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Abstract: Cybersecurity increasingly relies on machine learning (ML) mod-
els to respond to and detect attacks. However, the rapidly changing data
environment makes model life-cycle management after deployment essential.
Real-time detection of drift signals from various threats is fundamental for
effectively managing deployed models. However, detecting drift in unsu-
pervised environments can be challenging. This study introduces a novel
approach leveraging Shapley additive explanations (SHAP), a widely rec-
ognized explainability technique in ML, to address drift detection in unsu-
pervised settings. The proposed method incorporates a range of plots and
statistical techniques to enhance drift detection reliability and introduces a
drift suspicion metric that considers the explanatory aspects absent in the
current approaches. To validate the effectiveness of the proposed approach in a
real-world scenario, we applied it to an environment designed to detect domain
generation algorithms (DGAs). The dataset was obtained from various types
of DGAs provided by NetLab. Based on this dataset composition, we sought
to validate the proposed SHAP-based approach through drift scenarios that
occur when a previously deployed model detects new data types in an environ-
ment that detects real-world DGAs. The results revealed that more than 90%
of the drift data exceeded the threshold, demonstrating the high reliability of
the approach to detect drift in an unsupervised environment. The proposed
method distinguishes itself from existing approaches by employing explainable
artificial intelligence (XAI)-based detection, which is not limited by model or
system environment constraints. In conclusion, this paper proposes a novel
approach to detect drift in unsupervised ML settings for cybersecurity. The
proposed method employs SHAP-based XAI and a drift suspicion metric to
improve drift detection reliability. It is versatile and suitable for various real-
time data analysis contexts beyond DGA detection environments. This study
significantly contributes to the ML community by addressing the critical issue
of managing ML models in real-world cybersecurity settings. Our approach is
distinguishable from existing techniques by employing XAI-based detection,
which is not limited by model or system environment constraints. As a
result, our method can be applied in critical domains that require adaptation
to continuous changes, such as cybersecurity. Through extensive validation
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across diverse settings beyond DGA detection environments, the proposed
method will emerge as a versatile drift detection technique suitable for a wide
range of real-time data analysis contexts. It is also anticipated to emerge as a
new approach to protect essential systems and infrastructures from attacks.

Keywords: Cybersecurity; machine learning (ML); model life-cycle
management; drift detection; unsupervised environments; shapley additive
explanations (SHAP); explainability

1 Introduction
1.1 Motivation

The rapid pace of data growth has led to developing new attack methods that are rapidly evolving.
In response, the security industry has recognized the need to incorporate machine learning (ML)
techniques into security systems and is researching to detect new, previously unknown attacks. With
the growing interest in ML, ML operations (MLOps) have emerged for efficient management. Before
MLOps, a culture and methodology called development and operations (DevOps) was combined
to operate applications efficiently. Later, MLOps emerged to operate artificial intelligence (AI) and
ML efficiently. These MLOps play a critical role in the social atmosphere, which requires smooth
system operation in an environment where data exchange and change coexist. Models introduced into
the system are maintained through MLOps to increase model sustainability in the post-deployment
environment. Model management is essential for ML models, especially in the networking field, to
withstand the massive amount of data generated in a short period. In network security, changes in
new data or the discovery periods of a model can be interpreted as the occurrence of new attacks
and the deterioration of the detection performance of existing models, a severe problem that negates
the reason for the model. Therefore, as a follow-up, such measures as data reorganization and model
retraining can be taken to increase model sustainability.

For efficient system operation and effective model management, monitoring the health of models
in real time is crucial. Drift manifests in various forms, including model, data, and concept drift, with
data drift being the most prevalent. This type of drift can lead to significant issues, such as rendering
existing models obsolete and necessitating comprehensive system reconfiguration. Swiftly identifying
drift signals within management and oversight processes is essential to ensure a sustainable system
operation and prompt response. Typically, drift can be inferred when metrics, such as accuracy or
error, deviate from the previous performance by more than a certain threshold. However, detecting
performance drift necessitates access to correct answers for model predictions, which can be time-
consuming and costly in real-world settings. Existing drift detection methods (DDMs) predominantly
cater to supervised environments where performance changes are informative but rely on ground truth
labels. These approaches are constrained by their inability to differentiate between distinct drift types,
such as data and concept drift.

