
This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

echT PressScience

DOI: 10.32604/cmc.2023.038670

ARTICLE

Ensemble of Population-Based Metaheuristic Algorithms

Hao Li, Jun Tang*, Qingtao Pan, Jianjun Zhan and Songyang Lao

College of Systems Engineering, National University of Defense Technology, Changsha, 410000, China

*Corresponding Author: Jun Tang. Email: tangjun06@nudt.edu.cn

Received: 23 December 2022 Accepted: 10 April 2023 Published: 08 October 2023

ABSTRACT

No optimization algorithm can obtain satisfactory results in all optimization tasks. Thus, it is an effective way to
deal with the problem by an ensemble of multiple algorithms. This paper proposes an ensemble of population-based
metaheuristics (EPM) to solve single-objective optimization problems. The design of the EPM framework includes
three stages: the initial stage, the update stage, and the final stage. The framework applies the transformation of the
real and virtual population to balance the problem of exploration and exploitation at the population level and uses
an elite strategy to communicate among virtual populations. The experiment tested two benchmark function sets
with five metaheuristic algorithms and four ensemble algorithms. The ensemble algorithms are generally superior to
the original algorithms by Friedman’s average ranking and Wilcoxon signed ranking test results, demonstrating the
ensemble framework’s effect. By solving the iterative curves of different test functions, we can see that the ensemble
algorithms have faster iterative optimization speed and better optimization results. The ensemble algorithms cannot
fall into local optimum by virtual populations distribution map of several stages. The ensemble framework performs
well from the effects of solving two practical engineering problems. Some results of ensemble algorithms are
superior to those of metaheuristic algorithms not included in the ensemble framework, further demonstrating
the ensemble method’s potential and superiority.

KEYWORDS
Ensemble; population-based metaheuristics; real and virtual population; elite strategy; swarm intelligence

1 Introduction

Multiple optimization techniques have been proposed to address the challenges of various
optimization problems, which include accurate and approximate methods [1]. Accurate methods
obtain an exact solution to guarantee optimality. Approximate methods can generate a high-quality
solution in a reasonable time to meet the actual requirements, but they cannot ensure a globally optimal
solution. As one type of approximate method, metaheuristics are general for solving optimization
problems. Metaheuristics include single-solution-based and population-based by the number of
solutions processed in the optimization phase [2].

Although engineers apply meta-heuristic algorithms to various optimization problems, the solu-
tion to a specific optimization problem is only sometimes satisfactory. Therefore, researchers widely
use integration strategies to design general algorithms for particular problem sets. Many practical

https://www.techscience.com/journal/CMC
https://www.techscience.com/
http://dx.doi.org/10.32604/cmc.2023.038670
https://www.techscience.com/doi/10.32604/cmc.2023.038670
mailto:tangjun06@nudt.edu.cn


2836 CMC, 2023, vol.76, no.3

and available algorithms have been developed for single-objective optimization [3], constrained
optimization [4], multi-objective optimization [5], niche [6], and others. Metaheuristic algorithms have
significantly been developed and applied to solving optimization problems in many fields [7], such as
scheduling [8], data mining [9], and unmanned system [10].

When engineers integrate various optimization algorithms, they have to design appropriate
integration schemes to take advantage of their respective strengths. The paper proposes an ensemble
of population-based metaheuristics (EPM) to solve the single-objective problem. We consider each
population-based metaheuristic algorithm as a whole in the ensemble framework without under-
standing its characteristics and internal mechanisms. The ensemble framework puts forward the
transformation between the real and virtual populations to coordinate exploration and exploitation
at the population level. It also adopts an elite strategy to realize information exchanges among virtual
populations to enhance the diversity of populations. The transformation between the real and virtual
populations mainly solves the problem of falling into local optimum. We also apply an elite strategy
to speed up the convergence. The practical issues that the ensemble framework can solve are related
to the application field of its integrated meta-heuristic algorithms. If a meta-heuristic algorithm can
be applied to solve a particular practical problem, then the algorithm can still solve the optimization
problem in the ensemble framework.

The rest of this paper is structured as follows. Section 2 summarizes the ensemble methods of the
population-based metaheuristic algorithms. Section 3 describes the design of the EPM framework and
how to use it to integrate various metaheuristic algorithms. Section 4 conducts testing and analysis,
where it tests the original and ensemble algorithms using two test function sets and two engineering
application problems. Finally, in Section 5, the full text is summarized, pointing to future research.

2 Related Work
2.1 Population-Based Metaheuristics

Population-based metaheuristics have the same paradigm, as shown in Fig. 1. A population
represents a set of solutions, and each individual represents a feasible solution. Generation strategies
are designed to generate a new population, and the original individual is replaced by the newly
generated individual according to selection strategies so that the population is continuously optimized
until the set stop condition is met. The various population-based metaheuristic algorithms differ in
how they perform the generation and selection processes.

The design of population-based metaheuristics is inspired by nature and human society, including
evolutionary processes, physics, biology, chemistry, mathematics, human bodies, society, and so on.
Evolutionary algorithms simulate the process of biological evolution, using crossover, mutation,
reproduction, and other operators to produce better solutions. Typical algorithms include differential
evolution [11], genetic algorithm [12], and genetic programming [13]. Biology-based algorithms mimic
the behaviors in biological groups, such as foraging, mating, and movement, including particle swarm
optimization [14], artificial bee swarm optimization [15], cuckoo search [16], and sand cat swarm
optimization [17]. Human-based algorithms mainly simulate human body structure, way of thinking,
and social behavior, including tabu search [18], cooperation search [19], brainstorming algorithms
[20], heap-based optimization [21], and war strategy optimization [22]. Physics-based algorithms draw
lessons from the classical laws of physics. For example, the idea of gravity search comes from the law
of gravity [23]. The big bang algorithm simulates the big bang effects and the big bang processes [24].
The electromagnetic mechanism-like algorithm simulates charged particles’ attraction and repulsion
mechanisms in the electromagnetic field [25]. The algorithm based on mathematics draws lessons from



CMC, 2023, vol.76, no.3 2837

mathematical formulas and mathematical theorems, such as the sine cosine algorithm based on the
mathematical properties of the sine and cosine functions [26], the chaotic golden section algorithm
based on chaotic motion and golden section [27] and the arithmetic optimization algorithm based on
the main arithmetic operators in mathematics [28].

