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Abstract: With the continuous development of the economy and society,
plastic pollution in rivers, lakes, oceans, and other bodies of water is increas-
ingly severe, posing a serious challenge to underwater ecosystems. Effective
cleaning up of underwater litter by robots relies on accurately identifying
and locating the plastic waste. However, it often causes significant challenges
such as noise interference, low contrast, and blurred textures in underwater
optical images. A weighted fusion-based algorithm for enhancing the quality
of underwater images is proposed, which combines weighted logarithmic
transformations, adaptive gamma correction, improved multi-scale Retinex
(MSR) algorithm, and the contrast limited adaptive histogram equalization
(CLAHE) algorithm. The proposed algorithm improves brightness, contrast,
and color recovery and enhances detail features resulting in better overall
image quality. A network framework is proposed in this article based on
the YOLOv5 model. MobileViT is used as the backbone of the network
framework, detection layer is added to improve the detection capability for
small targets, self-attention and mixed-attention modules are introduced to
enhance the recognition capability of important features. The cross stage
partial (CSP) structure is employed in the spatial pyramid pooling (SPP)
section to enrich feature information, and the complete intersection over
union (CIOU) loss is replaced with the focal efficient intersection over union
(EIOU) loss to accelerate convergence while improving regression accuracy.
Experimental results proved that the target recognition algorithm achieved
a recognition accuracy of 0.913 and ensured a recognition speed of 45.56
fps/s. Subsequently, Using red, green, blue and depth (RGB-D) camera to
construct a system for identifying and locating underwater plastic waste.
Experiments were conducted underwater for recognition, localization, and
error analysis. The experimental results demonstrate the effectiveness of the
proposed method for identifying and locating underwater plastic waste, and
it has good localization accuracy.
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1 Introduction

Plastic waste in water bodies has gained widespread attention due to its persistence and negative
impact on aquatic ecosystems and human health [1]. Plastic accounts for over 80% of the artificial
debris observed in rivers. Removing plastic waste from underwater environments would have a
tremendous benefit to the underwater ecosystem. Research has demonstrated that removing plastic
waste from underwater environments can significantly benefit the underwater ecosystem [2]. However,
current methods for removing plastic waste from inland water surfaces rely mainly on mechanical
equipment such as manual salvage ships, while underwater plastic waste removal is performed through
manual manipulation of robotic arms, which is both time-consuming and inefficient. Fortunately,
autonomous underwater vehicles (AUV) have introduced a new approach to underwater plastic waste
removal. During the process of underwater waste cleaning with AUV, an excellent target detection and
localization algorithm is crucial.

However, even minor changes in the environment can significantly alter the appearance of
underwater objects. For example, changes in lighting can affect shallower waters, and turbid waters
can make objects difficult to observe [3,4]. Traditional identification methods typically involve human
visual counting [5,6], sampling with nets [7], or counting plastic samples within a fence in a specific area
[8]. While Ge et al. [9] used laser radar to identify waste on the shore, and Lorenzo-Navarro et al. [10]
proposed a method using the Sauvola threshold algorithm for plastic classification and counting.
However, traditional methods require a significant amount of human or additional equipment, and
the efficient is low [11].

Target detection is one of the core problems in computer vision, which involves identifying and
locating objects of interest within images or videos and determining their size and position in the scene.
With the development of deep learning, significant progress has been made in this area, bringing new
advances to the recognition and detection of underwater plastic waste. By extensively training models,
deep learning can extract target features from images and use them to complete object classification
and recognition tasks. This approach has been widely employed in underwater target detection. In
order to solve the problems of the complex underwater environment and insufficient underwater
light in the detection of underwater plastic waste, Hu et al. [12] proposed an improved underwater
plastic waste detection algorithm based on YOLOv5n. Kylili et al. [13] proposed a CNN algorithm
for classifying floating plastic fragments in water bodies, but the algorithm requires object-centered
cropped images. Liu et al. [14] improved the detection ability of underwater waste based on the
YOLOv3 model using adversarial learning to enable the model to learn the features of the same target
in different underwater environments.

