features as a preliminary data set. There are 87 features in total. See Appendix A for specific
data types and feature descriptions.

(2) feature extraction

To make the generated features better describe the trend and pattern of DDoS attacks, three
additional features are added as shown in Table 14. “ip_num_per_mac” describes the characteristics of
DDos attack random source IP address, and has a trend of increasing in stages; “if_same_vlan_or_not”
describes the distribution trend of DDoS attacks originating from external network IP addresses,
including the authenticated communication between hackers and infected devices through routers;
“multi_category_name_&confidence” further makes the attributes parsed by the application layer of
the NFStream framework unique and having a certain distribution trend through function mapping.

(3) labeling

From a macro point of view, traffic is divided into abnormal traffic and normal traffic, and has
different attack types at the same time, so two sets of labels can be set. One is the “benign” and
“anomaly” labels for binary classification, and the other is the specific attack type and the “benign”
label for multi-class classification.

From a microscopic point of view, the maximum attack time of malicious codes Mirai and
BASHLITE is 60 min, and the experiment time is 70 min, so the first 86% of the traffic is marked
as an “anomaly”, and the last 14% of the traffic is marked as “benign”.

(4) preprocessing

Through the above operations, the number of features has reached 90, and certain preprocessing
is required. In the first stage, the characteristics of problematic data types are removed. The feature
data in the first column of Table 15 is with poor data performance, and there are many null values. The
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features in the second column are difficult to convert into numeric values. The features in Table 15 are
removed.

Table 15: The feature list removed in the first stage of preprocessing

Features with poor data performance Features that cannot map into integer or float

client_fingerprint, server_fingerprint,
user_agent, content_type

src_ip, src_mac, src_oui, dst_ip, dst_mac, dst_oui,
application_name, requested_server_name

In the second stage, the problem of the distribution of each eigenvalue is solved. Remove features
whose eigenvalues are all of a certain value, and features that are highly relevant to model training but
meaningless. See Table 16 for specific removed features.

Table 16: The feature list removed in the second stage of preprocessing

High categorical features Meaningless label

bidirectional_ece_packets, src2dst_cwr_packets,
bidirectional_cwr_packets, src2dst_ece_packets,

Id

if_same_vlan_or_not, dst2src_urg_packets,
dst2src_ece_packets, dst2src_cwr_packets,
vlan_id

After preprocessing, 68 columns of features are left, and the data obtained from the two
experiments are merged into two large CSV files, namely “outbound.csv” and “web_server.csv”.

(5) feature selection

For the design of data analysis, the focus is on feature selection. Feature selection is not a
necessary process in general machine learning, but in the field of intrusion detection, feature selection
is often a step that cannot be bypassed. Because the data generally has a high dimensionality, the
proportion of positive samples and negative samples is extremely inconsistent, and there is often a
high correlation between the generated features, which will have a greater impact on the training effect
of machine learning, and it is necessary to remove features that do not meet the requirements. There
are generally three methods for feature selection, namely the filter method, wrapper method, and
embedded method. The filter method generally uses statistical methods to evaluate the correlation
between features to remove features that do not meet the requirements. The computational complexity
of this method is not high. However, the stability is poor, and the optimal feature selection of the
training algorithm often could not be achieved [29]; Wrapper method uses a specific machine learning
algorithm to perform a subset search and quality evaluation of the feature set, and its stability is
better than filter method, but its computational complexity is high [29], while the embedded method is
equivalent to the complex of the first two methods, which has better stability and lower computational
complexity [30]. At present, the feature selection of most IoT intrusion detection datasets uses the filter
method or wrapper method [31]. From the perspective of comprehensive performance and stability,
it should be optimized to the more advanced embedded method to ensure that the data set shows the
best effect in the application evaluation.
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It can be seen from [24] that random forest is better than Naive Bayes (NB), Principal Component
Analysis (PCA), and other methods, and has an advantage in efficiency compared with the genetic
algorithm [32]. Therefore, this paper uses the random forest to select MBB-IoT datasets.

The first step is to use 40% of the data to train the random forest, temporarily remove the multi-
category label “types”, and arrange them in order of size according to the Gini importance to obtain
the feature importance distribution map of each feature of the data set, as shown in Fig. 2. Select
according to the first five gradients, that is, select features until “dst_port”. The specific characteristics
are shown in Table 17.

