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Abstract: Due to the inherent insecure nature of the Internet, it is crucial to
ensure the secure transmission of image data over this network. Additionally,
given the limitations of computers, it becomes even more important to employ
efficient and fast image encryption techniques. While 1D chaotic maps offer a
practical approach to real-time image encryption, their limited flexibility and
increased vulnerability restrict their practical application. In this research, we
have utilized a 3D Hindmarsh-Rose model to construct a secure cryptosystem.
The randomness of the chaotic map is assessed through standard analysis.
The proposed system enhances security by incorporating an increased number
of system parameters and a wide range of chaotic parameters, as well as
ensuring a uniform distribution of chaotic signals across the entire value space.
Additionally, a fast image encryption technique utilizing the new chaotic
system is proposed. The novelty of the approach is confirmed through time
complexity analysis. To further strengthen the resistance against cryptanalysis
attacks and differential attacks, the SHA-256 algorithm is employed for secure
key generation. Experimental results through a number of parameters demon-
strate the strong cryptographic performance of the proposed image encryption
approach, highlighting its exceptional suitability for secure communication.
Moreover, the security of the proposed scheme has been compared with state-
of-the-art image encryption schemes, and all comparison metrics indicate the
superior performance of the proposed scheme.
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1 Introduction

Chaos is a ubiquitous phenomenon in nature, and nonlinear science heavily relies on the study of
chaos. Chaos theory, with its fundamental characteristics such as system unpredictability, parameter
sensitivity, pseudo-randomness, and others, has found applications in various precise disciplines. In
recent years, the practical advantages of chaos theory have gained significant attention. Chaos theory
has numerous practical uses, including in the secure transmission of multimedia data. Specifically,
when data is exchanged over the Internet. Images of national defense and private information are just
two examples of a few private images that must be communicated securely [1–3]. When it comes to
protecting sensitive data, encryption is crucial. The two most common older methods for encrypting
data are the Data Encryption Standard (DES) and the Advanced Encryption Standard (AES). The
high correlation among neighbouring pixels in digital images is one distinguishing feature; the relative
insensitivity to change is another; minor adjustments to pixel values do not lead to noticeably different
images from those already in the database [4–6]. Hence, standard encryption approaches are unsuitable
for image data encryption due to their time complexity etc. A plethora of image security solutions
has been proposed in the literature [7–9] to address the aforementioned issue. High-speed encryption,
complexity, strong security, and a manageable computer resource overhead are all features of chaos-
based secure communication. For real-world use cases, it can be adopted for image and text encryption.

Ye et al. [10] proposed that diffusion and confusion are the two main building blocks of image
encryption. Diffusion refers to the connection between the unencrypted text and the encrypted
representation of it. The efficacy of an encryption method increases if even a small shift in the initial
image falls out into a noticeable shift in the enciphered image. In this context, “confusion” refers to the
connection between the hidden key and the ciphertext representation. When making slight changes to
the encryption key, resulting in noticeably different encrypted images, it is generally accepted that the
encryption is highly secure.

1.1 Literature Review

The role that chaos plays in cryptography is also influenced by its characteristics. Mutually
continuous-time and discrete-time chaotic maps can be distinguished from the mathematical model
description of chaotic systems. There are many common models of continuous-time chaotic systems,
but two of the most common are the Lorenz system and the Chen system. Arnold maps, logistic
maps, sine maps, and Henon maps are examples of models for discrete chaotic systems. Another
methodology for categorizing chaotic systems distinguishes between systems with integer forms and
systems with fractional forms. The model of a fractional system is more general. Hénon-Lozi type
maps [11], for example, are examples of recently proposed typical fractional chaotic maps that display
a rich complicated dynamic behaviour. After proposing a hyperchaotic fractional Grassi-Miller map
in [12], the authors proceed to implement it in hardware. A chaotic map with fractional order is
presented and investigated in [13]. Several books and articles discuss the utilization of chaos for image
encryption.