In terms of underwater target localization, Xing et al. [15] propose a novel RGB-D camera
and inertial measurement unit (IMU) fusion-based cooperative and relative close-range localization
approach for special environments, and the efficiency of RGB-D camera for underwater application is
validated. Yang et al. [16] proposed a novel vision-based underwater positioning system using a light
detection and ranging (LiDAR) camera and an inertial measurement unit. The previous work has
inspired us to employ RGB-D cameras for close-range underwater object localization.

Indeed, the previous studies mainly focused on the recognition or the localization of underwater
waste without integrating these two tasks. Therefore, these studies have limited usefulness for AUV to
collect underwater waste. Furthermore, due to the complexity of the underwater environment and the
substantial attenuation of light in water, the images captured by the camera often exhibit blurriness,
low contrast, and color inconsistencies. Plastic waste in the water is often small, making it challenging
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to discern. We aim to address these challenges to accurately provide AUVs with the types and three-
dimensional spatial coordinates of underwater plastic waste.

Therefore, this article proposes an improved YOLOv5-based method for recognizing and localiz-
ing underwater waste. The main contributions of this article are as follows:

1. Introducing a CLAHE and Retinex-based weighted fusion algorithm to improve the quality of
underwater images.

2. Designing a network model that combines CNN and Transformer based on the MobileViT
backbone, introducing attention mechanism and CSP structure in the neck of the model, using Focal
EIOU as the model’s loss function, and adding a small object detection layer. The new network has
higher recognition accuracy and detection speed.

3. Combining the MobileViT-YOLOv5 algorithm with the RealSense depth camera to achieve
recognition and localization of underwater waste.

4. Adding underwater plastic waste images collected in real-world scenarios to the open-source
DeepTrash underwater waste dataset and randomly adjusting the contrast and brightness of the images
to expand the dataset.

2 Underwater Image Enhancement Algorithm Based on Weighted Fusion

This section mainly introduces several components of the weighted fusion algorithm for enhancing
underwater images, including weighted logarithmic transformation, adaptive gamma correction,
improved MSR algorithm, CLAHE algorithm, and fusion rules. The image enhancement process
proposed in this article is then explained in detail.

2.1 Weighted Logarithmic Transformation

The logarithmic curve exhibits a steeper slope for lower value ranges and a flatter slope for
higher value ranges. As a result, logarithmic transformation can expand the low grayscale values and
compress the high grayscale values of an image [17]. However, the changes in brightness in the dark
areas of the image after logarithmic transformation are not significant. Hence, this article proposes the
use of a weighted logarithmic transformation [18] for brightness enhancement. A coefficient is added
to the logarithmic transformation formula, which is equal to 1 when x = y or 0 otherwise, to enhance
local brightness. The transformation formula can be expressed as:

s =
∑m

x=0

∑n

y=0 elg((x, y) + ε)θ(∇(x, y), τ)∑m

x=0

∑n

y=0 elg((x, y) + ε)
(1)

Here, s represents the output of the corresponding pixel (x, y) by weighted logarithmic transfor-
mation; m represents the number of rows of the image; n represents the number of columns of the
image; e is the weighted logarithmic transformation coefficient; ε is the correction coefficient, usually
set to 1; ∇ is the third-order Laplacian operator; τ represents the brightness level.

2.2 Adaptive Gamma Correction

The traditional Gamma correction algorithm is a global enhancement technique that modifies the
distribution of pixel gray levels in an image using a nonlinear transformation function of gray values,
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resulting in nonlinear tone changes. This method can adjust images with excessively high or low gray
levels, improving the overall brightness and contrast. The formula for Gamma transformation is:

T(l) = lmax

(
l

lmax

)γ

(2)

Here, T(l) represents the output of the Gamma transformation applied to each pixel with
grayscale value l. lmax represents the maximum grayscale value in the image, γ is an adjustment
coefficient. If γ > 1, the transformation compresses the grayscale levels of the brighter parts of the
image, resulting in an overall darker enhancement. If γ < 1, it enhances the contrast of the darker
parts of the image, emphasizing details and resulting in an overall brighter enhancement.