No matter how good a detection method is, the most crucial aspect is whether it can be applied
in a real-world environment. Monitoring is essential to detect real-world drift. Monitoring the
currently running model in real time is essential to detect drift and react quickly with corrective
actions. Therefore, supervised environments that are far from real time are inappropriate. Effective
management and supervision require DDMs that are less dependent on answer sheets and are
applicable to unsupervised environments.



CMC, 2023, vol.76, no.2 1703

1.2 Contribution

The proposed method in this paper seeks to address the limitations of existing model drift
detection techniques, offering several vital contributions, as outlined below. First, the approach is
designed for application in unsupervised environments, which is critical for practical implementation
within the industry. The proposed technique adopts a well-suited measurement approach for unsuper-
vised settings by employing a density-based distance method. Second, the method is model-agnostic,
accessible, and reliable. Leveraging explainable AI (XAI) technology ensures the explainability of
model prediction outcomes through various plots and explanations, an aspect absent in the current
methods. Last, the numerical representation of drift signals delivers intuitive drift suspicion results for
individual data points, enabling a detailed analysis through the examination of specific data. This
paper aims to demonstrate a novel possibility for drift detection by expressing the change in the
influence of each feature as a distance-based score while measuring the extent of statistical change
using a predetermined threshold.

2 Related Work
2.1 Importance of Model Management and Drift

Deploying an ML model creates the best model for the environment during design. However,
it is difficult to maintain the same performance even after the model is deployed if it is designed
according to the system environment and the designer’s intentions. Therefore, several factors must be
considered for smooth operation by management/supervision of the deployed ML model, as presented
in Fig. 1 [1].

Figure 1: Machine learning system elements

In recent years, as ML has become more widespread, the concept of MLOps has emerged as
one of the most promising trends [2]. Moreover, MLOps implements five functions that integrate the
development and production phases of ML: (1) data collection/transfer, (2) data transformation, (3)
continuous ML retraining, (4) continuous ML redistribution, and (5) production/presentation output
for end users. The goal of MLOps is to support the automation, integration, and monitoring of these
phases [3]. After a model is deployed, the environment may change; in particular, changes in data
statistics, prediction labels, and attributes may cause drift, reducing the persistence of the model. In
this paper, we focus on efficient model management methods that monitor the progress of (2) through
(4) of the five features to contribute to the mentioned model drift detection.

Focusing on model drift during monitoring is vital because it signals environmental changes
caused by data drift and the need for retraining. Failure to recognize changes in the model can
lead to severe problems, such as false positives and malfunctions. For example, industrial control
systems undergo continuous digital transformation and maintenance with real-time monitoring.
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Rapid malfunction and drift detection can eventually lead to a healthy system lasting longer than
the expected lifespan [4].

Security systems constantly change, and ML models are introduced in earnest to detect new and
unknown malicious behavior. However, it is impossible to detect all myriad types of malicious data
in the vast data environment. Therefore, models are often built by introducing detection techniques
specialized for specific attacks, such as malicious data and spam [5]. However, there are limits to how
well malware detection models can keep up with evolving attack techniques. Eventually, drift occurs
when the model fails to adapt to changing data, directly influencing model performance, or when new
attacks emerge that differ from the original data. Drift in security systems can have dire consequences
when considering emergency services, so drift mitigation is essential to eliminate adverse effects.

While the goal is to detect drift quickly and accurately to manage the life cycle of a model, drift is
caused by many diverse types of changes. It is more sensitive in network systems where vast data are
generated quickly. Therefore, efficient, lightweight, scalable drift detection techniques are needed to
be applicable in such network systems [6].

2.2 Different Approaches to Detecting Model Drift

Fig. 2 depicts a typical example of drift detection [7], which detects drift signals by comparing
predeployment data with new post-deployment data.

Figure 2: Common examples of drift detection. Adapted with permission from reference [7]

2.2.1 Methods for Detecting Model Drift

The DDMs can be broadly categorized into supervised and unsupervised environments. Super-
vised environments detect drift when the sample and comparison data are labeled. Drift detection is
essential in environments that deal with numerous data, such as weather, network logs, and alerts
from industrial systems. Therefore, a drift detector must be introduced that can be applied in an
unsupervised rather than a supervised environment to detect whether the target data have drifted,
although labels may exist in the learning drift or inferring statistics processes [8].