A fast and secure image encryption system was proposed by Khennaoui et al. [14], and it makes
use of a 1D chaotic map. The composition of a 1D chaotic system is straightforward, even though
the key space is very small. When it comes to protecting images, 1D chaotic maps provide advantages
such as increased speed and simpler hardware implementation. Chaotic encryption research excels in
the field of image encryption due to the synergy between effective chaotic systems and challenging
encryption approaches. In [9], a sine trigonometric function and tent map are utilized to propose
a discrete chaotic system. The statistical behaviour is consistent over a large range of parameter
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values. Piecewise linear chaotic mapping and a trigonometric function were used by Liu et al. [15] to
create the chaotic mapping. Li et al. [16] discussed a nonlinear dynamic system that includes a cosine
function and finds that it has a lengthy chaotic interval and resilient chaotic qualities. The inverse
of a trigonometric function is likewise a trigonometric function because trigonometric functions
have unique qualities such as periodicity and boundedness. A 1D piecewise chaotic map and the
bisection approach were presented for image encryption in [17]. Elghandour et al. [18] employed a
hyperchaotic model to produce a pseudo-random sequence, which they subsequently encrypted using
a combination of scrambling and diffusion. Gopalakrishnan et al. [19] generated a new 1D chaotic
model using the Beta function and applied it to image encryption; they called their proposal the Beta
chaotic map. Zahmoul et al. [20] proposed an innovative image cryptosystem that employs a hybrid
chaotic system by combining two 1D chaotic maps. The pseudo-orbits of one-dimensional chaotic
systems are employed as the key in an innovative encryption method presented by Alawida et al. [21].
Nepomuceno et al. [22] designed and implemented a one-dimensional sine-powered chaotic map for
image encryption. As part of an effective symmetric image encryption scheme, Mansouri et al. [23]
proposed a novel 2D chaotic map to expand the available key space. Using a 2D economic chaotic
map and a logistic map, Huang et al. [24] devised a method for encrypting images. Askar et al. [25]
propose an innovative method of encryption that uses keys generated from either DNA or an image
of plaintext. Khan et al. [26] introduced an S-Box and logistic-sine scheme for image encryption.

The research discussed above has led to the proposal of secure cryptosystems. However, it is worth
noting that many of these proposals may suffer from either insecurity or impracticality issues, primarily
related to time complexity. Therefore, considering the time cost as a crucial factor, we focused on
improving the efficiency of the system. To achieve better security, we employed a simple chaotic map
available, which exhibits high randomness.

1.2 Research Contribution

Many encryption algorithms do not offer strong security against classical cryptographic attacks
[27–29]. The cryptanalysis of many recently proposed cryptosystems has increased the risk of sensitive
information being lost. Therefore, by considering all the weaknesses carefully, we have constructed
a secure encryption algorithm to provide image security. We have proposed a multiplication and
diffusion-based encryption strategy based on the Hindmarsh-Rose chaotic model [1]. The key genera-
tion process is secured by the SHA-256 hashing algorithm. The proposed technique employs an image’s
associated encryption key as a substitute for the traditional encryption key, which increases security
and reduces the amount of time it takes to decrypt data [30,31]. The encryption method combines a
scrambling process with a diffusion process.

1.3 Paper Organization

The subsequent sections of this manuscript are organised as follows: Section 2 offers a compre-
hensive analysis of the Hindmarsh-Rose model; Section 3 discusses the construction of the proposed
model. In the next two sections, we have shown simulation outcomes and performance analysis,
respectively. Finally, the conclusion with some future recommendations is presented in the last section.
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2 Hindmarsh-Rose Model

The Hindmarsh-Rose model is a mathematical representation of the spiking-bursting behaviour
detected in research with single neurons [1]. It focuses on the membrane potential, represented by the
dimensionless variable x(t), as well as the transportation of particles all through ion channels, which
is measured by two additional variables: y (t) and z(t). Specifically, y (t) represents the ratio of sodium
and potassium ion transport through fast ion channels, while z (t) corresponds to an adaptation
current that decreases the firing rate by incrementing at every spike. The Hindmarsh-Rose model
entails a structure of three nonlinear ordinary differential equations that explain the behaviour of
x (t), y (t), and z (t). The Hindmarsh-Rose system is a three-variable dynamical model given by the
subsequent set of equations:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

dx
dt

= y − ax3 + bx2 − z + Iext,

dy
dt

= c − dx2 − y,

dz
dt

= r (s (x − x0) − z),

(1)

where x, y, and z represent the state variables of the system, Iext is the external current input, and
a, b, c, d, r, s, and x0 are the model parameters.