Figure 1: The typical process diagram of population-based metaheuristics

Engineers apply metaheuristic algorithms in many fields, such as engineering, material, robot,
computer, home life, and medical treatment. Chopra et al. proposed a golden jackal optimization
algorithm for the economic load dispatch problem in electrical engineering [29]. Zhang et al. designed
a generalized normal distribution optimization to improve the accuracy of extracting the model
parameters in the photovoltaic material industry [30]. Ibrahim et al. proposed a hybrid wind-driven-
based fruit fly optimization algorithm for adjusting several model parameters in the double-diode cell
material industry [31]. Tang et al. combined fuzzy C-means clustering and ant colony optimization
algorithm for mission planning of unmanned aerial vehicles in emergent scenarios [32]. Tian applied
a backtracking search optimization algorithm to adjust the algorithm parameters of the least square
support vector machine in the computer field [33]. Jordehi designed a quadratic binary particle swarm
optimization to schedule multiple interruptible and non-interruptible appliances in an intelligent home
[34]. Nadimi-Shahraki et al. applied an enhanced whale optimization algorithm to detect coronavirus
disease 2019 [35].

The search steps of these algorithms include exploration and exploitation phases [36]. In the
exploration phase, it ensures the diversity of the population as much as possible so that the individuals
in the population can fully explore each area of the feature space. If there is insufficient exploration, the
solution is locally optimal. In the exploitation phase, the search should focus on areas with high-quality
solutions, constantly searching the neighborhood. If underexploited, there is no way to converge to a
global solution.

2.2 Ensemble Approaches of Population-Based Metaheuristics

A single algorithm cannot handle all the optimization problems [37], so the ensemble of multiple
meta-heuristic algorithms can increase the effect of optimization. The ensemble technology of the
meta-heuristic algorithms includes low-level and high-level ensembles depending on the objects. The
low-level ensemble integrates multiple search strategies and variable parameter values of a single
algorithm. The high-level ensemble integrates multiple meta-heuristic algorithms and their variants.

An algorithm may be excellent at solving one type of optimization problem and not good at
solving another. The search strategy of the algorithm mainly expresses this particularity. Therefore,



2838 CMC, 2023, vol.76, no.3

to enhance the effect of the algorithm on optimization problems that the algorithm is not good at, a
variety of search strategies can be integrated to improve the algorithm to obtain a better solution.
Qin et al. proposed a self-adaptive differential evolution algorithm that randomly assigned the
experimental vector generation strategy and the control parameters to population individuals based on
the characteristics of the historical solution [38]. Pan et al. designed an adaptive differential evolution
algorithm based on the hybrid leapfrog strategy, which can maintain the overall diversity of the
population during dynamic evolution [39]. Gong et al. applied a multi-operator search strategy based
on a cheap agent model, using multiple sub-generation search operators and proxy models to select the
best candidate solution [40]. Ali et al. divided the population into several subgroups, each adopting
a modified mutation strategy based on differential evolution [41]. Rakhshani et al. proposed a new
extension of the cuckoo algorithm, which combines the exploration capabilities of computer science
with the development behavior provided by the covariance matrix adaptation evolution strategy
through multiple search strategies [42]. Li et al. designed an adaptive learning framework for particle
swarm optimization to select the optimal method from some strategies to deal with different search
spaces [43].

When the set of optimization problems is vast, a single swarm intelligence optimization algorithm
cannot handle it. So researchers ensemble multiple algorithms to solve optimization problems.
Lynn et al. proposed an evolutionary particle swarm optimization algorithm that integrates dif-
ferent particle swarm optimization algorithms [44]. Zhang et al. proposed a multivariable coor-
dination framework, which coordinates multiple improved differential evolution algorithms [45].
Thangavelu et al. designed an island-based dynamic data exchange algorithm mixing four classical
differential evolution variants that fill each island with different dynamic data exchange variables
as a possible way to implement a robust dynamic data exchange system [46]. Wu et al. proposed an
algorithm based on an ensemble of multiple differential evolution variants, which divides the whole
population into index and reward subpopulations and allocates the reward subpopulation dynamics
to the well-performing differential evolution variant algorithm according to the performance of the
index subpopulation [47]. Elsayed et al. applied a group of different particle swarm optimization
variants to integrate and measure the performance of varying optimization variants according to
the improvement index to adaptively determine the number of individuals allocated to the variant
algorithm in each generation [48]. Vrugt et al. applied an adaptive learning strategy that integrates
evolution strategy, genetic algorithm, and particle swarm optimization to dynamically adjust the
influence of these three algorithms on individuals [49]. Xue et al. proposed an integrated evolutionary
algorithm using an adaptive learning search technique incorporating three different algorithms
[50]. Elsayed et al. designed a framework with multiple adaptive algorithms and operators, using
two decisions to adaptively select the appropriate algorithm and search operator [51]. The existing
ensemble frameworks are usually designed for specific algorithms and their variants, focusing on
complementarity and neglecting generality.

In this paper, we design an ensemble framework based on common structural features of meta-
heuristic algorithms rather than a specific algorithm. The ensemble framework belongs to the high-
level ensemble, which could integrate various meta-heuristic and variant algorithms. These algorithms
can have multiple search strategies, including low-level ensembles.



CMC, 2023, vol.76, no.3 2839

3 Ensemble of Population-Based Metaheuristics

This section introduces the EPM framework in detail. Section 3.1 explains the idea and features
of the framework. Section 3.2 shows the stages of using the EPM framework to integrate the
metaheuristic algorithm. It presents the implementation procedure and pseudocode in Section 3.3.