Detection methods in unsupervised environments depend on data availability, as illustrated in
Fig. 2, and can be categorized into batch methods that set the batch size within limited data and online
methods that consider all incoming data at a specific time. Even within batch methods, methods are
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further divided into those using full batches [9,10] and those using partial batches [11]. Online methods
can again be divided into fixed reference methods based on reference windows and sliding reference
methods for data with fewer labels [12,13]. In both methods, similarities are compared after the data
have been accessed.

Similarity comparison is a step that directly detects the drift between the reference and comparison
data. There are methods to detect similarity based on performance changes, such as accuracy, recall,
sensitivity, and error rates. A typical example is the DDM, a performance-based drift detector [8]. The
DDM assumes that a drift signal appears when the change in a metric exceeds a significance level.
The DDM has since evolved into other performance-based detection methods [14,15]. As mentioned,
these methods can be measured in the presence of labels in a supervised environment. However, they
have the disadvantage of being highly dependent on labels.

Several nonperformance-based detection methods have been developed to compare similarities
using statistical measures. These approaches measure the distance from the target of comparison and
employ it as a drift detection metric [16]. Techniques, such as distance-based measures, Kolmogorov–
Smirnov tests, clustering similarity, and margin density, have been used for drift tracking as an
alternative to traditional statistics. A significant advantage of these statistical DDMs is their ability
to operate effectively without labels. One method proposed for monitoring distribution changes
in a sliding window fashion signals a drift when the number of identified outliers surpasses a
specified threshold [17]. Additionally, new DDMs leverage the density of posterior probabilities in
semi-supervised environments, making them suitable for streaming environments with limited data
labels [18].

2.2.2 Explainable Artificial Intelligence-Based Methods for Detecting Model Drift

The exceptional performance of ML methods, combined with technological advances, has led to
widespread adoption across numerous domains. However, these models inherently present a trade-
off between performance and transparency. Despite achieving high-performance metrics, how these
models form predictions and judgments remains unclear, often leading to their classification as black-
box systems [19]. Consequently, stakeholders increasingly demand model transparency. In response to
this need, the US Defense Advanced Research Projects Agency has proposed XAI [20], an approach
aimed at developing interpretable models while maintaining the performance of existing models,
garnering considerable interest within the field.

These XAI techniques can be categorized into interpretable models that provide explanations on
their own and techniques that employ external explanatory approaches. External techniques provide
additional value by providing statistics, visualizations, examples, and other methods to explain the
basis for predictions and judgments. The interpretability of a model is essential information in the
process of tracking model drift. Analyzing its causes through interpretability and drift detection has
helped overcome the limitation of not having immediate feedback on the model output in real-world
scenarios [21]. In addition to traditional drift tracking methods, research on drift detection provides
evidence for drift [22]. This study revealed that drift detection and the rationale could be explained by
tracking features that cause significant changes in the distance between distributions.

Lundberg et al. proposed Shapley additive explanations (SHAP) based on the Shapley value for
model explanatory power [23]. The SHAP value measures the influence (contribution) of each feature
in the data in explaining model predictions. Based on this, we present a variety of plots to provide
explanations that can be interpreted locally and globally. A growing body of research combines SHAP
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with AI models to interpret complex internal structures with applications in health care, security, and
other fields.

Lundberg et al. proposed a variety of uses for SHAP [24]. Fig. 3 presents an example of post-
deployment monitoring of a model using SHAP values. Fig. 3b depicts an example of the possibility
of detecting errors through the change in SHAP when the data are partially relabeled. Fig. 3c illustrates
the possibility of detecting specific functional errors due to problems with the system’s internal
measurement methods. We compared Figs. 3a and 3d to illustrate the potential use of drift detection.
The graph in Fig. 3a presents the overall loss of model predictions commonly used for drift detection.
This graph naturally displays the inevitable increase in loss with testing data, but from the perspective
of drift detection, it is difficult to determine the onset and progression of drift from this graph alone.
Fig. 3d displays the SHAP value for the loss function of the model. We argue that if a gradual drift
occurs, the drift can be recognized by the change in SHAP loss, as indicated in the graph. Similarly, a
study has shown that SHAP values can detect drift in individual features through changes in sensitive
features [25]. In this study, changes in individual features over time as drift occurs were observed
through changes in SHAP values, revealing that drift can be recognized in advance through intuitive
changes in individual features that begin to exhibit different distributions as drift occurs.