Traditional correction algorithms use the same enhancement function for pixels with different
gray levels, which can lead to contrast distortion. Moreover, the adjustment coefficient γ needs to
be selected by the user based on the image situation, and cannot be adaptively changed according to
the image. The adaptive gamma transformation can selectively adjust local correction coefficients for
pixel neighborhoods, resulting in superior results compared to traditional gamma transformations.
Therefore, this article employs an adaptive gamma transformation [19,20] to enhance the details of
the image.

2.3 The Improved Multi-Scale Retinex Algorithm

The single-scale Retinex (SSR) algorithm [21] utilizes a Gaussian filter to estimate the illumination
component, expressed as follows:

G(x, y) = λe− x2+y2

2σ2 (3)

The SSR algorithm has only one adjustable parameter σ , which controls the enhancement effect
by adjusting its size. In contrast, the MSR algorithm [22] processes the image using different sizes of
σ and weights each result to obtain the enhanced image. The formula for the MSR algorithm is as
follows:

ri(x, y) =
N∑

k=1

ωk(log(Ii(x, y)) − log(Ii(x, y)) ∗ Gk(x, y)) (4)

Here, i ∈ {R, G, B}, N represents the number of scales. When N = 1, the MSR algorithm reduces
to the SSR algorithm. To ensure that the MSR algorithm can take advantage of multiple scales, N is
usually set to 3. Additionally, ωk represents the weighting coefficient for the k scale in the weighted
summation. Empirically, when ω1 = ω2 = ω3 = 1/3, the overall enhancement effect is better and the
computation is simpler.

Bilateral filtering is a non-linear filtering algorithm proposed based on the Gaussian filtering
algorithm. It consists of two functions: geometric spatial distance factor and pixel difference decision
coefficient, which comprehensively consider the spatial domain and pixel range domain. It has strong
edge-preserving, denoising, and smoothing capabilities, and compared with the Gaussian filter, it can
retain more edge and detail information. The mathematical expression of bilateral filtering is:

Hi,j = exp
(

−(i − k)2 + (j − l)2

2σ 2
d

− ||f (i, j) − f (k, l)||2

2σ 2
r

)
(5)

Here, (k, l) represents the central coordinates of the current convolved region, (i, j) represents the
coordinates of neighboring pixels in the convolved region, σd and σr represent the standard deviation
of the Gaussian function, and the function f (x, y) represents the pixel value of the image at point
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(x, y). In this article, bilateral filtering is used instead of Gaussian filtering to estimate the illumination
component in the MSR algorithm.

2.4 Contrast Limited Adaptive Histogram Equalization

Histogram equalization (HE) is a non-linear transformation technique used to improve the
contrast and clarity of an entire image by transforming the grayscale histogram of the image into
a uniform distribution. However, the performance of HE is poor when there are areas in the image
that are significantly brighter or darker than other areas. CLAHE [23] is an algorithm that can enhance
the local contrast of an image. This method first divides the image into several blocks, applies HE to
each block, and sets a threshold. When a certain grayscale value in the image histogram exceeds the
threshold, the value is clipped, and the excess is evenly distributed among other grayscale levels. In this,
the CLAHE algorithm is used to process images, which limits the excessive enhancement of contrast,
avoids introducing unnecessary noise, and effectively enhances details in the images.

2.5 Fusion Rule

After preprocessing with the CLAHE and MSR algorithms, two enhanced underwater images are
obtained, which need to be fused using a weighted fusion rule [24].