2.1 Stability Analysis

To find the equilibrium points, we set the derivatives in the above equations to zero and solve for
x, y, and z:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

dx
dt

= 0 ⇒ y − ax3 + bx2 − z + Iext = 0,

dy
dt

= 0 ⇒ c − dx2 − y = 0,

dz
dt

= 0 ⇒ r (s (x − x0) − z) = 0,

(2)

where x is the membrane potential, y and z are the gating variables for the two potassium currents, a,
b, c, d, r, s, and x0 are model parameters, and I is an external current input.

We will use the following parameter values for the stability analysis: a = 1.0, b = 3.0, c =
1.0, d = 5.0, r = 0.001, s = 4.0, x0 = −1.6, I = 4.0.

To determine the fixed points of the model, we solve the equations
dx
dt

= dy
dt

= dz
dt

= 0

simultaneously. This gives us the following three fixed points:⎧⎪⎨
⎪⎩

(x1, y1, z1) = (−1.7756, −3.5858, −5.4656),
(x2, y2, z3) = (−1.5347, −0.0068, −0.0036),
(x3, y3, z3) = (1.6703, −1.2098, 5.1926).

(3)
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To examine the stability of the fixed points, compute the Jacobian matrix J evaluated at each fixed
point. The Jacobian matrix is given by:

J =
⎡
⎣−3ax2 + 2bx 1 −1

−2dx −1 0
rs 0 −r

⎤
⎦ , (4)

where x, y, and z are the values of the fixed point. We evaluate J at every fixed point and calculate the
eigenvalues. The eigenvalues of J for each fixed point are:

Fixed point 1: (−10.8647, −0.0378 + 0.2021i)

The real part of all eigenvalues is negative, so the fixed point is stable.

Fixed point 2: (1.6439, −1.1188 + 0.2491i)

One eigenvalue has a positive real part, so the fixed point is unstable.

Fixed point 3: (−6.2145, −1.9401 + 0.0000i)

The real part of both eigenvalues is negative, so the fixed point is stable.

Therefore, we have one unstable fixed point and two stable fixed points. This means that the system
can exhibit different types of behaviour depending on the initial conditions. If the initial conditions
are near the unstable fixed point, the system will diverge and exhibit chaotic behaviour. If the initial
conditions are instead near a stable fixed point, the system will converge towards that point and exhibit
stable behaviour. The behaviour of a dynamical system is largely determined by its fixed points, which
are values of the system’s variables that do not change over time. Stable fixed points act as attractors,
pulling the system towards them, while unstable fixed points act as repellers, pushing the system away
from them.

2.2 Simulation of Hindmarsh–Rose Neuron

To examine the execution of the Hindmarsh-Rose model we have performed simulations based on
different times. The spiking-bursting behaviour findings are explained in Fig. 1.

2.3 NIST Randomness Analysis

The National Institute of Standards and Technology (NIST) developed a widely used suite of
tests for measuring the random behaviour of time series. Each sequence being evaluated is 1,000,000
bits in length, hence testing many sequences is necessary. Random performance of time series may
be measured with the help of the p-value. The standard deviation is set to = 0.01. We produced 500
chaotic real number categorizations, individually with a length of 125,000 real numbers, to assess the
stochastic recital of sequences produced using the chaotic map. For the NIST evaluation, one hundred
sequences of length one million bits are obtained. Table 1 summarizes our experimental findings and
comparative results with the existing chaotic map. Each p-value is bigger than 0.01, and the run test
has a minimum pass rate of 96%, as can be seen from the test outcome. All chaotic sequences created
by system (1) have been shown to pass the NIST test in experiments.
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Figure 1: Hindmarsh-Rose neuron model for (a) 100-time span; (b) 220-time span

Table 1: NIST test outcome for Hindmarsh–Rose model

Test p-value Status

Proposed Ref. [32]

Frequency 0.9194 0.024356 �
Block frequency 0.9457 0.043087 �
Runs 0.2919 0.856359 �
Longest runs 0.0537 0.836048 �
Universal 0.9099 0.366918 �
Linear complexity 0.5427 0.408275 �
Discrete fourier transform (Spectral) 0.8961 0.254411 �
Overlapping template matching 0.9904 0.088762 �
Non-overlapping template matching 0.8710 0.515882 �
Approximate entropy 0.9813 0.936823 �
Serial 0.9756 0.599693 �
Cumulative sums 0.7908 0.429923 �
Binary matrix rank 0.9125 0.530120 �
Random excursions 0.9989 0.522378 �
Random excursions variant 0.9167 0.47474 �

