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Abstract: By identifying and responding to any malicious behavior that could
endanger the system, the Intrusion Detection System (IDS) is crucial for
preserving the security of the Industrial Internet of Things (IIoT) network.
The benefit of anomaly-based IDS is that they are able to recognize zero-
day attacks due to the fact that they do not rely on a signature database to
identify abnormal activity. In order to improve control over datasets and the
process, this study proposes using an automated machine learning (AutoML)
technique to automate the machine learning processes for IDS. Our ground-
breaking architecture, known as AID4I, makes use of automatic machine
learning methods for intrusion detection. Through automation of prepro-
cessing, feature selection, model selection, and hyperparameter tuning, the
objective is to identify an appropriate machine learning model for intrusion
detection. Experimental studies demonstrate that the AID4I framework suc-
cessfully proposes a suitable model. The integrity, security, and confidentiality
of data transmitted across the IIoT network can be ensured by automating
machine learning processes in the IDS to enhance its capacity to identify
and stop threatening activities. With a comprehensive solution that takes
advantage of the latest advances in automated machine learning methods
to improve network security, AID4I is a powerful and effective instrument
for intrusion detection. In preprocessing module, three distinct imputation
methods are utilized to handle missing data, ensuring the robustness of the
intrusion detection system in the presence of incomplete information. Feature
selection module adopts a hybrid approach that combines Shapley values
and genetic algorithm. The Parameter Optimization module encompasses a
diverse set of 14 classification methods, allowing for thorough exploration
and optimization of the parameters associated with each algorithm. By care-
fully tuning these parameters, the framework enhances its adaptability and
accuracy in identifying potential intrusions. Experimental results demonstrate
that the AID4I framework can achieve high levels of accuracy in detecting
network intrusions up to 14.39% on public datasets, outperforming traditional
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intrusion detection methods while concurrently reducing the elapsed time for
training and testing.

Keywords: Automated machine learning; intrusion detection system;
industrial internet of things; parameter optimization

1 Introduction

The concept of Internet of Things (IoT) is used in many areas, including health, defense,
transportation, agriculture, smart cities, smart homes, wearable technologies, etc. The IoT involves the
integration of intelligent devices and management systems to achieve practical goals. The adoption of
IoT technology has significantly changed our lives.

The implementation of IoT in industrial settings has given rise to the concept of IIoT. The
interconnection of devices is not a novel idea in the industry, as they require coordination and
collaboration to function effectively. The exchange of data and communication between devices is
common but usually restricted within a manufacturing facility or a specific region of the industry.
Supervisory Control and Data Acquisition (SCADA) systems collect data from remote sensors and
industrial equipment and transmit it to a central location for monitoring or control [1].

Industrial IoT refers to the use of sensors, data analytics, and smart machines to enhance
scalability, efficiency, and interoperability in critical infrastructure, leading to improved automation
and increased corporate productivity [2]. To attain the objective of increased productivity, certain
obstacles must be overcome. The highest priority is the security of industrial infrastructure and
its components. Cyberattacks on crucial infrastructure can lead to substantial financial losses for
industries.

There are different ways IIoT nodes can connect to the internet. Examples of these ways are
Tranmission Control Protocol/Internet Protocol (TCP/IP), Message Queuing Telemetry Transport
(MQTT), Modbus TCP, a cellular connection, LoRaWaN. IIoT nodes, capable of collecting, process-
ing, and transmitting data, can also be vulnerable to privacy and security threats that may compromise
the system [3]. A key feature of IIoT nodes is that they are always active during data collection,
processing and transmission. IIoT systems basically consist of the following layers: sensor/perception
layer, application layer, network layer and cloud. At each layer, there are various attack and penetration
methods that can compromise systems with the IIoT. The growing reliance on IIoT systems has made
them a target for cyber-attacks. Some of the most common hacking and infiltration methods used
against IIoT systems include access control attacks, where unauthorized individuals attempt to gain
access to sensitive data or systems; data corruption breaches, which involve tampering with data in
transit or storage; spoofing attacks, in which an attacker poses as a trusted source to trick a system into
providing access or divulging sensitive information; and denial of service (DoS) and distributed denial
of service (DDoS) attacks, which involve overwhelming a system with traffic to make it unavailable
to users. It is important for IIoT systems to have robust security measures in place to prevent such
threats and ensure the privacy and integrity of sensitive data. To counter these attacks and to ensure
the security of IIoT nodes, many organizations use intrusion detection systems.

Intrusion detection is an illegal attempt that affects the integrity, privacy, availability of the
network [4]. Traditional intrusion detection system are not effective systems because of the wide variety
of intrusions. Therefore, it is very important to develop efficient and robust systems according to
modern requirements.
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Intrusion Detection Systems use various techniques to identify and analyze potential cyber-
attacks. Signature-based IDS work by comparing network data with pre-existing attack patterns
stored in a database. When a match is found, the system alerts administrators by triggering an alarm.
Nevertheless, a major drawback of this approach is its inability to recognize novel and unidentified
attacks if they are not included in the database. On the other hand, rule-based or anomaly-based IDS
store normal network behavior in a database and trigger an alarm when there is a deviation from
established rules. This method can detect previously unknown attacks. Hybrid IDS systems blend the
advantages of both signature-based and anomaly-based IDS to detect attacks. Despite their versatility,
traditional IDS systems have limitations such as a high rate of false positives and low accuracy in
detecting attacks.

Attackers develop new attack methods and software they use every day. The significance of
intrusion detection systems is growing daily, and advancements are being made to enhance their ability
to defend against malicious software and improve the effectiveness of network systems. Research in
this field is abundant and new studies are constantly being conducted to enhance the performance of
intrusion detection systems.