To start with, the R, G and B channel values of the two enhanced images are extracted, and the
weight Wpta is calculated as shown in Eq. (8):

Wpta =
√

1
3

[(Ri − σ)2 + (Gi − σ)2 + (Bi − σ)2] (6)

Then, calculate the weights Wptb of the images in the hue, saturation and value (HSV) color space
using formula (9):

Wptb =
√

[(Hi − H̄)2 + (Si − S̄)2 + (Vi − V̄)2] (7)

Normalize the weights as shown in Eq. (10):

W1 = (Wpta 1 +Wptb 1)/(Wpta 1 +Wpta 2 +Wptb 1 +Wptb 2)W2 = (Wpta 2 +Wptb 2)/(Wpta 1 +Wpta 2 +Wptb 1 +Wptb 2)

(8)

Finally, the two preprocessed images I1 and I2 are weighted and fused to obtain the final enhanced
image Ires, as shown in formula (11):

Ires = W1I1 − W2I2 (9)

Here, Ri, Gi, and Bi represent the red, green, and blue channel values of the image, and σ is the
weight calculation parameter. Additionally, in the formula, Hi, Si, and Vi represent the H, S, and V
channel values, and H̄, S̄, and V̄ represent the average values of the H, S, and V channels, respectively.

2.6 Algorithm Process

In summary, the flowchart of the underwater enhancement algorithm proposed in this article is
illustrated in Fig. 1.
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Figure 1: Flow chart of underwater image enhancement algorithm based on weighted fusion

The algorithm flowchart for the underwater enhancement proposed in this article is shown in
Fig. 1, and the algorithm steps are as follows:

1. Convert the original RGB image I to the HSV color space, apply a weighted logarithmic
transformation to the V component, perform an adaptive gamma transformation, and process it using
an improved MSR algorithm to obtain the first enhanced image I1.

2. Perform CLAHE and median filtering on the original image I to improve brightness and global
contrast, eliminate noise, obtain the second enhanced image I2, and convert I2 from the RGB color
space to the HSV color space.

3. Weighted fusion is performed on I1 and I2 to obtain the final enhanced result Ires.

3 Improved Algorithm Based on YOLOv5
3.1 MobileViT Model

The ViT model based on the Transformer architecture exhibits powerful performance in various
computer vision tasks. However, the large number of parameters in the Transformer model and its slow
inference speed make it unfriendly to common devices, requiring high device performance. Even when
reducing the size of Transformer models to match the resource constraints of mobile devices, there may
be a significant drop in model accuracy and performance that is notably lower than that of lightweight
CNNs. To address this issue, researchers have attempted to combine CNN and Transformer structures
and proposed new network models, such as Conformer [25], Mobile-Former [26], and CoTNet [27].
Building on this work, Mehta et al. [28] designed MobileViT, which uses the former to extract local
features and the latter to extract global features. Compared to traditional lightweight CNNs under
given parameter constraints, MobileViT has better performance, generalization ability, and robustness.
The network architecture is illustrated in Fig. 2.

Figure 2: MobileViT network model [28]

The MobileViT network is mainly composed of mobilenet-v2 block (MV2) and MobileViT-block.
The structure diagram of MobileVit-block indicates that the input feature map obtains both local and
global information in the input image after being processed by MobileVit-block. As a result, compared
to CNN networks with the same number of parameters, the feature maps output by MobileViT contain
richer feature information.
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3.2 SPPCSPC Module

Since the introduction of the spatial pyramid pooling (SPP) [29] module in YOLOv3, both
YOLOv4 and YOLOv5 have continued to use this design. YOLOv5 improved on the SPP module
and proposed the spatial pyramid pooling fast (SPPF) module to enhance its efficiency. In this article,
we introduce spatial pyramid pooling cross stage partial (SPPCSPC) [30] based on the SPP module,
illustrated in Fig. 3. The CSP structure [31] is incorporated into the SPP module, where the input is
divided into three different branches, and the feature maps from each branch are fused to enrich the
feature information.