3.1 Basic Concepts

3.1.1 Algorithm Library

After filling in multiple meta-heuristic algorithms, the ensemble framework can only solve
optimization problems. These meta-heuristic algorithms are placed together in the algorithm library.
It is hard to judge which population-based metaheuristic algorithm is the best for a particular
optimization problem, especially when there is not enough information about the problem. While
engineers can find better algorithms through trial and error, it would be time-consuming and labor-
intensive. In addition, to solve some problems, a satisfactory solution cannot be obtained through a
search strategy using a single algorithm. Neither the specific transition point from one algorithm to
another nor which algorithms to apply is known. Each algorithm has its characteristics: local search,
global search, optimization speed, and population diversity. The role of the EPM framework is to
make all kinds of algorithms give full play to their respective strengths and provide a communication
bridge for these algorithms. It requires that as many algorithms as possible be included in the algorithm
library.

3.1.2 Real and Virtual Populations

The EPM framework proposes the setting and conversion of real and virtual populations. Virtual
populations represent various virtual states of the population obtained by the evolution of the real
population in different directions. All virtual populations come from the real population. Each virtual
population applies a population-based metaheuristic algorithm, which updates the population by
selection rules to obtain individuals with better fitness values. Each virtual population can exchange
information to facilitate population optimization. When certain conditions are satisfied, it retains
the optimal virtual population as the optimal population, which materializes into a real population.
After that, it uses the same operation to virtualize and set up the next population that meets certain
conditions, constantly optimizing the population until reaching the stop condition. The adjustment of
parameters for each swarm intelligence algorithm is not considered, nor is the specific update strategy
within the population. The setting of the real and virtual populations is a new idea for coordinated
exploration and exploitation at the population level.

3.1.3 Elite Strategy

The exchange of information among virtual populations enables the population to obtain
satisfactory solutions more quickly in the renewal process, reducing the incidences of falling into local
optima. The algorithm framework designed in this study uses an elite strategy to communicate between
virtual populations. To minimize the interference in the virtual population, the individual with the
smallest fitness value is an elite in each virtual population. If multiple individuals have the same fitness
value, it randomly selects one as the elite. It brings these elites together to form a group and selects the
best elite according to their fitness. When meeting certain conditions, the best elite individual is added
to each virtual population to complete the exchange of information between populations. In this way,
it reduces the interference of virtual populations and realizes population optimization with the help
of the optimal individual’s influence on the population.



2840 CMC, 2023, vol.76, no.3

3.2 The Framework of EPM

The EPM framework consists of three stages: the initial stage, the update stage, and the final stage.
The update stage includes two sub-stages high-level generation and selection. Fig. 2 shows the entire
process diagram of EPM. These three stages are described in detail below.

Figure 2: The entire process diagram of EPM

3.2.1 The Initial Stage

The search space dimension of the optimization problem is D. Its upper boundary U is
(u1, u2, . . . , ud, . . . , uD), and its lower boundary L is (l1, l2, . . . , ld, . . . , lD). The number of individuals
in the population is N, and the population set X is {X1, X2, . . . , Xn, . . . , XN}. The position of the nth

individual Xn is (xn
1, xn

2, . . . , xn
d, . . . , xn

D), where xn
d is calculated according to Eq. (1), r is a random

number in the [0, 1].

It selects the required algorithm in the algorithm library, and the number of algorithms selected
is M. The set of algorithms A is {A1, A2, . . . Am, . . . , AM}. R represents the real population, and XR(t)
represents the population at the tth iteration. The virtual population set V is {V1, V2, . . . , Vm, . . . , VM}.
XVm(t) represents the virtual population corresponding to the mth algorithm at the tth iteration. When
t = 0, XR(t) and XVm(t) are obtained from Eq. (2).

xn
d = ud + r(ud − ld) (1)

XVm(0) = XR(0) = X(0), m = 1, 2, 3, . . . M (2)

3.2.2 The Update Stage

At the high-level generation process, each virtual population adopts the corresponding algorithm
to update separately, where their internal update strategy set Rw is {Rw1, Rw2, . . . , Rwm, . . . , RwM}.
Rwm represents the internal update strategy of the algorithm Am, and the update process of the virtual
population position X Vm is shown in Fig. 3.



CMC, 2023, vol.76, no.3 2841

Figure 3: The updating process diagram of the virtual population position

At the (t + 1)th iteration, XVm ′
(t + 1) is obtained from XVm(t) through the generation and selection

strategy within the algorithm Am, as shown in Eq. (3). However, it is not the virtual population for the
next update XVm(t + 1), which needs to be determined according to the high-level selection process.

XVm ′
(t+1) = Rwm(XVm(t)) (3)

The entire high-level selection process is shown in Fig. 4. The elite swarm consists of individuals
corresponding to the minimum fitness value in each virtual population. The set of these fitness values E
is {E1, E2, . . . , Em, . . . , EM}, where Em represents the minimum fitness value in the mth virtual population.
At the (t + 1)th iteration, Em(t + 1) is calculated by Eq. (4), where f () represents calculating the fitness
value. B is the minimum in the set E, and B(t + 1) is calculated by Eq. (5). Then, the individual with
the minimum fitness value of the elite swarm B is considered as the best elite. Its corresponding virtual
population is called the optimal virtual population Vb and its corresponding individual position is
XVb

e . If there are multiple individuals corresponding to the minimum fitness value, random selection is
performed.

Figure 4: The process of a high-level selection



2842 CMC, 2023, vol.76, no.3

Em(t + 1) = min f (XVm ′
i (t + 1)), i = 1, 2, 3, . . . , N (4)

B(t + 1) = min{E1(t + 1), . . . , Ej(t + 1), . . . , EM(t + 1)} (5)

H is the minimum fitness value of the best elite in history. When B(t + 1) ≥ H, all virtual
populations are preserved, and no information exchange is carried out among them. The virtual
populations to be updated next time is shown in Eq. (6).