Intrusion Detection Systems play a crucial role in monitoring real-time internet traffic and
identifying any abnormal behavior [5]. The task of determining traffic behavior and the type of
network attacks can be approached as both a binary classification problem and a multi-class problem
[6]. With the increasing demand for accurate and efficient security solutions, there has been a growing
interest in improving the attack prediction accuracy of existing IDS classifiers. The application of
machine learning techniques in IDS has become an active area of research in recent years. Researchers
aim to develop new and improved methods to improve the performance of IDS in detecting and
preventing network attacks [7]. The objective is to enhance security against cyber-attacks and secure
sensitive data by utilizing machine learning technology [8].

Developing an AutoML framework for intrusion detection in Industrial Internet of Things (IIoT)
can bring several benefits. These are primary causes:

• Increased Efficiency: AutoML framework automates the building of intrusion detection mod-
els, reducing time and effort. It allows rapid model development, deployment, and monitoring,
improving the effectiveness of identifying potential attacks.

• Enhanced Accuracy: AutoML framework incorporates machine learning algorithms that can
evaluate massive amounts of data, identify complicated patterns, and learn from the past. By
lowering false positives and false negatives, this can improve intrusion detection accuracy in
comparison to traditional rule-based techniques.

• Scalability: With numerous devices producing enormous volumes of data, IIoT networks can
have a very large scale. By automating the model development and training process, enabling
effective use of computational resources, and ensuring scalability as the network grows, autoML
frameworks can manage this amount of data.

• Reduced Expertise Requirements: The design and maintenance of rules for traditional intru-
sion detection systems frequently requires extensive domain knowledge. AutoML framework
automates a lot of the technical complexity, which reduces the necessity of specific knowledge
and makes it possible for non-experts to create efficient intrusion detection models.

The scope of this study is to construct an AutoML framework that focuses on intrusion
detection for IIoT systems. Section 2 outlines the research methodology employed in this study. In
Section 3, the focus will be on the field of machine learning and AutoML. This section will provide a
comprehensive overview of these technologies and their applications in various industries. It will cover
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the various algorithms and techniques used in machine learning, including supervised, unsupervised,
and reinforcement learning. In Section 4, AID4I framework is introduced for automating the machine
learning pipeline. This framework aims to automate all the steps involved in the machine learning
process, from preprocessing to model selection, to achieve the best performance on a given dataset.

On Section 5 the results of the tests are shared. We conclude the study in Section 6 and in the 7th
Section what can be added to this work in the future and how it can be improved are explained.

2 Methodology

Traditional intrusion detection methods, such as signature-based detection and rule-based sys-
tems, often struggle to keep pace with the rapidly evolving landscape of cyber threats. These methods
rely on predefined patterns and rules, making them vulnerable to novel and sophisticated attack
techniques. As a result, they can generate a significant number of false positives or miss new and
emerging threats altogether.

Several benefits may arise from addressing this issue and enhancing the precision and effectiveness
of intrusion detection systems. It can improve an organization’s overall security posture, lowering the
danger of successful assaults and potential harm. Additionally, it may allow for more prompt and
proactive reactions to identified breaches, enabling firms to lessen the effect and restrict the scope of
a breach. Organizations can optimize training and testing times to increase efficiency, utilize fewer
resources, and reduce cost.

Increased efficiency in the development and deployment of intrusion detection models is one
advantage of using AutoML. These frameworks automate the selection of models, hyperparameter
tuning, and feature engineering. Because of the automation, building models and deployment can
happen more quickly because human experts are not required to put in as much manual effort. As
a result, organizations can react to new threats more quickly, ensuring the quick identification and
containment of network intrusions.

Improved accuracy in intrusion detection is frequently achieved using autoML approaches.
AutoML may analyze a variety of models and configurations in order to identify the most suitable for
the task at hand by utilizing sophisticated algorithms and search techniques. Traditional approaches
might miss the best solutions, but AutoML is capable of identifying them, leading to more precise
intrusion detection models. This increase in accuracy contributes to a decrease in false positives and
false negatives, improving the intrusion detection system’s overall efficiency.

AutoML can be explained as a large and versatile optimization problem. It can be expressed as
a solution space that can produce predictions for a dataset according to a certain computational
process without human intervention. AutoML enables the automatic construction of the machine
learning pipeline to achieve optimum performances on a dataset. It can automate difficult task and
time-consuming tasks such as data preprocessing, model selection, and hyperparameter optimization
and create pipelines. The steps of the AutoML process in the most general form are shown in Fig. 1.

Hyperparameter optimization is also an import problem of the machine learning process [9].
Because hyperparameter optimization is used to explore hyperparameter configurations that can work
best in different datasets [10], to design pipelines that can be used in certain areas, and to contribute
to the development of what is offered by default in common machine learning libraries [11,12].
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Figure 1: The steps of AutoML

Given the critical nature of network intrusion detection and the limitations of existing approaches,
this research aims to propose and evaluate the effectiveness of the AID4I framework in achieving
higher accuracy levels and reducing training and testing time. The following sections will outline the
methodology employed to conduct this study and provide detailed insights into the experimental setup,
data collection, and evaluation metrics used to assess the performance of the AID4I framework.