Figure 3: SPPCSPC module [30]

3.3 Attention Mechanism

In recent years, attention mechanisms have been widely applied in deep learning to focus on
specific parts of input information. The convolutional block attention module (CBAM) [32] is a simple
and effective attention module based on spatial and channel attention, used to focus on local feature
information. The transformer encoder block can capture global feature information, which is helpful
in the field of object detection. Inspired by this, the CBAM module and transformer encoder block
(TRE) [33] are introduced into the neck part of the original YOLOv5. The new structure can utilize
attention mechanisms to dig some features and focus on more interesting target areas.

The CBAM module, illustrated in Fig. 4, is a module that combines both channel attention
and spatial attention. The input feature map is processed sequentially by the channel attention
submodule and the spatial attention submodule, which focus on information in the channel and
spatial dimensions respectively. The corresponding weights are then fed back to the original input.
This enables easy integration of the module into existing network structures for end-to-end training,
and the computational cost of adding the module is negligible.

Figure 4: CBAM module [32]

Illustrated in Fig. 5, the TRE module mainly comprises two components: a multi-head attention
block and a feedforward neural network structure. LayerNorm and dropout are employed to facilitate
network convergence and mitigate overfitting. Multi-head attention allows the network to not only
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attend to the current position but also capture contextual semantic information, enabling it to extract
more comprehensive and relevant features from the input.

Figure 5: Transformer encoder structure [33]

3.4 Focal EIOU Loss Function

YOLOv5 uses CIOU-Loss as the localization loss function, which reflects the relative proportion
difference of aspect ratio rather than the true difference of width and height. EIOU [34] separates the
aspect ratio into width and height, calculates them separately for predicted and ground truth boxes
based on CIOU. EIOU mainly consists of three factors: overlapping area, center point distance, and
width and height differences. The formula is as follows:

LOSSEIOU = 1 − IOU + ρ2(b, bgt)

c2
+ ρ2(w, wgt)

c2
w

+ ρ2(h, hgt)

c2
h

(10)

Here, c2
w and c2

h represent the width and height of the minimum enclosing rectangle of the predicted
box and the ground truth box, respectively.

During the generation of predicted boxes, there is an issue of sample imbalance in the training
process of box regression, where the number of high-quality anchor boxes with small regression errors
is much smaller than the number of low-quality anchor boxes with large errors. To address this, focal
loss is combined with EIOU to distinguish high-quality and low-quality anchor boxes. The formula is
as follows:

LFocal−EIOU = IOU γ LossEIOU (11)

Here, γ is a parameter that controls the degree of suppression of outlier values. In focal EIOU loss
function, the loss is greater for higher quality regression targets, as determined by their IOU values,
acting as a weighting function. This helps address the issue of sample imbalance in the training process
of box regression and improves the accuracy of regression.

3.5 Implementation of Improved Algorithm

The improved model architecture is illustrated in Fig. 6:

The last fully connected layer and global pooling layer of the MobileViT network are not
involved in feature extraction and are therefore discarded. The improved model uses the weights of
the MobileViT network as the pre-training model. So, during training and detection, the input image
of the MobileViT network is scaled to 256 × 256, which makes it difficult to extract feature information
from small objects in the image. To address this, a small object detection layer is added, consisting of
four object detection layers to mitigate the negative impact of object size changes in the image. The
improved model uses a lightweight MobileViT network as the backbone, which reduces a significant
amount of parameters compared to the original backbone. As a classification network, the MobileViT
network only needs to extract semantic information from the image, not positional information.
Positional information is more present in shallow feature maps, while semantic information is more
present in deep feature maps. Object detection tasks require both positional and semantic information.
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By concatenating shallow and deep feature maps (concatenating along the channel direction) and
inputting the features extracted from each stage to path-aggregation network (PANet) for feature
fusion, rich feature information can be obtained.