XVj(t+1) = XVj
′
(t+1), j = 1, 2, . . . M (6)

When B(t + 1) < H, if B(t + 1) � H, the optimal virtual population Vb is materialized
to the real population. The real population generates new virtual populations to be updated next
time, as shown in Eq. (7). In this process, the parameters in the algorithms corresponding to the
original virtual populations are retained. In this paper, it can be determined that the difference
is large if one of the following three conditions is met: {B(t + 1) × H > 0, B(t + 1) > 0, a ≤ 0.1},
{B(t + 1) × H > 0, H < 0, a ≥ 10}, {

B(t + 1) × H < 0, eB(t+1) < eH
}
, where a is the ratio of B(t + 1) to

H, as shown in Eq. (8). If B(t+1) is not much different from H, the best elite is copied and distributed
to other virtual populations and an individual in each virtual population is randomly replaced in the
process. For virtual population Vm, q is a random integer in [1, N], representing a random individual
which will be replaced by the best elite. The improved population will be updated in the next time as
the new virtual populations, and the process is shown in Eq. (9).

XVj(t+1) = XR(t+1) = XVb
′
(t+1), j = 1, 2, . . . , N (7)

a = B(t + 1)

H
, H �= 0 (8)

XVj (t + 1)
Xq

Vj
′
(t+1)=XeVb (t+1)←− XVj

′
(t + 1), j = 1, 2, . . . , M (9)

3.2.3 The Final Stage

The update stage repeats until reaching the maximum of iterations T , then the whole process ends.
In the last iteration, the optimal virtual population Vb is materialized to obtain the real population, as
shown in Eq. (10). After the last iteration, the optimal virtual population is transformed into the real
population.

XR(T) = XVb(T) (10)

3.3 General Process of EPM

The ensemble range covered by the EPM framework includes all population-based metaheuristic
algorithms and their modified versions. The larger the number of algorithms in the algorithm library,
the better the possibility of covering many aspects of the optimization problem. First, it selects an
appropriate number of algorithms from the algorithm library for the ensemble. In this process, the
number of algorithms can be set without prior knowledge and then selected randomly. In the case of
specific prior knowledge, it chooses the appropriate algorithm according to the previous knowledge.
The pseudocode of EPM is presented below:



CMC, 2023, vol.76, no.3 2843

Input N, T, M
Initialize
Initialize the population position X according to Eq. (1)
Get X R, X V according to Eq. (2)
Update repeatedly
While t < T

For j = 1:M
Get X Vj′(t + 1) from X Vj(t) according to Eq. (3)

End
Obtain B(t + 1) according to Eqs. (4) and (5)
For j = 1: M

If B(t + 1) ≥ H
Get X Vj(t + 1) from X Vj

′
(t + 1) according to Eq. (6)

Else if B(t + 1) � H
Get X Vj(t + 1) from X Vb

′
(t + 1) according to Eq. (7)

Else
Get X Vj(t + 1) from X Vj

′
(t + 1) according to Eq. (9)

End
End
Get the historically best elite H
t = t + 1

End while
Output H

4 Experiment Results

It applies ensemble algorithms to two test sets, 23 standard benchmark functions [52] and the 2017
congress on evolutionary computation (CEC2017) benchmark functions [53]. Section 4.1 describes
these functions in detail. Section 4.2 presents the five algorithms in the algorithm library along
with a comprehensive comparison between the integrated and original algorithms, introducing the
parameters of each algorithm in the experiment. Section 4.3 illustrates the experimental results of
the nine algorithms. It gives the iterative curves of all algorithms on some functions in Section 4.4
to directly observe the optimization effect and convergence of the algorithms. Section 4.5 shows the
evolution of the real and virtual populations in the optimization process. Section 4.6 applies the
ensemble framework to solve two engineering application problems.

4.1 Benchmark Functions

We select two sets of benchmark functions. One set consists of the 23 standard benchmark
functions of the experiment, which are described in detail in Table 1, including function type, function
name, and function definition. D denotes the number of independent variables in the function, and the
initialization range means the range of variables. The optimal value corresponding to each function is
the global optimum. In these functions, F1–F13 are high-dimensional with a dimension of 30; F1–F7
are unimodal; F8–F13 are multi-peak; F14–F23 are low-dimensional with only a few local minima.
The other set is the CEC2017 benchmark functions set, as described in Table 2. Among these functions,



2844 CMC, 2023, vol.76, no.3

C1–C2 are unimodal; C3–C9 are simple multi-peak; C10–C19 are mixed; C20–C29 are compound. The
variable dimensions range from [−100, 100]. We set the dimensions uniformly to 30 and 50.

Table 1: 23 standard benchmark functions [52]

Function type No. Function name D Initialization range Global
optimum

F1 Sphere model 30 −100 ≤ xi ≤ 100 0
F2 Schwefel’s

problem 2.22
30 −10 ≤ xi ≤ 10 0

F3 Schwefel’s
problem 1.2

30 −100 ≤ xi ≤ 100 0

Unimodal test
functions

F4 Schwefel’s
problem 2.21

30 −100 ≤ xi ≤ 100 0

F5 Generalized
Rosenbrock’s
function

30 −30 ≤ xi ≤ 30 0

F6 Step function 30 −100 ≤ xi ≤ 100 0
F7 Quartic function 30 −1.28 ≤ xi ≤ 1.28 0

F8 Generalized
Schwefel’s
problem 2.26

30 −500 ≤ xi ≤ 500 −418.9829×d

F9 Generalized
Rastrigin’s
function

30 −5.12 ≤ xi ≤ 5.12 0

F10 Ackley’s function 30 −32 ≤ xi ≤ 32 0
Multimodal test
functions

F11 Generalized
Griewank
function

30 −600 ≤ xi ≤ 600 0

F12 Generalized
Penalized
functions

30 −50 ≤ xi ≤ 50 0

F13 Generalized
Penalized
functions

30 −50 ≤ xi ≤ 50 0

F14 Shekel’s Foxholes
function

2 −65.53 ≤ xi ≤ 65.53 1

F15 Kowalik’s
function

4 −5 ≤ xi ≤ 5 0.0003

F16 Six-hump
camel-back
function

2 −5 ≤ xi ≤ 5 −1.0316

F17 Branin function 2
−5 ≤ xi ≤ 10,
0 ≤ x2 ≤ 15 0.398

(Continued)



CMC, 2023, vol.76, no.3 2845

Table 1 (continued)