Figure 3: Example of monitoring plots. Adapted with permission from reference [24]

Previous research has found that drift detection signals the need for model management, an
essential task that should be performed concurrently with model deployment. In particular, the
security field requires monitoring for drift detection to create systems that respond in real time to new
attacks without collapsing. In this paper, we propose a multivariate data-tailored drift signal extraction
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method and a detection method that can be introduced to unsupervised environments by reducing the
reliance on labels.

3 Proposed Method

Monitoring for drift detection is crucial in managing constructed AI models, as it facilitates the
identification of issues within the model and data. However, regarding data types for drift detection,
numerous studies have concentrated on supervised environments and encountered limitations, such
as losing significant attributes due to dimensionality reduction while measuring the similarity to
reference data. This paper introduces a method that leverages SHAP values, representing the influence
of features in the AI prediction process within XAI. This approach prevents substantial data loss and
offers a drift detection technique applicable to unsupervised environments. Fig. 4 outlines the process
of the proposed method.

Figure 4: Overall structure of the proposed method

3.1 Data Generation Including Drift

Selecting a data configuration is the first step in tracking data of a different nature than before
the model is deployed. As presented in Fig. 2, there are old and new data for drift estimation. The old
data are the data before the deployment and the reference data for drift detection. New data are data
after deployment, and drift is detected in these data. Therefore, in selecting data for drift detection, the
reference data should consist of representative data representing the currently deployed model well,
such as training data. Data subject to drift detection can be the testing or new data generated after
deployment.

3.2 Selecting Important Features

Features are crucial elements representing model characteristics to comprehend and learn from
data. Typically, numerous features are constructed to maintain a wide range of possibilities among the
data characteristics to predict the label. However, among the vast array of features, only a few features
play a pivotal role in determining the label. Consequently, any alteration in these critical features affects
the label, model, and other aspects.

In this study, we aim to select essential features from the extensive pool to identify a limited number
of critical factors and detect drift through changes in these features. We employed SHAP as a tool for
selecting these critical features, which generates descriptors to represent the constructed model and
extracts SHAP values by estimating the model.

Moreover, SHAP was implemented as a Python library to provide a variety of plots. Summary and
monitoring plots were used to screen and determine the most influential features based on the analyst’s
expert opinion. Fig. 5 is a representative example of a summary plot, which visualizes the influence
and magnitude of all features in a label. Influence considers the positive and negative contributions
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of the features to the label, and they are listed in order of increasing influence. Distributions to the
right of the center are positive for the label, and those to the left are negative. The color of each point
represents the actual feature value, and the magnitude of the value can be interpreted as the influence.

Figure 5: Example of summary plots

The top features are selected as critical by judging the degree to which their influence distribution
is evident. Because the summary plot takes the absolute values of the positive and negative influences
from an overall perspective and assigns a differential based on the overall sum, it is not always clear
that the top features provide clear direction. Therefore, analysts use monitoring plots to determine
which features are clear. Fig. 6 plots the relationship between the actual and SHAP values of a feature
in index order. In the monitoring plot above, the actual values are not distributed in a specific range
and do not have a clear area of influence. These features appear as top features in the summary plot
but do not appear in a specific section and have a random distribution. The process of selecting critical
features aims to track down and remove these features from the list and identify those features that
demonstrate clear influence and interpretability as crucial, such as the monitoring plot below.

3.3 Similarity Measurement

The subsequent step, which is crucial for drift detection, involves measuring similarity. Drift
fundamentally involves assessing statistics that differ from the original data; thus, most DDMs
measure similarity by comparing the statistics of the reference and comparison data based on a
predetermined threshold. In unsupervised environments, distance is commonly measured to deter-
mine similarity. For multivariate data, dimensionality reduction is required for distance calculation,
clustering, visualization, and other purposes. However, a caveat in this process is the potential loss
of meaningful information during the dimensionality reduction procedure. This study proposes a
similarity measurement method employing SHAP values to address these limitations, as outlined in
Table 1.
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Table 1: Drift score measurement algorithm based on SHAP values