Figure 6: Improved YOLOv5 model

In PANet, to improve feature fusion, the original CSP2_X module was replaced with the TRE
module, and a CBAM module was added after the TRE module to capture both global and local
information and enhance the features. PANet utilizes both bottom-up upsampling and top-down
downsampling, as well as attention modules for information extraction, which can enhance object
detection for different object sizes.

4 Experiments and Results Analysis
4.1 Underwater Enhancement Algorithm

To demonstrate the effectiveness of the proposed underwater enhancement algorithm, underwater
images were captured in the laboratory and compared with the CLAHE and the Multi-Scale Retinex
with Color Restoration (MSRCR) [35] algorithms. The results are illustrated in Fig. 7.
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Figure 7: Comparison of enhanced images

From a visual standpoint, the CLAHE algorithm does not significantly enhance the brightness of
the image, but only improves the details, which is not ideal. The MSRCR algorithm performs well in
terms of brightness and contrast, it does not perform well in terms of color restoration. In contrast, our
proposed method yields a natural and smooth transition in brightness, improves detail information
effectively, and produces natural and delicate colors.

The objective evaluation of underwater image enhancement is primarily carried out by the peak
signal-to-noise ratio (PSNR), structural similarity (SSIM), underwater color image quality evaluation
(UCIQE), and entropy. PSNR is utilized to measure the level of image distortion or noise, with higher
values indicating better image distortion and noise levels. SSIM assesses the similarity between two
images, taking into account brightness, contrast, and structure, with higher values indicating less
image distortion. UCIQE evaluates the performance of images in terms of chromaticity, saturation,
and contrast, with higher values indicating higher image quality. Lastly, entropy measures the richness
of image details, with higher values indicating more abundant details. Table 1 shows the objective
evaluation metric values of the enhancement results for different algorithms.

Table 1: Objective evaluation metrics of image enhancement results for different algorithms

Image Evaluation metrics Original CLAHE MSRCR Ours

PNSR 17.30 19.11 25.13
SSIM 1 0.59 0.77 0.84

(Continued)
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Table 1 (continued)

Image Evaluation metrics Original CLAHE MSRCR Ours

a Entropy 9.01 11.05 11.79 13.46
UCIQE 0.43 0.49 0.73 0.75
PNSR 16.14 14.96 23.72
SSIM 1 0.55 0.69 0.84

b Entropy 9.24 11.06 12.54 13.94
UCIQE 0.37 0.41 0.77 0.78
PNSR 16.44 19.42 20.68
SSIM 1 0.68 0.87 0.89

c Entropy 9.85 11.24 12.18 13.51
UCIQE 0.44 0.48 0.77 0.71

4.2 Object Recognition Algorithm
4.2.1 Dataset and Experimental Environment

In summary, compared to other classical algorithms, the proposed method in this article shows
a more abundant enhancement effect in color details and better brightness adjustment. In terms
of objective evaluation, it performs better than other algorithms in noise control, image quality,
distortion level, and information entropy.

Based on the DeepTrash dataset shared by Gautam et al. [36], underwater plastic waste images
were added as experimental datasets. The experimental dataset contains two categories: plastic and
bottles. To increase the dataset size, the contrast and brightness of the original dataset images were
randomly adjusted, and the dataset was scaled and flipped. Before training, the experimental data was
divided into training-validation sets and test sets in 9:1 ratio. The training validation set was randomly
divided into a training set and a validation set in 9:1 ratio. The dataset division is shown in Table 2.

Table 2: Details of dataset division

Category Quantity Plastic Bottle

Training set 2243 2304 1812
Validation set 250 234 198
Test set 278 330 217

The experiment was performed using the Pytorch-GPU 1.7.1 deep learning framework, with an
Intel (R) Xeon (R) Gold 6330 CPU @ 2.00 GHz processor and an NVIDIA RTX A5000 24 G graphics
card. The experiment was conducted on an Ubuntu 20.04.4 operating system, with the NVIDIA driver
version 470.103.01, CUDA version 11.3, and CUDNN version 8.2.1.