3 Automated Machine Learning

Machine learning enables systems to improve and strengthen their capability to learn from experi-
ences and make decisions without human intervention [13]. Top level machine learning approaches are
examined in two categories as supervised and unsupervised. However, at the granular level, machine
learning is divided into 4 categories: supervised, semi-supervised, unsupervised, and reinforcement.
Supervised machine learning methods learn from a labeled dataset to make predictions for the future.
If the data is unlabeled, unsupervised machine learning techniques are used. Semi-supervised machine
learning techniques utilize a mixture of data with and without annotations in the learning phase.
Reinforcement learning algorithms, on the other hand, determine rewards or penalties based on
interactions within a defined environment [14].

AutoML aims to use the machine learning process in a smooth workflow by eliminating the cost
of many trial and error processes that the hyperparameter problem will do in line with the experience
of the individual [15,16]. They listed the automated steps within the scope of AutoML as follows:

1. Automated data preparation
� Detection of column-based attribute types (categorical, numeric, etc.)
� Detection of column-based attribute role
� Task detection (binary classification, clustering, etc.)

2. Automated feature engineering
� Selection and extraction of features
� Meta learning and transfer learning

3. Automated model selection
4. Hyperparameter optimization
5. Automated pipeline selection
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6. Automated selection of performance evaluation metrics and validation methods
7. Automated issue detection

� Leak detection
� Incorrect configuration detection

8. Automatic evaluation of obtained outcomes.
9. User interfaces and visualization for the machine learning process

It is seen that AutoML produces impressive results [15]. In AutoML studies, it’s very important
to be able to explain how the system works. Because this automated process should be able to meet
both the questionability of the success of the constructed model and the concept of explainability in
artificial intelligence. For this purpose, pipelines that show how the process progresses in AutoML
studies must be defined. Fig. 2 show the pipeline of a classic AutoML process.

Figure 2: Pipeline of a classic AutoML process

So far, different AutoML studies have been done and various frameworks have been developed
and in literature there are studies on automatic machine learning model selection. However, most
of these studies have focused on some parts of AutoML pipeline. In study [16] compared in 150
supervised classification tasks. As a result of the benchmarking, it was stated that TPOT (Tree-based
Pipeline Optimization Tool) outperformed a basic machine learning analysis on 21 classification
tasks. In study [17], they created classification pipeline by building on scikit-learn but only traditional
machine learning methods such as SVM (Support Vector Machine) and kNN (k-Nearest Neighbors)
are being used. Auto-Keras [18] is an open-source library focused on searching for deep learning
models developed based on Keras framework. Study [19] includes a comprehensive review of the
Oracle AutoML platform which has been proposed as a fast and predictive AutoML pipeline. In
this automated machine learning model, algorithm selection, adaptive sampling, feature selection and
then hyperparameter tuning are performed. It has been noted that a feed-forward approach generates
superior results in a shorter amount of time compared to state-of-the-art open source AutoML tools
like H2O and Auto-Sklearn. Many AutoML algorithms work on fixed datasets to solve certains tasks.
However, an AutoML system should possess the ability to continually learn and have the capability to
advance the entire process autonomously.

Our research on the development of an AutoML framework with advanced features such as
imputation for missing values, hybrid feature selection using Shapley values and genetic algorithms,
and hyperparameter optimization with grid search holds significant importance in the field of machine
learning. Firstly, the inclusion of imputation for missing values addresses a common challenge faced
in real-world datasets, where missing data can hinder the performance of machine learning models. By
incorporating an imputation method within the AutoML framework, the quality and integrity of the
data can be enhanced while leading to improved model performance and more accurate predictions.
Secondly, the hybrid feature selection approach combining Shapley values and genetic algorithms
offers a novel and powerful method for identifying the most informative features within a dataset.
Shapley values provide a rigorous and theoretically sound approach to quantify the contribution
of each feature to the model’s performance, enabling the elimination of irrelevant or redundant
features. Integrating genetic algorithms further enhances the feature selection process by exploring
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different combinations of features and optimizing the selection based on specific evaluation criteria.
This combination of techniques enables the AutoML framework to automatically select the most
relevant features, reducing dimensionality, improving interpretability, and potentially enhancing the
generalization capability of the machine learning models.

4 Experimental Evaluation

In this study, it is aimed to develop an AutoML system that can take part in intrusion detection
for IIoT systems. During the development of the AutoML system, priority was given to the X-IIoTID
dataset. This dataset, which is suitable for the classification task, has 59 features and 820,834 instances.
With this dataset, a clear and precise attack classification can be made and it includes new generation
attacks such as WebSocket fuzzing, Constrained Application Protocol (CoAP) resource discovery,
MQTT malicious subscription, crypto-ransomware. It also covers protocols such as Modbus, Web-
Socket, MQTT, TCP, Address Resolution Protocol (ARP), Hyper-Text Transfer Protocol (HTTP),
Secure Shell (SSH), Domain Name System (DNS), Simple Mail Transfer Protocol (SMTP), User
Datagram Protocol (UDP). It is a more comprehensive dataset than other dataset created for IIoT
and IDS [20].

The AutoML pipeline developed within the scope of this study consists of the following stages.

1. Preprocessing data
2. Model selection

� Feature selection
� Parameter tuning

1. Performance/model comparison
2. Deployment

4.1 Preprocessing

Data preparation is the first step in the machine learning process. Data preparation basically
consists of 3 parts: data collection, cleaning, and augmentation. Data collection is one of the necessary
steps to obtain a dataset or to expand an existing dataset. Although it is natural to have noise in datasets
and this may negatively affect model training. In the data cleaning process, noisy data that may cause
a decrease in accuracy rates in model training, are cleaned. Therefore, data cleaning should be done
[9]. The data augmentation process is an important step to increase the performance and robustness of
the model. Data augmentation can also be considered as a data gathering tool, as it generates new data
from existing data. It can also be used to prevent the model from being overfitted. As the size of the
data increases, the accuracy and speed of models based on machine learning are significantly affected.
Data preprocessing is a phase that consists of transforming raw data, so that problems arising from
incompleteness and inconsistencies in the data set are resolved. At this stage, it is aimed to obtain a
more understandable data set.