3 Proposed Cryptosystem

In this section, we have proposed a novel image encryption scheme. The security of the encryption
entirely varies on the input of the encryption algorithm. The proposed encryption approach comprises
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two sub-algorithms named key generation and encryption/decryption processes defined in detail
below:

3.1 Private Key Generation

The initial conditions and the key parameters of the proposed encryption algorithm are generated
by inserting the input image in the SHA-256 algorithm. The results generated from SHA-256 are
utilized as key parameters of the Hindmarsh-rose chaotic model. The first step was using the SHA-2
256 hash method to get the encryption key from the hash of the plaintext picture. The initial state
value of the chaotic Hindmarsh-Rose system was determined by dividing the hash string into four
parts, each of which was then mapped to a decimal larger than 0 and less than 1.

3.2 Encryption/Decryption Process

In this study, the colour digital image is encrypted by combining the operation of diffusion
and invertible matrix multiplication generated from the Hindmarsh chaotic map. The notion of
secure key generation from SHA-256 makes the encryption secure against statistical attacks. The
major operations involved in the cryptosystem are matrix multiplication and diffusion. The array for
diffusion is generated from the Hindmarsh-Rose model. The arrays constructed for the matrices are
filtered through the inverse operation to make the decryption possible. The steps of the proposed
encryption are as follows:

Step 1: The size of the input image is m × n × 3 in the encryption.

Step 2: The layers of the plain image are separated into red, green, and blue channels.

Step 3: Each layer is divided into blocks of 2 × 2 matrices.

Step 4: The invertible matrices generated from the Hindmarsh-rose model are then multiplied with
the plain image matrices, respectively.

Step 5: The multiplicated results are then diffused with the key arrays generated from the
Hindmarsh-Rose model.

Step 6: The resultants are then concatenated as cipher images.

The decryption of the ciphertext is performed in the same step in a reverse manner. The detailed
working strides of the decryption process are as follows:

Step 1: The cipher image of size m × n × 3 is inserted as the input of the decryption algorithm.

Step 2: Inverse diffusion is applied to the layer of the cipher image.

Step 3: The resultant from Step 2 is then multiplied with the inverse of the private key constructed
from the Hindmarsh-Rose model.

Step 4: The outcome layers from Step 3 are then combined into one plain image.

The working mechanism of the proposed encryption work is shown in Fig. 2.

4 The Simulation Results

To examine the implementation of the proposed cryptosystem, we have applied the encryption
process over some standard colour images. The images of Baboon, Parrots, Peppers, and Tulip with
sizes 512 × 512 × 3 are selected to execute the encryption algorithm. The plain images and their
respective encipher results are displayed in Fig. 3. The visual analysis of the encipher images exhibits
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that the ciphered data do not expose any pattern about the primary image, which indicates the excellent
quality of the encryption.

Figure 2: The flowchart of the proposed scheme

Figure 3: Plain images of (a) Baboon; (b) Parrots; (c) Peppers; (d) Tulip; (e–h) respective cipher images
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5 Security Performance Analyses

The security evaluation of any cryptosystem is essential to claim the quality performance of an
image encryption scheme. Therefore, to assess the robustness, we analysed several image encryption
metrics. The results of several metrics are listed below.

5.1 Histogram

The histogram of an image provides a visual representation of how the image’s pixel values are
distributed. Plaintext images typically exhibit non-normal distribution shapes in their histograms. The
histograms of an encrypted image should be uniformly distributed for higher security. The statistical
histograms of Baboon, Parrots, Peppers, and Tulip test images and their enciphered counterparts are
displayed in Fig. 4.

Figure 4: Histogram of Baboon, Parrots, Peppers, Tulip (a–d) original (e–h) encrypted images
correspondingly

The horizontal coordinates in Fig. 4 represent pixel value and the vertical coordinate denotes
the frequency occurrence of each pixel. The histograms of the encrypted and plaintext versions of
the image are very different from one another. The histogram of the enciphered ciphertext image
is normally dispersed, even though the histogram of the plain image was not. Consequently, the
encrypted image is secure against attacks based on statistical analysis.