Figure 2: Random forest feature importance histogram
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Table 17: Feature selection features

Selection in Fig. 2 Number of features

src2dst_first_seen_ms,
bidirectional_first_seen_ms,

27

src2dst_last_seen_ms,
bidirectional_last_seen_ms,
src_port, ip_num_per_mac,
src2dst_max_ps, dst2src_first_seen_ms,
src2dst_mean_ps, bidirectional_max_ps,
bidirectional_duration_ms,
bidirectional_mean_piat_ms,
src2dst_min_ps, bidirectional_max_piat_ms,
dst2src_last_seen_ms,
bidirectional_stddev_piat_ms,
src2dst_stddev_piat_ms,
bidirectional_min_piat_ms
src2dst_duration_ms, src2dst_mean_piat_ms
bidirectional_mean_ps, src2dst_min_piat_ms
src2dst_max_piat_ms, bidirectional_min_ps
application_category_name,
bidirectional_packets
dst_port

4.2.2 Dataset Internal Evaluation

Abundant data samples for every category is a basic requirement of high-quality datasets, and
also facilitates the modeling of machine learning algorithms. Especially, MBB-IoT dataset contains
various data of attack types which are shown in Tables 4 and 5 and their labels need to be substituted
by 1–9. Obviously, the label of benign samples could be set as ‘0’. After removing the binary labels, the
dataset is divided into a training set and a test set according to 8:2. The training set is used to build a
Random Forest model, which are evaluated on the remaining test and the performance could be seen
in Table 18.

Test results show an excellent performance as all the attack types attain high P, R, and F scores,
which means labels are representative and independent and the data samples in different labels are
linearly separable from each other, so the dataset internal evaluation can give an evidence about dataset
quality.

4.2.3 Dataset Cross-Evaluation

The methods used are SVM [33], LightGBM [34], and LSTM [35], which cover gradient, tree-
related algorithms, and deep learning algorithms, and can achieve a more comprehensive evaluation
of the dataset. The training set and test set are intercepted from different datasets, and the performance
of the two datasets is comprehensively evaluated by comparing the parameters Accuracy, F1 score, and
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AUC. The results are shown in Tables 19–21. First of all, it can be seen that although the accuracy of
the model obtained by MBB-IoT is only slightly higher than that of IoT-23, F1 score and AUC are
much higher than those of IoT-23, which means the misjudgment rate of the model based on the MBB-
IoT dataset is much lower. In general, the test performance based on the MBB-IoT dataset is better
under the same model.

Table 18: Multi-class classification performance with random forest

Criteria labels Precision (%) Recall (%) F1 score (%)

UDP plain flood 88.63 94.56 91.50
SYN flood 89.22 95.06 92.05
GRE IP flood 90.14 93.57 91.82
GRE ethernet flood 89.85 94.01 91.88
HTTP flood 89.48 93.93 91.65
TCP flood 100.0 100.0 100.0
UDP flood 92.27 97.99 95.04
Rand hex 88.11 93.14 90.56
Combo 89.44 94.42 91.86
Benign 100.0 100.0 100.0

Table 19: Cross-validation of SVM machine learning algorithms

SVM Test on the other (MBB-IoT or IoT-23)

Accuracy (%) F1 (%) AUC (%)

Train on MBB-IoT 80.256 75.654 79.189
Train on IoT-23 78.591 50.854 55.645

Table 20: LightGBM machine learning algorithm cross-validation

LightGBM Test on the other (MBB-IoT or IoT-23)

Accuracy (%) F1 (%) AUC (%)

Train on MBB-IoT 85.346 79.654 78.128
Train on IoT-23 81.654 65.265 66.785

In the literature of ToN-IoT [10], it comes to the point that the cross-validation result of the dataset
is better than IoT-23 due to its heterogeneity better than IoT-23; XeNIDS intrusion detection system
based on various cross-validation scenarios also attribute the poor performance of cross-validation
results to the lower heterogeneity of training set than test set [36]. However, the cross-validation results
of this literature show that the MBB-IoT dataset with less heterogeneity than IoT-23 performs better.
Indeed, the heterogeneity of the dataset is a very important factor, but the model interpretation in the
cross-validation process needs to be further explored.
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Table 21: LSTM deep learning algorithms cross-validation

LSTM Test on the other (MBB-IoT or IoT-23)

Accuracy (%) F1 (%) AUC (%)