Preprocessing is a crucial stage in Automated Machine Learning as it involves transforming raw
data into a format that is suitable for building machine learning models. The following are three
important preprocessing steps after data preparation that should be performed in AutoML: handling
missing values, scaling, and encoding. Data collected in real-world scenarios often contain missing
values, which can negatively impact the performance of machine learning models. To overcome this
challenge, different techniques such as imputation (filling in the missing values with a value such as
the mean of median of the column) or deletion (removing the entire row or column with missing
values) can be used. The imputation method selected is dependent on the data type, the degree of
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missing values, and the distribution of the data. In some machine learning algorithms, the magnitude
of the features can impact their contribution to the model. To ensure that all features are given equal
consideration, scaling is performed to bring all features to the same maginute. This is typically achieved
by normalizing the features to have a mean of zero and a standard deviation of one. Machine learning
algorithms work with numerical data and therefore categorical variables need to be transformed into
numerical form. Common encoding techniques include one-hot encoding, label encoding and the
ordinal encoding. The choice of encoding method depends on the type of categorical data and the
specific requirements of the machine learning algorithm used.

4.2 Feature Selection

Feature engineering is a crucial step in the machine learning pipeline that involves transforming
raw data into a format that can be easily understood and analyzed by algorithms and models. This
step is crucial for the AutoML pipeline, as the quality of the attributes has a significant impact on the
performance of a model.

Feature selection involves creating a subset of the original features by eliminating redundant
ones to expedite the training of the model. This process improves model performance by avoiding
overfitting. The selected attributes are often different and hight.

Feature selection provides benefits in creating simpler and more understandable models, preparing
more understandable data and increasing result performance. Feature selection has been used for
many years in different tasks such as eliminating noisy irrelevant, and redundant features for image
recognition, addressing language difficulties such as abbreviations, misspellings, and synonyms for
natural language processing, reducing processing cost, minimizing storage, and providing better
understanding of test data for intrusion detection.

Feature selection reduces irrelevant or redundant features, creating a subset based on the original
feature set. In this way, the model can be simplified, preventing overfitting and improving model
performance. According to the study [21], the feature selection process consists of 4 basic steps as
shown in Fig. 3 below.

Figure 3: Basic steps of feature selection process
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The feature selection process involves a systematic evaluation of a subset of features selected using
a search method. The selected subset is then validated through a validation process to determine its
validity. This process is repeated until a stopping criterion is met.

In feature selection, three types of search methods are utilized: complete search, heuristic search,
and random search. The complete search can be divided into exhaustive and non-exhaustive searches.
The non-exhaustive search has various techniques including breadth-first, beam search, branch and
bound, and best-first search methods.

Heuristic search involves the use of specific methods. One such method is sequential forward
selection (SFS). Another is sequential backward selection (SBS), and yet another is bidirectional
search (BS). The SFS and SBS methods involve adding properties to an empty set or removing them
from a full set. In the BS method, these two algorithms are used in combination to search until the
same subset is obtained. Commonly used random search methods are genetic algorithms and particle
swarm optimization.

Classifying feature selection methods can be done into three broad categories: filtering, wrapper,
and embedded. Filtering methods use only statistical information for selection, while wrapper methods
employ searches that are based on the features themselves. On the other hand, embedded methods
focus on finding the best criterion for division [22].

In this study, 2 different methods were used for feature selection. One of them is Shapley Additive
Explanations (SHAP) and the other is Genetic Algorithm.

Shapley Values, introduced by Lloyd Shapley [23] in the field of cooperative game theory, provide
a means of measuring each player’s contribution to a given game. Game theory is a strategic analysis
of how two or more players interact in a situation where their outcomes are interdependent. Shapley
Values are particularly relevant in situations where players’ contributions are unequal, but they still
work together to produce collective results or profits.

The Shapley Values method has since been adapted for use in interpreting the predictions made by
machine learning models, through the creation of the SHAP method. The SHAP method, as presented
in [24], computes the Shapley values for each feature of a sample under analysis, giving insights into the
contribution of each feature to the final prediction. This enables greater transparency in the decision-
making processes of machine learning models, allowing for a better understanding of how they arrive
at their predictions. Figs. 4 and 5 show the most important 20 features by using SHAP and different
classification models.

Genetic algorithm (GA) which is one of the optimization algorithms, is likened to the intergen-
erational transition process of human genes. Genetic Algorithm (GA) is a probabilistic optimization
technique that mimics the process of natural selection and genetics, for finding the best solution to a
particular problem.

The GA technique is a well-used optimization strategy in the realm of machine learning models for
selecting features. The process of identifying crucial or relevant features for a specific machine learning
model through the use of a genetic algorithm (GA) is known as feature selection with GA. The main
objective is to reduce the dimensionality of the data while preserving the performance of the model. In
the GA-based feature selection, the genetic algorithm is used to optimize the hyperparameters, such
as the population size, the crossover and mutation rates, and the selection criteria, to determine the
optimal combination of features. The fitness function used in GA-based feature selection evaluates the
performance of the machine learning model using a specific set of features, and the best-performing
features are selected and combined to form a new generation. GA feature selection is an iterative
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process that is performed until a performance threshold that is suitable has been reached or the
termination criterion is met. This process aims to reduce the risk of overfitting and improves the
model’s ability to generalize by finding the crucial features that have a significant impact on how
well the machine learning model performs. Population information, fitness value, parent selection,
crossover, and mutation are some of the stages that make up the algorithm. Based on the population
statistics, a suitable population for the data is produced at random in the first stage. The fitness
value of each solution (chromosome) is determined in the second stage. In the third step, the best
chromosomes are chosen as parents. As a result, new people are born and genes are spread. In the
fourth stage, the parents are combined to form a new set of chromosomes through crossover. This
newly formed population is then added to the population set. In the final stage, mutations are made
to the chromosomes in the population set.