Function type No. Function name D Initialization range Global
optimum

Multimodal test
functions with fix
dimension

F18 Goldstein-price
function

2 −5 ≤ xi ≤ 5 3

F19 Hartman’s family 3 0 ≤ xi ≤ 1 −3.86
F20 Hartman’s family 6 0 ≤ xi ≤ 10 −3.32
F21 Shekel’s family 4 0 ≤ xi ≤ 10 −10.1532
F22 Shekel’s family 4 0 ≤ xi ≤ 10 −10.4028
F23 Shekel’s family 4 0 ≤ xi ≤ 10 −10.5363

Table 2: The CEC2017 benchmark functions [53]

Function type No. Function name Dim Initialization range Global
optimum

Unimodal
functions

C1
Shifted and rotated bent
cigar function

30, 50 −100 ≤ xi ≤ 100 100

C2 Shifted and rotated
Zakharov function

30, 50 −100 ≤ xi ≤ 100 200

C3 Shifted and rotated
Rosenbrock’s function

30, 50 −100 ≤ xi ≤ 100 300

C4 Shifted and rotated
Rastrigin’s function

30, 50 −100 ≤ xi ≤ 100 400

C5 Shifted and rotated
expanded Scaffer’s F6
function

30, 50 −100 ≤ xi ≤ 100 500

Simple
multimodal
functions

C6 Shifted and rotated
Lunacek Bi_Rastrigin
function

30, 50 −100 ≤ xi ≤ 100 600

C7 Shifted and rotated
non-continuous
Rastrigin’s function

30, 50 −100 ≤ xi ≤ 100 700

C8 Shifted and rotated Levy
function

30, 50 −100 ≤ xi ≤ 100 800

C9 Shifted and rotated
Schwefel’s function

30, 50 −100 ≤ xi ≤ 100 900

C10 Hybrid function 1 30, 50 −100 ≤ xi ≤ 100 1000
C11 Hybrid function 2 30, 50 −100 ≤ xi ≤ 100 1100
C12 Hybrid function 3 30, 50 −100 ≤ xi ≤ 100 1200
C13 Hybrid function 4 30, 50 −100 ≤ xi ≤ 100 1300
C14 Hybrid function 5 30, 50 −100 ≤ xi ≤ 100 1400

(Continued)



2846 CMC, 2023, vol.76, no.3

Table 2 (continued)

Function type No. Function name Dim Initialization range Global
optimum

Hybrid functions C15 Hybrid function 6 30, 50 −100 ≤ xi ≤ 100 1500
C16 Hybrid function 7 30, 50 −100 ≤ xi ≤ 100 1600
C17 Hybrid function 8 30, 50 −100 ≤ xi ≤ 100 1700
C18 Hybrid function 9 30, 50 −100 ≤ xi ≤ 100 1800
C19 Hybrid function 10 30, 50 −100 ≤ xi ≤ 100 1900

Composition
functions

C20 Composition function 1 30, 50 −100 ≤ xi ≤ 100 2000
C21 Composition function 2 30, 50 −100 ≤ xi ≤ 100 2100
C22 Composition function 3 30, 50 −100 ≤ xi ≤ 100 2200
C23 Composition function 4 30, 50 −100 ≤ xi ≤ 100 2300
C24 Composition function 5 30, 50 −100 ≤ xi ≤ 100 2400
C25 Composition function 6 30, 50 −100 ≤ xi ≤ 100 2500
C26 Composition function 7 30, 50 −100 ≤ xi ≤ 100 2600
C27 Composition function 8 30, 50 −100 ≤ xi ≤ 100 2700
C28 Composition function 9 30, 50 −100 ≤ xi ≤ 100 2800
C29 Composition function 10 30, 50 −100 ≤ xi ≤ 100 2900

4.2 Original Algorithms and Ensemble Algorithms

In the experiment, we select some new representative algorithms for the ensemble, which are Harris
hawks optimization (HHO) [54], seagull optimization algorithm (SOA) [55], slime mold algorithm
(SMA) [56], salp swarm algorithm (SSA) [57], manta ray foraging optimization (MRFO) algorithm
[58]. The EPM class algorithms represent the algorithms integrated under the EPM framework. This
paper names the algorithms integrated by the EPM framework as “EPM + number”, where “number”
represents the number of filled algorithms in the ensemble framework. It obtains the EPM2 algorithm
by integrating HHO and SOA, the EPM3 algorithm by integrating HHO, SOA, and SMA, the EPM4
algorithm by integrating HHO, SOA, SMA, and SSA, the EPM5 algorithm by integrating HHO, SOA,
SMA, SSA, and MRFO. The ensemble framework does not interfere with the updated formulas of
the integrated algorithms, so researchers can adjust their parameters according to the characteristics
of the original algorithms. The parameters of the original algorithms are consistent with the papers
that proposed these algorithms. The parameters in integrated algorithms are the same as the original
algorithms’ parameters. It lists the settings of the parameters in Table 3.

Table 3: The parameter settings of the algorithms

Algorithm Parameter Introduction and settings

HHO r1, r2, r3, r4, q, E0, r, J, S, β r1, r2, r3, r4, q, E0, r are all random numbers in [0, 1]; J
is the following number within [0, 2]; S is a random
vector of dimension D; the elements are random
numbers in [0, 1]; and β is set to 1.5.

(Continued)



CMC, 2023, vol.76, no.3 2847

Table 3 (continued)

Algorithm Parameter Introduction and settings

SOA fc, rd, θ, u, v, e fc decreases linearly from 2 to 0, rd is a random number
in [0, 1]; θ is a random angle in [0, 2π ]; u = 1, v = 1; e is
the base of the natural logarithm.

SMA rand, z, vb, vc, r rand is in [0, 1], and the location update parameter
z = 0.03; vb is in [−a, a]; vc linearly decreases from 1 to
0, and r represents a random value in [0, 1].

SSA c1, c2, c3 c1 decreases from 2 to 0, and c2 and c3 are random
numbers in [0, 1].

MRFO r, r2, r3, rand r, r1, r2, r3 and rand represent random numbers in [0, 1].