The experiment utilized the YOLOv5 pre-trained model and implemented transfer learning. The
model was trained for 300 iterations (epochs) with an input size of 256 × 256. During the initial
60 iterations, only pre-trained weights were loaded, and the backbone network was frozen with a
batch size of 64. For the subsequent 240 iterations, the backbone network was unfrozen with a batch
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size of 32. The network model training hyperparameters were set as follows: the optimizer utilized
Stochastic gradient descent (SGD) with a momentum of 0.937, weight decay of 0.0005, and the SGD
momentum was the trend of the loss function value during training. The maximum learning rate was
set to 0.04, while the minimum learning rate was limited to 0.0016. Mosaic data augmentation and
cosine annealing were employed. The loss function value changed during the model training process,
illustrated in Fig. 8. The loss value gradually decreased during the first 60 iterations. The loss function
value was increased suddenly from the 61st iteration, and it began to converge gradually from the
210th iteration.

Figure 8: Change in loss value

4.2.2 Comparative Analysis of Different Detection Models

To demonstrate the superiority of our improved object detection algorithm, we conducted exten-
sive experiments on the dataset and compared our results with the latest methods. The performance of
the models is evaluated using the following metrics: precision (P), recall (R), average precision (AP),
and mean average precision (mAP_0.5). In addition, the detection speed was assessed in terms of
the number of plastic waste images detected per second (fps/s). The complexity of the models was
quantified by the number of model parameters.

To verify the effectiveness of the proposed algorithm, experiments were conducted to train and
evaluate its performance, as well as the performance of five other algorithms: YOLOv5-m, YOLOX-m,
YOLOv4, YOLOv3, and faster region-based convolutional neural networks (Faster-RCNN). All six
algorithms were trained and evaluated under the same software, hardware environment, and dataset,
and their performance was analyzed.

The analysis results are shown in Table 3. Compared to the YOLOv5-m algorithm, Ours achieves
an 18.84% increase in detection speed, a 2.9% improvement in detection accuracy, and a mere 5.99%
increase in model parameters. In comparison to the anchor-free YOLOX-m algorithm, Ours improves
detection speed by 22.60%, detection accuracy by 3.65%, and has a model parameter that is 88.9%
smaller than YOLOX-m. Compared to YOLOv4, Ours increases detection speed by approximately
3.8%, improves detection accuracy by 4.3%, and reduces model parameters by 65.01%. Compared
to YOLOv3, the detection accuracy improves by 5.9%, and the model parameters are only 36.35% of
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YOLOv3. Lastly, when compared to the two-stage Faster-RCNN algorithm, Ours is 1.88 times faster in
detection speed and achieves an 18.1% improvement in detection accuracy. These results indicate that
Ours has superior overall performance and can meet the requirements of underwater waste detection
tasks.

Table 3: Algorithm performance comparison

Model AP_plastic AP_bottle mAP_0.5 Second Parameters Size

Ours 0.897 0.929 0.913 45.56 22.52 M 109 MB
YOLOv5-m 0.866 0.902 0.884 40.02 21.19 M 79.94 MB
YOLOX-m [37] 0.865 0.889 0.877 37.16 25.33 M 101.5MB
YOLOv4 [38] 0.832 0.908 0.870 44.03 64.36 M 256.3 MB
YOLOv3 [39] 0.825 0.883 0.854 47.82 61.95 M 236 MB
Faster-RCNN [40] 0.713 0.751 0.732 24.29 28.48 M 113.5 MB

4.2.3 Underwater Waste Detection Results

The test set was used to select several images for detection, and the results are illustrated in Fig. 9.

Figure 9: Performance of the target detection algorithm at different scenarios

The original images are shown on the left, while the recognition results are on the right. Fig. 9a
presents a complex environment, with numerous small plastic bags in the image. It belongs to a scene
that features a complex small target. Fig. 9b shows a strong light environment with direct sunlight.
Fig. 9c depicts a dimly lit environment with low light. Fig. 9d showcases a murky environment in
the laboratory, with water impurities that affect judgment. In all the scenarios mentioned above, the
proposed algorithm was successful in detecting the targets. The detection results demonstrate that the
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model proposed in this article can accomplish underwater waste detection in complex small target
scenes, strong light scenes, dimly lit scenes, and murky scenes.