Train on MBB-IoT 70.154 70.062 70.365
Train on IoT-23 61.897 60.951 61.902

5 Conclusion

It is one of the main problems in the field of IoT security that IoT devices launch DDoS attacks
on Internet applications. However, the data set describing the DDoS attack scenario is relatively scarce
at present. To enrich the research status of the Internet of Things DDoS attack data set, this paper
proposes a dataset named “MBB-IoT” containing the attack traffic of malware Mirai and BASHLITE
and the normal traffic of the Internet of Things. The dataset is derived from DDoS attack traffic
launched by controlled IoT devices, which ensures that IoT is protected by an internal network and
the attack target is a WEB server of another network. The MBB-IoT dataset provides two versions
of DDoS native traffic and server-side mixed traffic. In data processing, features describing DDoS
attack characteristics are proposed, and the new features show high importance for model training in
feature selection based on random forest. After analysis, MBB-IoT truly reflects the characteristics
of low-rate traffic and rich traffic protocols in the implementation of DDoS attacks in the Internet
of Things. Finally, the paper also evaluates the application of machine learning algorithms on the
MBB-IoT dataset. MBB-IoT dataset is divided into a training set and a test set, and then applied to
Random Forests and MLP classification algorithm for training and testing. The test results are better
than LATAM-DDoS-IoT. Secondly, using SVM, LightGBM, and LSTM algorithms to cross-evaluate
MBB-IoT and IoT-23 across datasets, the detection performance is better when MBB-IoT is used as a
training set. However, because of the limitations of the number of devices and the environment, there
is still much room for improvement in the dataset, and it is a direction worth studying in terms of the
extent to which the semantic gap is resolved, and more in-depth research will continue in the future.
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Appendix A

Feature list generated by MBB-IoT

Features Data type Description

id Int Flow identifier
expiration_id Int Identifier of flow expiration trigger. Can be 0 for

idle_timeout, 1 for active_timeout or −1 for custom
expiration.

src_ip Str Source IP address string representation.
src_mac Str Source MAC address string representation.
src_oui Str Source organizationally unique identifier string

representation.
src_port Int Transport layer source port.
dst_ip Str Destination IP address string representation.
dst_mac Str Destination MAC address string representation.
dst_oui Str Destination organizationally unique identifier string

representation.
dst_port Int Transport layer destination port.
protocol Int Transport layer protocol.
ip_version Int IP version.
vlan_id Int Virtual LAN identifier.

(Continued)
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(continued)

Features Data type Description

bidirectional_first_seen_ms Int Timestamp in milliseconds on first flow
bidirectional packet.

bidirectional_last_seen_ms Int Timestamp in milliseconds on last flow bidirectional
packet.

bidirectional_duration_ms Int Flow bidirectional duration in milliseconds.
bidirectional_packets Int Flow bidirectional packets accumulator.
bidirectional_bytes Int Flow bidirectional bytes accumulator (depends on

accounting_mode).
src2dst_first_seen_ms Int Timestamp in milliseconds on first flow src2dst

packet.
src2dst_last_seen_ms Int Timestamp in milliseconds on last flow src2dst

packet.
src2dst_duration_ms Int Flow src2dst duration in milliseconds.
src2dst_packets Int Flow src2dst packets accumulator.
src2dst_bytes Int Flow src2dst bytes accumulator (depends on

accounting_mode).
dst2src_first_seen_ms Int Timestamp in milliseconds on first flow dst2src

packet.
dst2src_last_seen_ms Int Timestamp in milliseconds on last flow dst2src

packet.
dst2src_duration_ms Int Flow dst2src duration in milliseconds.
dst2src_packets Int Flow dst2src packets accumulator.
dst2src_bytes Int Flow dst2src bytes accumulator (depends on

accounting_mode).
tunnel_id Int Tunnel identifier (O: No Tunnel, 1: GTP, 2:

CAPWAP, 3: TZSP).
application_name Str nDPI detected application name.
application_category_name Str nDPI detected application category name.
application_is_guessed Int Indicates if detection result is based on pure

dissection or on a guess heuristics.
application_confidence Int Indicates the underlying detection method (O:

Unknown classification, 1: Classification obtained
looking only at the L4 ports, 3: Classification results
based on partial/incomplete DPI information, 4:
Classification results based on some LRU cache
with partial/incomplete DPI information, 5:
Classification results based on some LRU cache
(i.e., correlation among sessions), 6: Deep packet
inspection).

requested_server_name Str Requested server name (SSL/TLS, DNS, HTTP).

(Continued)
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(continued)

Features Data type Description

client_fingerprint Str Client fingerprint (DHCP fingerprint for DHCP,
JA3 for SSL/TLS and HASSH for SSH).

server_fingerprint Str Server fingerprint (JA3 for SSL/TLS and HASSH
for SSH).

user_agent Str Extracted user agent for HTTP or User Agent
Identifier for QUIC.

content_type Str Extracted HTTP content type.
bidirectional_min_ps Int Flow bidirectional minimum packet size (depends

on accounting_mode).
bidirectional_mean_ps Float Flow bidirectional mean packet size (depends on

accounting_mode).
bidirectional_stddev_ps Float Flow bidirectional packet size sample standard

deviation (depends on accounting_mode).
bidirectional_max_ps Int Flow bidirectional maximum packet size (depends

on accounting_mode).
src2dst_min_ps Int Flow src2dst minimum packet size (depends on

accounting_mode).
src2dst_mean_ps Float Flow src2dst mean packet size (depends on

accounting_mode).
src2dst_stddev_ps Float Flow src2dst packet size sample standard deviation