4.3 Comparison Results

The average (AVE) and standard deviation (STD) of the best solutions obtained by all test
algorithms in 25 independent runs and 500 iterations in each dimension were recorded (see Tables 4–6)
and compared.

Table 4: The comparison results of 23 standard benchmark functions by different optimization
algorithms

Function Metric EPM5 EPM4 EPM3 EPM2 HHO SOA SMA SSA MRFO

F1 AVE 0 0 0 0 0 0 0 3.09E−09 0
STD 0 0 0 0 0 0 0 7.33E−10 0

F2 AVE 0 0 0 0 0 0 0 0.355149 0
STD 0 0 0 0 0 0 0 0.784676 0

F3 AVE 0 0 0 0 0 2.45912 0 1.77E−08 0
STD 0 0 0 0 0 5.722051 0 4.23E−09 0

F4 AVE 0 0 0 0 0 0 0 4.48E−05 0
STD 0 0 0 0 0 0 0 2.86E−05 0

F5 AVE 4.07E−26 7.13E−10 1.62E−09 2.13E−09 1.03E−06 18.78447 0.000457 35.12469 3.85E−11
STD 1.59E−25 1.78E−09 3.82E−09 5.7E−09 1.24E−06 13.60155 0.000292 44.13715 4.72E−11

F6 AVE 4.44E−33 3.15E−11 4.46E−11 6.52E−11 1.34E−08 0.563822 1.61E−06 2.87E−09 7.4E−34
STD 1.06E−32 5.12E−11 1.02E−10 1.51E−10 1.61E−08 0.542323 5.27E−07 5.49E−10 2.56E−33

F7 AVE 1.81E−06 1.74E−06 1.77E−06 2.12E−06 2.11E−06 4.14E−06 2.7E−06 0.00271 2.−06
STD 1.44E−06 1.5E−06 1.54E−06 1.87E−06 1.47E−06 4.02E−06 3.11E−06 0.001164 1.45E−06

F8 AVE −12569.5 −12569.5 −12569.5 −12569.5 −12569.5 −12569.5 −12569.5 −7895.55 −8805.3
STD 1.96E−12 8.4E−10 8.01E−09 7.67E−11 6.6E−05 2.81E−05 0.000112 720.5855 480.4721

F9 AVE 0 0 0 0 0 0 0 55.08084 0
STD 0 0 0 0 0 0 0 14.91848 0

F10 AVE 8.88E−16 8.88E−16 8.88E−16 8.88E−16 8.88E−16 8.88E−16 8.88E−16 1.743802 8.88E−16
STD 0 0 0 0 0 0 0 0.922858 0

F11 AVE 0 0 0 0 0 0 0 0.014162 0
STD 0 0 0 0 0 0 0 0.012837 0

F12 AVE 1.59E−32 3.87E−12 8.57E−12 1.23E−11 1.05E−09 0.01385 4.64E−07 0.355485 1.58E−32
STD 3.1E−34 4.38E−12 1.04E−11 2.02E−11 1.52E−09 0.011173 4.2E−07 0.615933 1.2E−34

F13 AVE 1.38E−32 5.84E−11 9.1E−11 9.06E−11 6.77E−09 0.132341 8.44E−07 0.002637 1.355246
STD 1.04E−33 8.07E−11 1.42E−10 1.91E−10 1.19E−08 0.12463 5.17E−07 0.004789 1.412608

F14 AVE 0.998004 0.998004 0.998004 1.037765 1.037765 4.687508 0.998004 0.998004 0.998004

(Continued)



2848 CMC, 2023, vol.76, no.3

Table 4 (continued)
Function Metric EPM5 EPM4 EPM3 EPM2 HHO SOA SMA SSA MRFO

STD 0 7.02E−15 5.48E−14 0.198805 0.198805 4.688223 3.01E−15 1.83E−16 0
F15 AVE 0.000307 0.000307 0.000308 0.000308 0.000308 0.001109 0.000368 0.000815 0.000385

STD 2.06E−19 1.21E−11 6.38E−08 4.96E−08 4.58E−08 0.00072 0.000192 0.000363 0.000253
F16 AVE −1.03163 −1.03163 −1.03163 −1.03163 −1.03163 −1.03163 −1.03163 −1.03163 −1.03163

STD 6.8E−16 1.33E−15 2.2E−14 5.87E−14 9.27E−15 3.21E−07 1.25E−12 1.38E−14 6.8E−16
F17 AVE 0.397887 0.397887 0.397887 0.397887 0.397887 0.398059 0.397887 0.397887 0.397887

STD 0 2.35E−14 3.56E−09 1.75E−08 1.14E−08 0.000401 1.96E−09 1.32E−14 0
F18 AVE 3 3 3 4.08 5.16 12.20428 3 3 3

STD 1.26E−15 2.91E−13 5.97E−12 5.400001 7.475962 13.71568 3.01E−14 2.46E−13 5.94E−16
F19 AVE −3.86278 −3.86278 −3.86278 −3.86278 −3.86278 −3.74259 −3.86278 −3.86278 −3.86278

STD 2.27E−15 1.81E−14 5.47E−08 1.39E−06 6.15E−07 0.170625 4.29E−09 5.74E−15 2.27E−15
F20 AVE −3.29346 −3.26493 −3.25541 −3.25539 −3.25538 −2.96169 −3.21261 −3.21261 −3.26493

STD 0.051824 0.060624 0.060235 0.060236 0.060235 0.170635 0.03292 0.03292 0.060624
F21 AVE −10.1532 −10.1532 −10.1532 −6.07478 −5.05519 −4.44062 −10.1532 −9.74901 −9.94928

STD 5.44E−15 1.94E−05 1.81E−05 2.081226 5.5E−06 1.754009 7.69E−06 1.398954 1.0196
F22 AVE −10.4029 −10.4029 −10.4029 −6.57593 −5.08767 −5.83812 −10.4029 −9.58101 −10.1903

STD 1.92E−15 5.69E−06 2.45E−05 2.435741 6.22E−06 2.508465 1.02E−05 2.305573 1.063054
F23 AVE −10.5364 −10.5364 −10.5364 −6.21004 −5.5611 −4.8448 −10.5364 −10.322 −10.5364