5.2 Chi-Square Analysis

Furthermore, we can use the Chi-square test to quantify the histogram’s uniformity distribution.
The Chi-square χ 2 of an image can be determined as follows:

χ 2 =
∑n

i=1
(Oi − Ei)

2
/Ei, (5)

where n denotes the number of grayscale levels in the image, Oi is the frequency with i-th gray level that
has been detected, and Ei is the expected standard frequency with i-th gray level that has been observed
for an image with dimensions M ×N, Ei = M ×N ×n. The critical value for an 8-bit grayscale image
(n = 256) at a significance level, α = 0.05 is χ 2 (255, 0.05) = 293.2478. For an enciphered 8-bit
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grayscale image, the value must be less than 293.2478. Numerous test images and their enciphered
counterparts are used in the test, and the findings are summarized in Table 2.

Table 2: χ 2 results of the proposed scheme and comparative results

Image χ 2 of cipher image Ref. [29] Ref. [17]

Baboon 233.5158 244.7559 245.0137
Parrots 215.4871 – –
Peppers 222.9162 – –
Tulip 239.5591 – –

From Table 2, the Chi-square results of all the enciphered images are smaller than the crucial value.
However, the Chi-square estimate of enciphered images produced by our proposed work is lower than
that of similarly prepared images from other encryption schemes.

5.3 Correlation Coefficient

There is a strong correlation among neighbouring pixels in meaningful plaintext images. As such,
a strong encryption method needs to be able to break the link among adjacent pixels. A correlation
coefficient provides a quantitative calculation of the degree to which neighbouring pixels are correlated
with one another. In this work, we used the correlation coefficient, a measure for examining the degree
to which neighbouring image pixels share common characteristics.

E (x) = 1
Nxy

∑Nxy

i=1
xi, (6)

D (x) = 1
Nxy

∑Nxy

i=1
(xi − E (x))

2, (7)

cov (x, y) =
∑Nxy

i=1
(yi − E (y)) (yi − E (y)), (8)

rxy = cov (x, y) /
√

D (x)
√

D (y), (9)

where (xi, yi) is a pair of integers representing the average grey amount of a sample of neighbouring
pixels in the image, and Nxy is the total quantity of sampled pixel bands. Since the rxy correlation
coefficient has a smaller absolute value, there is less of a connection between the two sets of pixels.
Correlation coefficients for diagonally adjacent pixels in the enciphered image are explained in Table 3.

Table 3: Correlation coefficient of the proposed scheme and comparative results

Image Direction Proposed scheme Ref. [29] Ref. [30]

Horizontal −0.0009 −0.00007 0.0020
Baboon Diagonal −0.0010 −0.00007 0.0020

Vertical −0.0007 −0.00007 0.0020
Horizontal 0.0001 – –

Parrots Diagonal 0.0008 – –
Vertical −0.0052 – –

(Continued)
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Table 3 (continued)

Image Direction Proposed scheme Ref. [29] Ref. [30]

Horizontal −0.0078 −0.0046 0.0043
Peppers Diagonal 0.0029 −0.0046 0.0043

Vertical 0.0011 −0.0046 0.0043
Horizontal 0.0030 – –

Tulip Diagonal 0.0004 – –
Vertical −0.0006 – –

The comparison outcomes are shown in Table 3. The proposed approach yields good results,
especially when compared to state-of-art techniques. In this study, we present a method that utilizes
the Hindmarsh Rose model to create confusion and diffusion among pixels.

Fig. 5 plots the distribution of neighbouring pixel values for the Parrots, making it easy to see how
their values are related to one another. Fig. 5 shows that, in the original Parrots image, neighbouring
points are typically distributed along or around the 45-degree line, signifying that the estimates of
nearby pixels are the same or very similar. Yet, there is a significant variance in value between
neighbouring pixels, as seen by the fact that the ciphertext image’s adjacent points are not centred
on the 45-degree line. As a result, the image’s pixel correlation is essentially broken by the encryption
technique.