Algorithm 1

Input: Section of drift detection
Output: Suspicious data
DOld: Old data
DNew: New data or test data
DDrift: Drift data
Ln: Label n
Ln (D): D Containing Label n
T: Threshold
# SHAPextraction(D) is a function that extracts SHAP values
# CovMat(D) is a function that converts to a covariance matrix
# CalculateMahalanobis(u, v) is a function that calculates the Mahalanobis distance of u
# DriftScore(D) is a function that converts the Mahalanobis distance to the drift score
S = SHAPextraction(DOld, DNew, DDrift)
SuspiciousList = []
for i in S:

for j in range(len(Ln)):
MDij = CalculateMahalanobis(SetCovMat(i), mean(CovMat(Lj (DOld))))
If (T > DriftScore(MDij)):

SuspiciousList.append(DriftScore(MDij)))

Figure 6: Example of selecting vital features by monitoring plots
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The SHAP values function as a tool for selecting key features and as a substitute for actual values
in distance measurements. Using SHAP values instead of original values presents several advantages.
First, SHAP values serve as a numerical representation of the influence of each feature, enabling
them to be weighted according to their importance and emphasized during the comparison process.
Second, all data and features can be compared using the same standard unit. While raw values exhibit
distinct units, scales, and ranges, SHAP values allow comparisons within the same space, overcoming
these limitations. Last, SHAP values describe the model decision-making process; thus, each step is
accompanied by an explanation, such as the rationale behind the decision, enhancing the credibility
of the process.

After the data transformation, we measured the distance using the Mahalanobis distance metric.
The Mahalanobis distance allows for a more meaningful interpretation than the Euclidean distance.
The Mahalanobis distance is ideal for multivariate data environments because it considers probability
distributions. Specifically, while the Euclidean distance is a simple distance calculation, the Maha-
lanobis distance is a density-based distance measure that considers the associations in the data. The
formula for the Mahalanobis distance is calculated as follows:

d (u, v) =
√

(u − v)
−1∑

(u − v)T . (1)

In the expression, u is each data point, and v is the mean of the data. The Mahalanobis distance
method is a probability distribution-based calculation that requires data to be transformed into a
covariance matrix to measure the distance. After converting the data into a covariance matrix that
considers the correlation between the variables, the Mahalanobis distance is measured.

The Mahalanobis distance measure is combined with the drift measure and expressed as a p-
value to derive a statistically significant interpretation. The Mahalanobis distance follows a chi-square
distribution, and the goodness-of-fit test compared to the population during the chi-square test is
essentially similar to drift detection.

3.4 Statistical Hypothesis Test

The drift score, derived from the SHAP of new data relative to the predeployment data, represents
a probabilistic interpretation of the Mahalanobis distance value. Data points with p-values below
a specific threshold are typically classified as statistically deviant in statistical comparisons. Conse-
quently, by applying the drift score threshold, values identified as statistically deviant are categorized
as suspected drift data.

Table 2 is an example of measuring the drift score for individual data. The values SHAP_F1
through SHAP_Fn represent the SHAP values of the features to obtain the Mahalanobis distance.
Moreover, MD 1 and MD 2 correspond to the distance of the data from each label in the data before
the distribution, and p-values 1 and 2 correspond to the final drift score as a probability value for
the distance. The MD value means the data point is farther from the corresponding label. In turn, p-
values can be interpreted as moving away from the threshold. A p-value below the threshold indicates
a deviation from the existing distribution, which can be interpreted as drift. As an example of this
interpretation, suppose the threshold is 0.1, and p-values 1 and 2 are below 0.1. Any p-value that falls
below the threshold can be viewed as a drift, which can be considered an instance of drift away from
the current statistics.
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Table 2: Suspicion drift score example

INDEX SHAP_F1 SHAP_F2 Label . . . MD 1 MD 2 p-value 1 p-value 2

0 0.025 0.218 0 . . . 8 68 0.521 0.116
1 −0.155 −0.001 1 . . . 121 2 0.058 0.612
2 −0.224 0.025 1 . . . 89 7 0.105 0.828

Because drift scores are measured as the distance of individual data points from the existing labels,
even in unsupervised environments with limited labeling, one can classify suspected drift data based
on drift scores alone. These classified suspected drift data can be accumulated in a database to track
the actual drift start point. Fig. 7 illustrates the result of accumulating drift scores from the analyzed
data during monitoring. Analysts can infer that drift has occurred when the curvature of the graph
differs from the traditional statistics, as presented in the figure.