STD 1.92E−15 1.48E−05 2.86E−05 2.207733 1.497374 2.028815 7.76E−06 1.072153 1.81E−15

Table 5: The comparison results of the CEC2017 benchmark functions by different optimization
algorithms (D = 30)

EPM5 EPM4 EPM3 EPM2 HHO SOA SMA SSA MRFO

C1 AVE 902.7646 3290.374 2685.852 489759.6 5825.588 4.71E+10 7489.476 3354.55 3953.039
STD 1118.24 4044.062 4243.236 2418277 3309.647 9.59E+09 7115.915 3783.203 4491.838

C2 AVE 200 200.0002 200.0012 8.88E+33 4.77E+31 2.57E+49 200.0002 200.0001 200
STD 1.76E−05 6.6E−05 0.00085 4.28E+34 1.64E+32 1.28E+50 0.000123 3.04E−05 9.63E−06

C3 AVE 300 300 300.847 28223.06 32767.91 137237.7 300.001 300 300
STD 0 7.04E−09 0.5768 5322.439 4405.763 45948.26 0.000584 3.77E−09 0

C4 AVE 404.4552 436.6484 428.9964 662.9686 634.4399 11593.27 488.2914 479.8565 409.3811
STD 11.44006 25.74595 23.56127 218.7391 108.0743 3366.472 5.52105 25.40835 21.0248

C5 AVE 536.893 531.9988 559.8022 730.6306 746.4483 880.6916 575.2127 609.7334 649.9196
STD 9.786207 12.33574 16.24438 33.09082 29.05142 43.61556 18.01149 29.2981 40.06929

C6 AVE 600.8313 600.5959 601.5444 653.6156 657.7857 678.0107 600.3176 625.4053 619.4164
STD 0.593362 0.375077 0.882561 7.245739 4.69095 9.483725 0.192387 11.44769 12.61308

C7 AVE 766.9689 761.2482 792.5594 1199.308 1256.393 1418.424 811.1121 859.4338 989.8419
STD 8.979743 10.43814 15.01733 63.29684 66.28971 58.77982 20.65983 35.38709 86.96931

C8 AVE 836.8598 833.5277 850.9737 960.6261 968.3868 1106.081 877.8322 894.8789 932.9259
STD 6.6184 9.776067 14.33767 23.16343 25.06896 28.21193 13.90581 31.50098 28.2599

C9 AVE 900.3583 900.6909 900.5986 4955.688 5063.042 9446.444 1506.398 2220.573 3669.055
STD 0.374084 0.724316 0.718643 698.6464 609.5586 1539.526 1027.192 879.4835 1097.606

C10 AVE 2628.831 2540.615 2678.661 6063.822 5253.509 9541.206 3559.888 4575.969 4808.949
STD 308.2059 345.6339 473.6041 994.8354 885.5511 529.2566 475.7757 705.6062 715.4212

C11 AVE 1126.983 1132.647 1139.906 1276.364 1287.052 10240.64 1194.034 1256.286 1184.318
STD 8.540598 10.10047 14.1604 75.00597 64.74324 3050.719 41.25983 44.91092 31.17383

C12 AVE 15027.23 88204.73 100155.4 45934047 67881154 8.45E+09 238634.7 771305.1 19146.42
STD 9080.098 56539.9 60453.42 72150740 1.1E+08 3.71E+09 145317.3 689276.8 12496.58

C13 AVE 5477.185 27176.19 25679.45 173224 19554468 2.3E+09 26860.77 95078.71 16508.89
STD 4442.871 20246.44 25013.57 194785 97111555 3.12E+09 25417.04 62176.79 12679.22

C14 AVE 1567.886 3082.811 4749.069 339770.8 280555 1441032 9348.684 3512.879 1604.296
STD 45.90245 1584.016 3683.581 329934.4 287152.8 1445004 6823.33 2262.68 71.7545

C15 AVE 3623.123 8074.151 10605.32 33162.86 37733.69 4.18E+08 30796.05 50766.18 5584.899

(Continued)



CMC, 2023, vol.76, no.3 2849

Table 5 (continued)
EPM5 EPM4 EPM3 EPM2 HHO SOA SMA SSA MRFO

STD 2810.202 6215.589 8942.196 29081.38 32078.31 5.53E+08 11458.03 40469.1 6645.642
C16 AVE 1801.661 1949.337 2125.943 3153.129 3258.431 4787.399 2400.258 2407.28 2631.215

STD 130.349 205.3241 214.2251 495.0602 448.0817 824.6578 303.5794 228.4946 279.2315
C17 AVE 1832.242 1820.747 1955.324 2518.757 2620.966 3751.296 2063.12 1993.909 2129.348

STD 57.19301 63.95016 131.0033 317.6166 327.4079 1679.326 186.789 164.0414 215.483
C18 AVE 22870.17 60371.9 65056.1 1053220 924321.3 53180666 166444.2 86677.09 29835.96

STD 19990.05 38430.41 48955.33 1342197 827943.6 75027162 76311.93 48923.04 17856.1
C19 AVE 3824.338 13040.8 10533.51 50554.58 42888.47 4.7E+08 41470.4 108043.6 10004.24

STD 3315.617 12306.69 10690.86 37080.57 56123.46 6.29E+08 17380.8 49528.17 10141.75
C20 AVE 2119.088 2148.06 2169.274 2616.076 2650.025 2957.38 2313.325 2351.115 2380.781

STD 65.23756 90.19009 116.4725 153.5199 168.6338 200.5934 129.0021 146.3238 209.8808
C21 AVE 2338.545 2338.708 2354.376 2506.347 2548.73 2681.681 2388.157 2405.765 2412.039

STD 9.689742 8.679737 14.91288 40.69084 46.96825 61.8029 23.58705 33.65642 27.48967
C22 AVE 2300.121 2300.223 2301.24 6730.48 6983.713 9654.64 5344.452 3911.237 2607.776