4.3 Experimental Results on Recognition and Localization

RGB-D camera can not only capture real-time RGB images of the scene like a regular camera but
also simultaneously capture the corresponding depth image of the scene. An RealSense D415 was used
as the experimental RGB-D depth camera for image acquisition and localization recognition.

To verify the feasibility of the proposed method, experiments were conducted in a laboratory
underwater environment with the device. Some of the detection results are illustrated in Fig. 10, where
the left side of each image is the original image, and the right side shows the recognition result.

Figure 10: Recognition and localization experimental results

The 3D coordinates of the detected object are approximated by the 3D coordinates of the center
point of the object detection box. In the figure, the white solid point in the rectangular box is the center
point of the object detection box. Its coordinates represent the coordinates of this point in the camera
coordinate system obtained by transformation. The number after the category represents the distance
from the center point of the object detection box to the camera, which is the depth value of this point.

This position accuracy is analyzed through 10 experiments, and results are shown in Table 4.
According to Table 4, after determining the pixel coordinates and depth value of the underwater
target’s center point, its three-dimensional coordinates in the camera coordinate system can be
calculated through the calibrated intrinsic and extrinsic parameters. Experimental results have shown
that the measurement error between the measured and actual depth is within 0.008 m, indicating the
system’s high overall positioning accuracy that can meet practical needs.

In summary, the proposed method in this article can enhance underwater images and achieve real-
time identification of underwater garbage. It can use RGB-D cameras to locate the garbage with high
precision.
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Table 4: Positioning accuracy results

Number Pixel coordinates Three-dimensional coordinates True depth value Error

1 (326, 220) (0.1085, −0.0108, 0.3534) 0.3463 0.0071
2 (214, 146) (−0.0606, −0.0572, 0.3742) 0.3817 0.0075
3 (329, 302) (0.0116 ,0.0389, 0.3458) 0.3492 0.0034
4 (165, 353) (−0.0865, 0.0705, 0.4134) 0.4114 0.002
5 (221, 198) (−0.0533, −0.0228, 0.3610) 0.3646 0.0036
6 (438, 89) (0.0813, −0.0926, 0.4183) 0.4225 0.0042
7 (267, 240) (−0.0256, 0.0026, 0.3853) 0.3930 0.0077
8 (323, 268) (0.0081, 0.0189, 0.3932) 0.4010 0.0078
9 (410, 168) (0.0590, −0.0397, 0.3810) 0.3886 0.0076
10 (121, 187) (−0.1144, −0.0296, 0.3750) 0.3675 0.0075

5 Conclusion

The underwater waste recognition and localization is studied in this article. Firstly, a weighted
fusion-based underwater image enhancement algorithm is proposed to improve image quality. Exper-
imental results show that the proposed algorithm has better enhancement effects on brightness,
contrast, detail information, and color restoration, and the enhanced results have smoother transitions
with better visual effects. Secondly, an improved YOLOv5-based algorithm is proposed. Experimental
results show that the improved algorithm has higher detection accuracy and faster detection speed
on the underwater waste dataset, which meets the requirements of real-time detection. Finally, the
RGB-D camera, underwater image enhancement, and underwater detection and recognition tasks are
combined. The Realsense-D415 camera is used to get the color and depth image. The center point coor-
dinates of the detection box are obtained to complete the recognition and localization of underwater
targets. The experimental results demonstrate the effectiveness of the proposed method for identifying
and locating underwater plastic waste, and it has good recognition and localization accuracy. However,
due to the influence of water flow, the underwater targets may undergo frequent movement, we will
study on the identification and localization of dynamic targets in water subsequently.
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