(depends on accounting_mode).
src2dst_max_ps Int Flow src2dst maximum packet size (depends on

accounting_mode).
dst2src_min_ps Int Flow dst2src minimum packet size (depends on

accounting_mode).
dst2src_mean_ps Float Flow dst2src mean packet size (depends on

accounting_mode).
dst2src_stddev_ps Float Flow dst2src packet size sample standard deviation

(depends on accounting_mode).
dst2src_max_ps Int Flow dst2src maximum packet size (depends on

accounting_mode).
bidirectional_min_piat_ms Int Flow bidirectional minimum packet inter arrival

time.
bidirectional_mean_piat_ms Float Flow bidirectional mean packet inter arrival time.
bidirectional_stddev_piat_ms Float Flow bidirectional packet inter arrival time sample

standard deviation.
bidirectional_max_piat_ms Int Flow bidirectional maximum packet inter arrival

time.
src2dst_min_piat_ms Int Flow src2dst minimum packet inter arrival time.
src2dst_mean_piat_ms Float Flow src2dst mean packet inter arrival time.

(Continued)
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Features Data type Description

src2dst_stddev_piat_ms Float Flow src2dst packet inter arrival time sample
standard deviation.

src2dst_max_piat_ms Int Flow src2dst maximum packet inter arrival time.
dst2src_min_piat_ms Int Flow dst2src minimum packet inter arrival time.
dst2src_mean_piat_ms Float Flow dst2src mean packet inter arrival time.
dst2src_stddev_piat_ms Float Flow dst2src packet inter arrival time sample

standard deviation.
dst2src_max_piat_ms Int Flow dst2src maximum packet inter arrival time.
bidirectional_syn_packets Int Flow bidirectional syn packet accumulators.
bidirectional_cwr_packets Int Flow bidirectional cwr packet accumulators.
bidirectional_ece_packets Int Flow bidirectional ece packet accumulators.
bidirectional_urg_packets Int Flow bidirectional urg packet accumulators.
bidirectional_ack_packets Int Flow bidirectional ack packet accumulators.
bidirectional_psh_packets Int Flow bidirectional psh packet accumulators.
bidirectional_rst_packets Int Flow bidirectional rst packet accumulators.
bidirectional_fin_packets Int Flow bidirectional fin packet accumulators.
src2dst_syn_packets Int Flow src2dst syn packet accumulators.
src2dst_cwr_packets Int Flow src2dst cwr packet accumulators.
src2dst_ece_packets Int Flow src2dst ece packet accumulators.
src2dst_urg_packets Int Flow src2dst urg packet accumulators.
src2dst_ack_packets Int Flow src2dst ack packet accumulators.
src2dst_psh_packets Int Flow src2dst psh packet accumulators.
src2dst_rst_packets Int Flow src2dst rst packet accumulators.
src2dst_fin_packets Int Flow src2dst fin packet accumulators.
dst2src_syn_packets Int Flow dst2src syn packet accumulators.
dst2src_cwr_packets Int Flow dst2src cwr packet accumulators.
dst2src_ece_packets Int Flow dst2src ece packet accumulators.
dst2src_urg_packets Int Flow dst2src urg packet accumulators.
dst2src_ack_packets Int Flow dst2src ack packet accumulators.
dst2src_psh_packets Int Flow dst2src psh packet accumulators.
dst2src_rst_packets Int Flow dst2src rst packet accumulators.
dst2src_fin_packets Int Flow dst2src fin packet accumulators.

Appendix B

List of features used in the IoT-23 dataset

Features Data Type Description

ts Float This is the time of the first packet
uid String A unique identifier of the connection
id.orig_h String The originator’s IP address

(Continued)
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(continued)

Features Data Type Description

id.orig_p Integer The originator’s port number
id.resp_h String The responder’s IP address
id.resp_p Integer The responder’s port number
proto Category The transport layer protocol of the connection
service String An identification of an application protocol being sent

over the connection
duration Float How long the connection lasted
orig_bytes Float The number of payload bytes the originator sent. For

TCP this is taken from sequence numbers and might be
inaccurate

resp_bytes Float The number of payload bytes the responder sent
conn_state Category Connection state
local_orig Bool If the connection is originated locally, this value will be

T
local_resp Bool If the connection is responded to locally, this value will

be T
missed_bytes Integer Indicates the number of bytes missed in content gaps,

which is representative of packet loss
history Category Records the state history of connections as a string of

letters
orig_pkts Integer Number of packets that the originator sent
orig_ip_bytes Integer Number of IP level bytes that the originator sent
resp_pkts Integer Number of packets that the responder sent
resp_ip_bytes Integer Number of IP level bytes that the responder sent
label Category Attack types
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