Figure 7: Example of measuring the drift score

4 Experiment

The experiments in this section were designed to validate the proposed method. We focused on
detecting domain generation algorithm (DGA) attacks, one of the types of network attack detection.
The dataset consists of previously trained DGA data and scenarios where the DGA of various types
occurred after deployment. This experiment aims to validate whether the deployed model can detect
drift when a DGA of a different nature from the original distribution occurs over time. In a real-
world environment, the post-deployment data have limited labels, but because this experiment aims to
validate the proposed method, we constructed labeled data for cross-validation. Therefore, the result
evaluates whether the model can detect drift occurrence.

4.1 Dataset

The experiment is to validate drift detection; thus, we require data of the same nature as the existing
distribution and data of a new nature. The dataset consists of a DGA dataset provided by NetLab and
a general domain dataset provided by Alexa, as presented in Table 3. The dataset consists of conditions
under which drift can occur in the DGA detection model.

After deployment, we added a new DGA of a new nature to create an environment where
drift occurs. Information about the previously trained and new DGAs is provided in Table 4. When
comparing the old and new DGAs, drift will likely occur due to the different lengths and randomized
alphabets, which degrade the performance of the old model.
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Table 3: Drift dataset

No. Data type Number of data Total

1 Before deployment Training data DGA 5,031 10,000

Normal 4,969

2 After deployment Testing data DGA 2,012 4,000

Normal 1,988

Drift data DGA 500 1,000

Normal 500
Note: DGA: Domain generation algorithm.

Table 4: Domain generation algorithm (DGA) information

Existing DGA New DGA

Length 6–15, a-z 15, a∼y
TLD [biz, com, net, org, info, cc] [ru, com, cn, su]
Generation cycle 2 days 1 month
Generation count 5,000 5,000
Example agadss.biz

ynrvwgfqbex.org
bsgejiagbavgavk.cn
jnouayonvoquria.ru

4.2 Preparation Process for Drift Detection

We constructed a model with the previous training data to create a drift detection environment
and extracted SHAP values as descriptors. Then, instead of using all the features for drift detection,
we used SHAP plots to select critical features.

4.2.1 Model Creation

The DGA detection model is generated from the training data before deployment. This experiment
aims to validate whether the proposed method can detect drift. The validity of the generated model
and dataset is also a factor that must be validated during the process. The generated dataset contains
a different data type than the trained data. Therefore, for the generated model and dataset to be
valid, the data after deployment must display a degradation in performance compared to the results
predicted by the model. It is usual for models to perform poorly on new data types because they are
specialized for the existing types. Although the proposed method is a DDM applicable to unsupervised
environments, we validated the models and datasets by constructing labeled data for validation. The
resulting performance changes in the generated models are presented in Table 5.

Table 5: Performance of the domain generation algorithm (DGA) detection model

Before including drift After including drift

Accuracy 0.95 0.87
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4.2.2 Selection of Important Features Based on SHAP

The proposed method uses SHAP values from existing data to overcome the limitations of existing
DDMs. We extracted the SHAP values through a descriptor that mimics the generative model, and
based on these values, we used the summary and monitoring plots among the various plots provided
by the SHAP values. The first step in selecting vital features is to employ the summary plots to obtain
a list of high-influence features, as illustrated in Fig. 8. The order of the summary plots is determined
by the sum of the absolute values of the SHAP values to obtain a high-influence list.

Figure 8: List of high-influence features

While the summary plot provides an overview of the overall influence, the distribution of
SHAP values differs for each feature. Therefore, the next step is to use the monitoring plot. The
monitoring plot helps characterize each feature by displaying the distribution of the SHAP values
in detail. In Figs. 9a and 9b, the results of the monitoring plots are provided for “trans_char” and
“distribution_of_vowel,” where (a) displays the difference between positive and negative influences
based on the actual values. Features with clear boundaries of influence and interpretation, such as in
Fig. 9a, are added to the list of critical features. In contrast, features with unclear boundaries, such
as in Fig. 9b, are removed from the list because their interpretation is unclear. Following the above
process, 10 vital features were selected: “trans_char,” “distribution_of_host_special,” “len_host,”
“len_tld,” “len_repeat_str_host,” “contain_vowel_u,” “contain_vowel_o,” “contain_vowel_a,” “con-
tain_vowel_e,” and “contain_vowel_i.”
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Figure 9: Monitoring plot results of the exclusion target

4.2.3 Drift Score Extraction

The drift score is determined by the Mahalanobis distance between the two labels in the data
before the distribution. We must first perform a covariance matrix of the SHAP values and measure
the Mahalanobis distance between the DGA and dataset corresponding to the typical region. This
measure is a distance, so a higher value means a deviation from traditional statistics. However, the
distribution of the values is unclear, and a probability transformation is made to facilitate analysis.