Figure 4: Feature selection with SHAP and XGBoost

Figure 5: Feature selection with SHAP and LightGBM

The main advantage of using GA for feature selection is its ability to search for the optimal feature
subset by considering the interactions between features, rather than just evaluating the individual
features. Moreover, GA can handle a large number of features and can provide a robust solution to
the feature selection problem. However, GA requires a large number of function evaluations, which
can be computationally expensive, especially when dealing with high-dimensional datasets. Therefore,
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it is important to carefully choose the evaluation metric and set appropriate termination criteria to
balance the trade-off between computational efficiency and solution quality.

The steps of the genetic algorithm are shown in Table 1, while Table 2 demonstrates the application
of the genetic algorithm in feature selection by using the CatBoost classification method. The
algorithm selects the features used in each iteration and calculates the accuracy values obtained when
using those features. In conclusion, the genetic algorithm is an efficient method for feature selection
in machine learning models.

Table 1: Steps of genetic algorithm for feature selection

Steps of Genetic Algorithm for Feature Selection

1. Initialization: random population.
2. Adaptation: fitness value is calculated for each chromosome, fitness values indicate the solution
quality of the sequences, chromosome is a set of features.
3. Selection: Selection is based on the survival of the individuals whose fitness value is calculated
by passing them through a certain selection operator.
4. Crossover: Crossover operators are used to create new individuals from individuals determined
with the help of selection methods.
5. Mutation: The aim here is to create diversity by preventing the formation of similar individuals
in future generations, and to expand the search space and ensure that the best and strongest
individuals are revealed with a more detailed search.

Table 2: Sample of selected features and accuracy with CatBoost

Feature no Accuracy

1, 3, 4, 5, 7, 8, 11, 12, 13, 14, 16, 18, 19, 20, 23, 24, 26, 27, 28, 29, 31, 34, 35, 36, 37,
39, 41, 43, 45, 47, 50, 51, 52, 53, 54, 57, 58, 59

0.9963

1, 3, 4, 5, 6, 7, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 24, 25, 28, 29, 30, 31, 32,
33, 34, 35, 36, 37, 38, 39, 41, 43, 45, 46, 47, 48, 49, 50, 51, 52, 54, 55, 58, 59

0.9964

1, 2, 3, 4, 6, 12, 13, 15, 16, 17, 20, 23, 24, 26, 28, 29, 30, 31, 32, 34, 35, 36, 38, 45,
47, 49, 51, 52, 54, 55, 57, 58, 59

0.9965

2, 3, 4, 5, 6, 7, 11, 13, 14, 16, 17, 18, 21, 23, 24, 25, 27, 29, 30, 31, 32, 33, 34, 36, 39,
41, 43, 44, 45, 48, 49, 50, 51, 52, 53, 55, 57, 58, 59

0.9966

1, 2, 3, 4, 6, 7, 11, 12, 15, 16, 17, 18, 19, 21, 22, 24, 25, 26, 28, 29, 30, 33, 34, 38, 41,
43, 44, 48, 49, 50, 51, 52, 53, 55, 57, 58, 59

0.9967

4.3 Hyperparameter Tuning

Machine learning focuses on model building to make predictions and decisions by taking training
data as input. It is a common problem in machine learning that parameter values are needed to
be set before the training process for both supervised and unsupervised learning algorithms. These
parameters are called hyperparameters. Hyperparameters are used to configure many results of a given
learning algorithm, such as learning rate, kernel parameters, network architecture. Hyperparameters
should be given in an optimized way in order to get results with a high success rate while creating the
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model. Hyperparameter tuning is an essential step in the machine learning process that requires careful
consideration and selection of these parameters. The selection of hyperparameters has a significant
impact on the performance of the model, and it can affect the accuracy, generalization capability,
and the speed of the learning process. The main goal of hyperparameter tuning is to find the optimal
combination of hyperparameters that result in the best performance of the model. The steps of the
hyperparameter tuning algorithm are shown in Table 3.

Table 3: Hyperparameter tuning algorithm

Hyperparameter Tuning Algorithm

initialize dataset
handle missing values (mean/median/most frequent)
apply label encoder
choose scaler (standard/minmax/robust)
Save scaler pkl file
Select features SHAP/Genetic Algorithm (model based)
for all classification models:

//use grid searchs
foreach parameter in grid:

apply parameters and calculate with selected features
compare calculated accuracy with previous accuracies
save the highest accuracy with parameter information to the database

get all hyperparameters information from the database with ordered accuracies
use scaler pkl file
create models with selected hyperparameters
save model pkl file

Hyperparameter optimized models used in AID4I are as follows:

� AdaBoost
� CatBoost
� Decision Tree
� Gaussian Process
� Gradient Boosting
� K-Nearest Neighbor
� LightGBM
� Neural Network
� Perceptron
� Random Forest
� Ridge
� Stochastic Gradient Descent
� SVM
� XGBoost
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In proposed framework, Grid Search method was preferred for hyperparameter tuning. The
Grid Search method aims to find the most suitable parameter values by trying all the values in
order in the range determined for the classification algorithms. This method is considered as one of
the most accurate analysis methods that can be used in the extraction and optimization of optimal
hyperparameters. In the most recent applications, it is seen that the Grid Search and Cross Validation
methods is frequently preferred. It is one of the most preferred optimization algorithms because it is
viable method for many different optimization problems. Although it works according to a standard
and specific point scanning logic, the hyperparameter values it offers as output generally have a positive
effect on learning performance.