Figure 5: Parrots image correlation diagram (a–c) plain; (d–f) enciphered in horizontal, diagonal, and
vertical paths correspondingly
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5.4 Entropy

Information entropy can be utilized to calculate how unpredictable or random data is. The greater
the information entropy, the more difficult it is to forecast or understand the underlying information.
The following formula may be used to determine an information source’s entropy:

H (S) = −
∑n

i=1
pi log2 (pi), (10)

where S = s1, s2, . . . , sn is the information source and pi is the probability that si will occur. The
maximum information entropy principle states that an information source has the highest possible
entropy, or log2 (n), when all possible states si have the same probability pi = (1/ n). An 8-bit grayscale
image’s data source has 256 grey levels, making n = 256. As log2 (256) = 8 is the highest possible
entropy for a grayscale image, this is the case. Hence, the larger the uncertainty and the significant
the robustness of an enciphered image, the nearer its information entropy is to 8. Table 4 shows
the entropy of encrypted examples of typical test images using this approach and other previously
published schemes.

Table 4: Information entropy analysis results

Image Proposed scheme Ref. [20] Ref. [5]

Baboon 7.9999 7.9971 7.9970
Parrots 7.9998 – –
Peppers 7.9989 7.9970 7.9973
Tulip 7.9997 – –

The results demonstrate that ciphertext image information entropy is quite near to the maximum
value and hence the proposed scheme is secure against entropy attack.

5.5 Differential Attack Analysis

The strong sensitivity of the ciphertext to the plaintext and the secret keys is a feature of an effective
encryption algorithm. A comparison of the enciphered image’s sensitivity to the original image or
secret keys can be carried out with either NPCR or UACI. Mathematically, NPCR and UACI are
written as:

D (i, j) =
{

1, if C (i, j) �= C ′ (i, j),
0, if C (i, j) = C ′ (i, j),

(11)

NPCR = 1
M × N

∑M

i=1

∑N

j=1
D (i, j) × 100%, (12)

UACI = 1
M × N

∑M

i=1

∑N

j=1

∣∣∣∣C (i, j) − C ′ (i, j)
255

∣∣∣∣ × 100%, (13)

where M and N refer to the image’s row and column coordinates. The sensitivity of the encryption
technique is relative to the square root of the product of NPCR and UACI. An NPCR of 99.6094%
and a UACI of 33.4635% are considered good for image encryption.

After comparing the UACI and NPCR values of two different enciphered images for the key
sensitivity study, we found that the respective encryption keys differed by just one parameter on
the order of 1015. Tabulated below are the outcomes of the experiments. Experimental findings
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demonstrate that UACI and NPCR values are close to the ideal values, showing that the cryptosystem
is highly sensitive to the specifics of every key parameter. The proposed scheme has higher key
sensitivity than the results from [29,30]. Table 5 summarizes the findings from the experiments.

Table 5: NPCR and UACI analysis of offered scheme and comparative results

Image Proposed Ref. [29] Ref. [30]

NPCR UACI NPCR UACI NPCR UACI

Baboon 99.63 33.25 99.6399 33.3027 98.0103 31.1886
Parrots 99.68 33.58 – – – –
Peppers 99.59 34.71 99.6185 33.4211 99.9664 35.6275
Tulip 99.71 33.99 – – – –

5.6 Key Space Analysis

Through, key space analysis, one can analyse the total number of possible keys. In this study, the
parameters and starting results of the chaotic model are the original keys to the algorithm. Eleven
parameters of double precision {a, b, c, d, r, s, x0, x (0), y (0), z (0), Iext} make up the key set if the
system parameter is ignored. There are fifteen distinct binary options for each parameter. This results
in a total key space of 1015∗11 = 10165 > 2249. According to [29], an encryption algorithm is considered
secure if its key space is larger than 2100. Hence, the proposed technique has a necessarily large key
space to resist brute-force attacks.

5.7 MSE and PSNR

In evaluating our algorithm’s efficacy, we utilize MSE and PSNR. The MSE shows how far off
the target image is from the original. MSE is measured as:

MSE = 1
M1 × M2

∑M1

i=1

∑M2

j=1
[I0 (i, j) − Ie (i, j)]2, (14)

where M1 denotes the row number and M2 denoted the column number, I0 (i, j) is the value of the plain-
image pixel at the position (i, j), and Ie (i, j) is the value of the enciphered image pixel at the position
(i, j). PSNR is written as:

PSNR = 10 × log10

[
Imax

2

MSE

]
, (15)

where Imax is the highest possible pixel quantity in the image. When assessing the encrypted version
of an image to the original, the PSNR should be low. Images of Baboon, Parrots, Peppers, and Tulip
are encrypted, and the PSNR (dB) of these encrypted images is calculated to compute the quality of
the encryption. MSE and PSNR values are illustrated in Table 6. From the Table, it is evident that the
proposed scheme is more secure than another encryption scheme.