Fig. 10 presents the distribution of drift scores after data allocation for an overarching analysis of
the results. Each distribution groups the labels predicted by the model, excluding drift data, enabling
the observation of trends in drift scores. In the graph, 0 represents the drift score for normal data
before allocation, while 1 signifies the drift score for DGA. The first distribution pertains to data
with predictions classified as normal. Although a wide range of distributions exists for normal, most
of the p-values for the DGA are below 0.1. The second distribution corresponds to results predicted
for the DGA, which similarly exhibits a low p-value for normal. These findings indicate that a low
p-value emerges when the drift scores of the proposed method possess distinct statistics compared to
the measured labels. Consequently, the low p-value for the normal and DGA data can be interpreted
as data exhibiting novel statistical characteristics.

Table 6 presents some of the results. In the first and second cases, drift occurs in the data, but
the distances and probabilities for both DGA and normal data exceed the threshold. These cases are
considered to have drift because the existing labels deviate from the statistics. For this experiment, we
assumed that drift is suspected if the p-value is 0.1 or less.



CMC, 2023, vol.76, no.2 1715

Figure 10: Drift score distribution for all data

Table 6: Sample of the result of extracting the drift score

Data Type MD_DGA MD_Normal p-value (DGA) p-value (Normal)

Drift 167 17 0.03 0.0
Testing (DGA) 2 29 0.98 0.01
Testing (Normal) 27 5 0.001 0.74

4.2.4 Statistical Drift Tracking and Analysis Results for Extracting the Drift Score

After extracting the drift score, one can check whether the data drifts based on the set threshold. It
is crucial to determine the optimal value for the threshold, as the strength of the threshold determines
the detection rate of drift in the analyzed data. Table 7 lists the percentage of suspected drift in the
data based on the threshold. Drift is when the drift scores of the normal and DGA data in the
predeployment data are lower than the threshold. Training and testing refer to the percentage of
suspected drift in the normal and DGA data combined, whereas drift refers to the percentage of
suspected nondrift in the new DGA data. The lower the percentage of suspected drift in the nondrift
testing data and the higher the percentage of suspected drift in the drift data, the better the results. The
results reveal that a lower threshold results in a lower percentage of suspected drift in the actual drift
data. Therefore, setting the optimal threshold to track the occurrence of drift is of utmost importance.

Table 7: Results based on the suspected drift rate

Threshold Training (%) Testing (%) Drift (%)

0.01 2 7 66
0.02 2 9 74
0.03 3 11 80
. . . . . . . . . . . .

0.08 6 17 89
0.09 7 18 91
0.1 7 19 92
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The proposed method allows setting a threshold to distinguish between individual data and data
suspected of drift. It can also be used to track the overall occurrence of drift by inferring the occurrence
of drift from the moving average line of drift scores. Fig. 11 depicts the moving average line for drift
scores, and Fig. 11a displays the moving average line for drift scores for data that the model predicted
would be in the normal region of the overall data. Conversely, Fig. 11b presents the moving average
line for the data predicted to be in the DGA region. All figures have in common that the average
moving line changes as it moves from the training to the testing data. This change is natural because
the initial training and testing data statistics are subtly different. However, if the average moving line
drops after the testing data, the data have different properties than the original data, and the analyst
must determine whether drift has occurred. Only by categorizing the data according to the labels
predicted by the model and comparing the drift scores can the model detect data of a noticeably
different nature. Visualizing the classification by the mentioned thresholds can be used as a helpful
indicator for analysts to determine drift.