Cross-validation is a crucial step in the AutoML pipeline, as it helps to prevent overfitting.
Overfitting occurs when a model is too complex and tries to fit the training data too closely, resulting
in poor performance on new, unseen data. By dividing the dataset into K subsets, each of which is
utilized as the test data only once while the remaining data is used for model training, cross-validation
helps to mitigate this. Each subset is used as test data once, and this is repeated K times. The best
model is then selected based on the model’s overall performance.

A new model is built from the training data in each iteration, and its performance is evaluated
using the test data. By evaluating the performance on several subsets of the data, this approach helps
identify the most suitable model while avoiding overfitting.

Cross-validation also reduces the possibility of selecting an inferior model as a result of a random
data split. Cross-validation contributes to the building of a more robust and trustworthy model by
utilizing all the data for both model training and evaluation. The only drawback is that the cost of
cross-validation is high because K iterations are required, but the low error rate makes it a valuable
step in the AutoML pipeline.

5 Results

The aim of this study is to develop a machine learning pipeline that can automate the entire process
of intrusion detection in industrial IoT, making it accessible to individuals with little to no experience
in data mining. By utilizing multiple techniques to identify the suitable parameter values, the focus
is on identifying the classification algorithms for intrusion detection that are the most efficient. To
achieve this, the models are trained and tested using the input dataset in order to determine the
approach that has the highest success rate. In order to detect intrusions in industrial IoT systems,
a straightforward and user-friendly solution must be offered, one that does not require substantial
knowledge or technical proficiency in data mining. This will increase the overall effectiveness and
security of industrial IoT systems.

The development of an intrusion detection system can be automated using an AutoML pipeline.
The pipeline can complete all significant operations, including feature selection, hyperparameter
tuning, and model training, without the requirement for manual observation. The pipeline can then
provide a model that has been built specifically for the given dataset, leading to high accuracy in
recognizing and classifying attacks.

In this study, there are three different imputation methods: mean imputation, median imputation,
and most frequent imputation to handle data that is missing. To select the most effective strategy, the
datasets were tested to each of these methods, and the results were compared.

The mean imputation method replaces the average of the non-missing values in a column for any
missing data points. Although this method is straightforward to use, it can cause bias if the missing
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values are not distributed randomly. The median of the non-missing values in the same column is used
as the replacement for missing values when using the median imputation method. Compared to mean
imputation, which is vulnerable to outliers, median imputation provides a more reliable evaluation of
the data’s central tendancy. However, if the missing values are not missing at random, this strategy
may continue to induce bias. The most common imputation method involved substituting the most
frequent value in the same column for any missing data. This method is useful when dealing with
categorical data, but it can lead to loss of information if the missing values represent a less frequent
category.

The framework compares results after using each imputation technique to determine the most
effective method of approach. Framework evaluates each imputation method’s performance using a
range of criteria, including as accuracy, precision, recall, and F1-score. The approach used for the
feature selection step is the one that outperformed all classification models in terms of performance.

By computing the Shapley values for each feature of the sample, the SHAP technique can be used
to interpret the predictions of the machine learning models. On the contrary, the GA can be used for
optimization to select the most important features from a large set of features.

The combination of SHAP and GA improves the optimization process. The features with the
highest importance are chosen using GA after determining the SHAP values for each feature. Because
GA is capable of handling the computation of large dimensional data and effectively discovering the
most important characteristics, the feature selection process is improved in this approach.

The proposed methodology uses Shapley values to evaluate each characteristic’s importance while
setting a threshold for it. In the study, two distinct methods were used to determine the threshold. In the
first approach, a fixed threshold value was selected. As a result, a general threshold can be obtained for
any classification algorithm and dataset. The second approach required calculating the mean absolute
Shapley value and using it as the threshold.

A Shapley-based measure for feature importance is the mean absolute Shapley value. Shapley
values, which can be either positive or negative, represent each feature’s contribution to the model’s
prediction. The absolute value of each feature’s Shapley value is calculated, as well as the mean value
over all instances in the dataset, to provide the mean absolute Shapley value. By considering the
magnitude and direction of the Shapley values, it provides an overall measure of the importance of
each characteristic. Any feature whose importance is below the threshold is not used in the genetic
algorithm.

By identifying and removing the irrelevant, redundant or noisy features, feature selection can
reduce the dimensionality of the dataset and make the model more robust and interpretable. This
results in better generalization performance, reduced overfitting, and faster training times. The
effectiveness of feature selection can be seen in Table 4, where it is shown that the elapsed time for
training and testing is significantly reduced after feature selection, and the accuracy of the model
is increased. In order to calculate the elapsed time for training, modelling stages were repeated 10
times and the average was taken. Table 5 shows the comparison of the model accuracy before and
after hyperparameter tuning in binary classification. By carefully choosing the hyperparameters, it is
possible to significantly improve the accuracy of the model, resulting in better results on the test data.

The results of the models were analyzed using the confusion matrices and classification reports to
assess their accuracy and performance. The framework calculated these results for all the models that
were used in the AutoML system. Figs. 6–9 show the confusion matrices of four of the methods used,
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and Tables 6–9 include the corresponding classification reports. These results were obtained before
any hyperparameter tuning was performed.