5.8 Robustness Analysis

While transmitting encrypted images, a good encryption technique should be able to deal with
a certain amount of data loss. A visually recognizable decrypted image may be recovered even when
noise or data loss corrupts the encrypted image, demonstrating the algorithm’s resilience.
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Table 6: MSE and PSNR analysis for proposed scheme and comparative results

Image Proposed Ref. [29] Ref. [30]

MSE PSNR MSE PSNR MSE PSNR

Baboon 9308.1 7.9910 dB 7188.3 9.5645 dB 7200.6 9.5571 dB
Parrots 9567.8 8.6561 dB – – – –
Peppers 8288.5 7.0024 dB 8199.6 8.9929 dB 8093.0 9.0497 dB
Tulip 7685.6 9.0078 dB – – –

To evaluate the algorithm’s robustness against data loss, we first encrypt a 256 × 256 image in
the top left corner, then divide it into 32 × 32, 64 × 64, and 128 × 128 sub-blocks and decode each
one separately. Fig. 6 depicts the decryption effect. The experimental findings demonstrate that the
method is even capable of successfully retrieving the plain image even when the sliced region is as
large as 128 × 128. The technique described in [30] can only handle a maximum data loss size of
8 × 16 in enciphered images, in contrast. Using the techniques described in [30], we find that when our
enciphered image has a data loss with dimensions 128 × 128, the deciphered image is identical to the
enciphered image with a data loss of 8 × 16. Our technique outperforms the scheme proposed in [30]
in terms of resilience to data loss.

Figure 6: Cipher image of Baboon with a black chunk of (a) 32 × 32; (b) 64 × 64; (c) 128 × 128; (d–f)
respective decrypted images
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5.9 Time Complexity Analysis

The proposed approach encrypts data in three distinct steps: generating Hindmarsh-Rose chaotic
secret key streams, encryption of pixels using invertible matrices, and pixel diffusion carried by bitwise
XOR operation. As part of the algorithm’s time-cost analysis, we encrypt and decrypt a 256-by-256
grayscale Baboon image. Table 7 displays the average encryption and decryption times (in seconds)
from some different studies. Table 7 also includes statistics on the time cost of several chaos-based
algorithms taken from recently published work. The outcomes show that the proposed method is
quicker at both encrypting and decrypting than the methods discussed in [30,31].

Table 7: Time comparison of the proposed scheme with already published work

Phase Proposed Ref. [30] Ref. [31]

Encryption 0.9701 s 12.6500 s 14.8401 s
Decryption 0.7814 s 12.8410 s 14.9266 s

5.10 Classical Cryptanalysis Attack

The strength of the proposed encryption scheme can be measured by evaluating it against classical
cryptanalysis attacks. When the system is subjected to the chosen plaintext or chosen ciphertext
attack then the attacker might try to insert some images trying to recover the private keys from the
system. As the proposed encryption scheme utilized the algorithm of SHA-256 based on the input of
the algorithm, therefore, the output against each image would be different. Therefore, the proposed
structure can resist all types of classical attacks due to its nature of the complex design.

6 Conclusion

In this study, we present a novel three-dimensional Hindmarsh-Rose model-based cryptosystem
that demonstrates significant chaotic behaviour across a wide range of parameters. The proposed
encryption method is mainly based on chaos theory and offers suitability for real-time encryption.
To assess the effectiveness of the model, we utilized standard measures commonly employed in chaos
theory. During the testing phase of our proposed scheme, we observed robust chaotic behaviour
across various parameter values. Furthermore, we employed the chaotic map to create a faster
and more secure image encryption technique. This proposed image encryption approach combines
multiplication and diffusion operations, effectively merging permutation and substitution into a single
step. As a result, the proposed scheme achieves efficiency and enhanced security compared to the
conventional encryption algorithms. Performance analysis of the proposed encryption algorithm
demonstrates that it satisfies numerous ideal values across different measures. Moreover, the algorithm
successfully passes all security tests along with low computational complexity. We tested the proposed
image encryption technique using extensive simulation and experimental tests, which confirmed its
suitability for real-time applications. Additionally, we plan to apply the proposed method to encrypt
audio and video data in the future. Our forthcoming research will focus on evaluating the effectiveness
of the proposed encryption method on videos and audio.
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