Figure 11: Average moving line results for the drift score

The first observation method we implemented in this experiment was to measure the drift
suspicion rate as a function of the threshold, and the results revealed that the drift-induced data have
a high drift suspicion rate as a function of the appropriate threshold. We also detected the second
observation method, the moving average line of the drift scores for each group of labels. Similarly,
a sharp drop in the moving average line was observed at the beginning of the drift-inducing data.
Thus, the experiments demonstrate the validity of the proposed method as an approach to detect
drift-induced data that are presumed to be new labels.

5 Discussion

The DDM we propose is an innovative approach to overcome the limitations of existing detection
methods and environments for model drift detection. The experimental results demonstrate that this
approach can quickly detect drifted data.

The proposed approach offers several advantages for its application in model drift detection. First,
it delivers an intuitive numerical representation of drift signals, assigning a drift score to each data
point. By setting arbitrary thresholds for the drift score, the approach yields easily interpretable results
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based on well-defined criteria. Second, the method is model agnostic, making it applicable across
models. Moreover, SHAP facilitates the calculation of individual feature influences on the predicted
outcomes, enhancing the understanding of the model decision-making process and fostering increased
confidence. Last, the approach accommodates conditions suitable for unsupervised environments, a
crucial requirement for conventional drift detection. As a numerically conditioned detection method
rather than a label-based one, it exhibits less dependency on labels.

While the proposed method is promising for application to various drift detection environments,
the limitations must be addressed in future research. First, comparison targets under different
conditions are needed in the experimental stage for drift detection. The validity of the proposed
method must be further verified through the results of comparison targets in various environments. In
the future, we plan to verify the validity of drift detection in other scenarios by applying the proposed
method based on cases using AI models in other security areas besides DGA detection scenarios. In
addition, we plan to introduce a comparative analysis method that considers both the explainability
and ability to detect drift data combined with XAI to clarify the validity of the comparison method
with other scenarios. Second, the speed of the drift score calculation must be improved, which is a
factor in determining the presence of drift. The most significant problem with drift scores is that they
are time-consuming to calculate when extracting the SHAP values on which they are based, which
requires a fundamental solution that has not been addressed despite efforts to extract them quickly,
such as fastSHAP and GPUTreeSHAP. The final limitation is that, although the proposed method
helps detect different data types in existing environments, it requires an additional step of aggregating
drift from individual data to determine when model drift occurs.

6 Conclusion

In the rapidly evolving cyber landscape, effectively combating various threats necessitates the
prompt and accurate detection of drift signals in models to prolong the lifetime of the deployed models.
Although existing studies on drift detection primarily focus on supervised environments, the reliability
of the metrics determining drift remains uncertain. During data preprocessing for drift detection, labels
can be applied to predeployment data; however, labeling operations are limited for subsequent data.
Consequently, drift signal detection methods suitable for unsupervised environments where labeling
operations have minimal influence are necessary to facilitate real-world applications.

This paper introduces a method for drift detection that is independent of labels and considers
explanatory power. The framework of the proposed method aims to identify drift signals by extracting
a drift score, a statistical metric to classify and assess whether data exhibit drift during the monitoring
process. We extracted the SHAP values to obtain the drift score for each data point. This approach
offers significant advantages by overcoming existing limitations and leveraging various SHAP features
with high descriptive power for a fair comparison across all features. Subsequently, we calculated
the Mahalanobis distance-based drift score and evaluated drift in individual data points based on
a predefined threshold.

To assess the effectiveness of the proposed method in augmenting the explanatory power of
existing data and drift detection techniques, we conducted experiments within a DGA detection
context. We designed the data scenarios to incorporate new DGAs exhibiting distinct characteristics
compared to those of previously trained DGAs and applied the proposed approach to extract drift
scores for each data point. Thus, the drift scores of the new DGAs were higher compared to the
actual labels of the data classified as suspected drift data. The experimental results reveal that the
proposed method can detect suspected drift data with new labels. Additionally, as the proposed method
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derives drift scores using SHAP values, it offers explainability throughout all stages of assessment and
implementation, bolstering confidence in the approach. This study applies the proposed technique to
real-time monitoring, categorizing suspected drift data using statistical values independent of labels.
Consequently, we anticipate that analysts can make more informed decisions based on the enhanced
explanatory power while evaluating drift within the model.

The approach proposed in this paper is an essential step toward quickly detecting when drift is
suspected in the results of individual data points. Taken together, we hope it inspires more analysts to
identify the starting point of model drift.
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