Table 4: Model accuracies and elapsed time with selected features

Model name Accuracy
(Before FS)

Accuracy
(After FS)

Elapsed time
for training
(Before FS)
(second)

Elapsed time
for training
(After FS)
(second)

Number of
removed
features

AdaBoost 0.9691 0.9792 801.82 695.48 18
CatBoost 0.9963 0.9969 367.04 332.25 17
Decision tree 0.9962 0.9966 118.2 82.88 16
Gradient boosting 0.9966 0.9968 15751.3 11728.44 16
kNN 0.9901 0.9920 5811.32 5114.28 17
LightGBM 0.9960 0.9968 42.48 38.22 15
Naïve Bayes 0.5783 0.8625 5.59 4.97 17
Neural network 0.9878 0.9927 7197.74 5293.49 18
Perceptron 0.9296 0.9385 8.9 6.4 16
Random forest 0.9970 0.9975 1088.63 722.49 19
Ridge 0.9342 0.9519 5.04 4.01 17
Stochastic gradient
descent

0.9403 0.9488 11.23 8.74 17

SVM 0.9828 0.9904 37612.4 32274.54 15
XGBoost 0.9970 0.9972 194.67 143.29 16

Table 5: Model accuracies w/o hyperparameters

Model name Accuracy (Before tuning) Accuracy (After tuning)

AdaBoost 0.9691 0.9849
CatBoost 0.9963 0.9981
Decision tree 0.9962 0.9967
Gradient boosting 0.9966 0.9971
kNN 0.9901 0.9930
LightGBM 0.9960 0.9972
Naïve Bayes 0.5783 0.8710
Neural network 0.9878 0.9954
Perceptron 0.9296 0.9753
Random forest 0.9970 0.9986
Ridge 0.9342 0.9588
Stochastic gradient descent 0.9403 0.9537
SVM 0.9828 0.9970
XGBoost 0.9970 0.9982
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Figure 6: CatBoost confusion matrix

Figure 7: XGBoost confusion matrix

Figure 8: Random forest confusion matrix
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Figure 9: Decision tree confusion matrix

Table 6: Classification report of CatBoost

Precision Recall F1-score Support

Normal 0.9980 0.9947 0.9964 79729
Attack 0.9950 0.9981 0.9966 84247
Accuracy 0.9965

Table 7: Classification report of XGBoost

Precision Recall F1-score Support

Normal 0.9983 0.9957 0.9970 79729
Attack 0.9960 0.9984 0.9972 84247
Accuracy 0.9971

Table 8: Classification report of random forest

Precision Recall F1-score Support

Normal 0.9987 0.9954 0.9970 79729
Attack 0.9955 0.9987 0.9972 84247
Accuracy 0.9971
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Table 9: Classification report of decision tree

Precision Recall F1-score Support

Normal 0.9966 0.9961 0.9963 79729
Attack 0.9963 0.9968 0.9965 84247
Accuracy 0.9964

Confusion matrices offer a visual illustration of the model’s aptitude to correctly predict the target
categories, while classification reports offer a more in-depth evaluation of the model’s performance,
encompassing metrics such as precision, recall, F1-score, and support. Confusion matrix is a com-
monly used evaluation metric in machine learning. It facilitates the evaluation of the effectiveness of
a classification model. It shows the distribution of the actual outcomes vs. the predicted outcomes.
The confusion matrix consists of 4 elements: True Positives (TP), False Positives (FP), False Negatives
(FN), and True Negatives (TN). TP stands for the number of instances correctly classified as positive,
FP represents the number of instances wrongly classified as positive, FN symbolizes the number of
instances wrongly classified as negative, and TN represents the number of instances correctly classified
as negative. The accuracy of the model can be calculated by dividing the total number of correct
predictions with the total number of instances. recision is calculated by dividing TP with (TP + FN),
which shows the proportion of positive predictions that are actually correct. Recall is calculated by
dividing TP with (TP + FN), which shows the proportion of positive instances that are correctly
predicted. F1-score is the harmonic mean of precision and recall, which provides a single score that
balances both precision and recall. A high F1-score means that the model has a good balance of
precision and recall. The results from the confusion matrices and classification reports are crucial in
determining the effectiveness of the AutoML system and guiding future improvements. Eqs. (1)–(3)
present the metrics for recall (detection rate), accuracy, and precision.

Recall = TP
TP + FN

(1)

Accuracy = TP + FN
TN + TP + FN + FP

(2)

Precision = TP
TP + FP

(3)

Grid search was preferred as parameter search method for optimization. It is a simple and
straightforward method for hyperparameter optimization. It is widely used and widely recognized
as an effective method. The main advantage of grid search is that it is easy to implement, and it
can be automated. Grid search generates a list of all possible combinations of hyperparameters and
runs the algorithm for each combination. It then selects the combination that results in the best
performance. This allows for an exhaustive search of all possible hyperparameters, which makes it an
effective method for hyperparameter optimization. However, the disadvantage of grid search is that
it is computationally expensive, especially for large datasets or models with many hyperparameters.
Despite this, grid search is still widely used due to its ease of use and its ability to produce reliable
results.

The performance of the proposed system was compared with the studies in which the X_IIoTID
dataset was created and used. In these studies, classification was made with different methods, and the
highest success rate in [25] study was 98.23, while the highest success rate in [20] study was 99.54 with
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decision tree. As seen in Table 9, the accuracy of decision tree method without hyperparameter tuning
is higher than the existing studies. The main reason for achieving a higher success rate with the same
method is the automation of preprocessing steps and feature selection. When Table 5 is examined, it
was seen that the highest success rate (0.9986) in the X_IIoTID dataset, was obtained with random
forest method by performing hyperparameter tuning.

All these processes have performed for binary classification (attack/normal), and the same
processes can also be run for multi-class classification by proposed model. The results of the multi-class
classification show the accuracy rates of AutoML model according to the attack types.

Table 10 shows the detection rates of 3 of the classification methods optimized by proposed
AutoML model in 4 of the 18 different attack types in the X-IIoTID dataset. If the results of the
decision tree method are examined, it has much more accurate in detecting Bruteforce attacks than
Command&Control attacks.

Table 10: Detection rate for 4 attacks

Method Bruteforce C&C Ransomware Dictionary

Decision tree 0.9999 0.9961 0.9999 0.9984
Random forest 0.9999 0.9955 0.9999 0.9997
XgBoost 0.9999 0.9974 0.9999 0.9999

Apart from model performance metrics, the time required for training and prediction is also
important. When it comes to an IDS ve IIoT, the latency here should be very low. Thanks to the
developed framework, time spent in each step of AutoML processes can be calculated. The graph of
the time spent in the model training process examined in Table 4 is shown in Fig. 6. In addition, Fig. 10
shows howlong it takes to predict a request to each model.

Figure 10: Elapsed time in model training

As seen in Fig. 11, although the prediction success of the request is high with XGBoost, the
prediction process over the model file takes a very long time.
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Figure 11: Elapsed time in prediction

There are also old but popular datasets used in intrusion detection system development studies
with machine learning methods. Examples of these datasets are KDD99, NSL-KDD, UNSW-NB15
datasets. Since the model proposed in this study is an AutoML, it is expected to give successful results
in training and prediction processes in different datasets. When the proposed AutoML model is applied
to the above-mentioned datasets, it has been observed that the results are successful. The result of these
comparisons are shown in Table 11.

Table 11: Comparison between proposed model with previous approaches on KDD99, NSL-KDD,
UNSW-NB15 datasets

Study Approach Dataset Accuracy

[26] Naïve Bayes KDD99 0.950
[27] K-Means and ANN KDD99 0.975
[28] Convolutional neural network KDD99 0.9984
[29] Meanshift clustering algorithm KDD99 0.8120
[30] Multi-agent system KDD99 0.9582
AID4I Auto-Selected Model: CatBoost KDD99 0.9998
[31] C4.5, Naïve Bayes, Random Forest NSL-KDD 0.9965
[32] k-NN, K-Means NSL-KDD 0.9943
[33] Random forest NSL-KDD 0.9870
AID4I Auto-Selected Model: XGBoost NSL-KDD 0.9993
[34] Decision Tree, Naïve Bayes, ANN,

Logistic Regression, EM Clustering
UNSW-NB15 0.8556

[35] MSCNN-LSTM UNSW-NB15 0.9560
[8] Fuzzy C-means UNSW-NB15 0.9890
AID4I Auto-selected model: Decision tree UNSW-NB15 0.9995
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6 Conclusion

In a World where the demand in the field of machine learning is increasing, it’s an important
problem that the desired success in this field depends on the number of qualified people in the field.
AutoML concept has been developed to find a solution to this problem. Because no matter what
the real-world problem is, it’s an important advantage to approach the machine learning process of
the problem that contains the data with an iterative or linear pipeline setup by approaching it’s an
optimization problem.

Feature selection, machine learning method selection and parameter tuning become more impor-
tant as the data size increases. In this study, model-dependent feature selection operations, scale
operations and optimization of hyperparameters were automated. Along with summarizing the
relevant algorithms, the methods used for the automation process, including their pros, cons are
mentioned.

The goal of this study is to automate essential cyber security-related processes, including fea-
ture selection, hyperparameter optimization, and machine learning technique selection. The meth-
ods employed in the automation process are thoroughly described, along with their benefits and
drawbacks. The viability of the algorithms utilized for more complex models and their usage of
computational resources are also compared and evaluated in this work. The aim of this research is
to provide a thorough overview of AutoML as a tool for researchers and users.

By automating the process of building intrusion detection models, AutoML may help in reducing
the workload for security professionals and IT employees. With the use of AutoML, the focus can be
shifted from manually fine-tuning models to evaluating the results and enhancing the IIoT system’s
overall security posture. Additionally, AutoML can increase the reliability and accuracy of IDS
systems in recognizing cyberattacks on IIoT systems. AutoML can assist in identifying previously
unidentified threats and lowering the amount of false positive alarms by analyzing vast amounts
of data. The way we approach cyber security in these systems could be completely changed by the
introduction of AutoML in intrusion detection systems for IIoT. By automating the model building
process, the workload for security experts can be reduced and the overall security posture of IIoT
systems can be improved.

7 Future Research

Grid search is a commonly used hyperparameter optimization algorithm that is easy to implement.
However, it is subject to a dimensionality problem where the number of hyperparameters and their
corresponding values increase, leading to a huge search space that can slow down the optimization
process.

As an alternative to the grid search method, random search, Bayesian search, or Tree-structured
parzen estimator can be used. However, each of these methods has its own limitations. Random search
method may not guarantee convergence to the optimal value and its efficiency can be low. Bayesian
Search method is conceptually more complex and challenging to implement in a parallel computing
environment. Additionally, the method requires a good understanding of Bayesian optimization,
which can be challenging for practitioners. The Tree-structured parzen estimator is also a complex
method and requires a lot of computational resources.

Therefore, choosing the best hyperparameter optimization algorithm requires a trade-off between
the simplicity of implementation, efficiency, and accuracy.
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