STD 0.57528 0.597588 1.233973 1600.559 678.1923 1098.703 530.8082 2053.508 1065.147
C23 AVE 2685.296 2683.946 2703.451 3166.514 3206.271 3328.737 2731.09 2739.832 2790.808

STD 9.284617 11.54514 13.65706 135.4268 150.4809 139.2706 19.91425 25.89812 44.39223
C24 AVE 2856.568 2857.054 2888.855 3335.164 3359.277 3583.298 2929.555 2898.986 2979.212

STD 12.73916 11.06584 14.77498 141.8446 141.0508 195.7917 21.97067 24.94498 66.27963
C25 AVE 2885.649 2886.709 2886.745 2958.363 2952.888 4572.914 2886.848 2893.028 2895.376

STD 1.601232 0.681923 0.685797 32.52224 39.78769 460.3713 1.030813 14.86022 16.38967
C26 AVE 3725.473 3934.553 4036.657 7607.326 8304.568 10358.2 4472.035 4464.339 4870.579

STD 464.9816 165.8759 275.9082 1334.879 1258.937 1119.672 235.3289 831.3642 1641.959
C27 AVE 3166.58 3168.203 3168.97 3611.143 3741.738 3976.634 3206.848 3224.959 3267.911

STD 10.76602 8.738246 8.745193 148.5094 197.485 322.848 12.5343 15.85913 24.35195
C28 AVE 3100 3100.003 3100.089 3453.845 3394.916 6406.415 3224.79 3132.602 3126.623

STD 0 0.015433 0.026477 160.969 169.3918 710.1894 66.59074 47.08401 55.40508
C29 AVE 3390.706 3437.384 3431.83 5012.228 5167.606 6355.715 3697.814 3789.834 3942.537

STD 79.95842 94.77418 108.0931 434.1358 712.0787 824.497 174.1942 173.2771 271.9866

Table 6: The comparison results of the CEC2017 benchmark functions by different optimization
algorithms (D = 50)

EPM5 EPM4 EPM3 EPM2 HHO SOA SMA SSA MRFO

C1 AVE 1564.423 3363.094 5868.441 15223.61 14185.43 1.01E+11 15409.67 4773.522 4792.013
STD 2074.851 3416.559 6299.051 5317.337 4192.902 8.13E+09 11336.18 6920.711 6722.137

C2 AVE 200 202.2101 340.291 1.86E+59 5.31E+59 6.26E+84 201.7396 200.8243 200
STD 9.59E−06 7.80E+00 90.16485 8.38E+59 2.66E+60 3.12E+85 7.430594 4.12E+00 1.48E−05

C3 AVE 300 300 303.7261 44216.94 47427.25 252790.3 300.0082 300 300
STD 4.84E−13 2.31E−08 1.75844 7642.29 9387.97 90954.65 0.002057 9.08E−09 2.39E−13

C4 AVE 417.1868 433.3292 430.2082 933.5133 945.979 30758.01 504.3023 544.9028 422.8925
STD 14.18587 20.07223 1.988095 599.3669 483.4245 6286.819 59.34425 47.54378 28.53133

C5 AVE 586.8017 570.0516 615.8567 852.495 849.6292 1150.826 687.0763 742.8122 815.8375
STD 11.33574 19.6727 18.62161 33.7776 26.29409 36.83114 41.034 59.28636 51.54474

C6 AVE 604.7959 603.0001 606.5931 661.39 663.1714 694.9141 601.0333 638.0651 640.2838
STD 1.728911 1.287632 2.364182 5.401158 4.73241 7.585304 0.506592 9.609981 11.76814

C7 AVE 826.695 834.6281 879.2088 1648.979 1693.569 2042.556 926.7816 1009.936 1367.78
STD 15.39112 13.70104 28.97706 80.90631 53.91651 46.16475 45.60423 72.26719 178.9801

C8 AVE 885.8617 870.7809 915.449 1144.098 1163.041 1441.307 963.9156 1038.168 1119.021
STD 16.68351 17.65313 18.10443 28.4163 31.71651 33.01192 24.77768 57.34869 54.97388

C9 AVE 937.6997 920.8308 1088.04 12716.74 12612.68 34561.62 5948.958 8208.887 9954.461
STD 61.96252 26.5344 363.9745 1621.532 985.5352 5698.828 3876.126 2373.46 2379.059

C10 AVE 3694.749 3761.504 3700.033 7626.868 8230.649 13892.13 6280.105 7617.053 7348.594

(Continued)



2850 CMC, 2023, vol.76, no.3

Table 6 (continued)
EPM5 EPM4 EPM3 EPM2 HHO SOA SMA SSA MRFO

STD 558.9742 532.997 582.0079 935.1439 1204.979 758.1973 626.1485 783.3506 939.2402
C11 AVE 1177.74 1166.028 1180.263 1396.777 1383.864 22591.94 1303.236 1322.368 1261.253

STD 15.6531 9.219968 16.98053 71.8303 87.64393 4489.043 63.97801 37.66977 30.2221
C12 AVE 37036.41 893674.8 991485.5 1.37E+08 1.35E+08 5.26E+10 1598430 4238014 83609.84

STD 22014.37 627633 857632.9 2.04E+08 2.99E+08 1.81E+10 1074183 2520333 41626.2
C13 AVE 4075.313 16996.81 14110.42 212873.9 125767.5 1.82E+10 29634.34 130309.7 4124.072

STD 3396.271 12763.81 11479.36 507175.8 94114.22 9.25E+09 10151.04 75453.32 4256.024
C14 AVE 2426.744 7447.321 15906.74 1680775 1705491 31389494 52348.57 15112.99 3072.003

STD 658.6872 6164.037 11337.99 3798183 3885700 32006311 25969.55 12145.55 1094.581
C15 AVE 5616.482 12308.82 13023.14 4694751 4537062 6.16E+09 29350.23 39421.45 9413.125

STD 4499.291 7888.652 8786.184 23254860 22398016 3.85E+09 6731.168 22304.52 6287.582
C16 AVE 2237.506 2332.344 2553.069 4028.273 4048.173 8094.206 3164.62 3063.408 3297.917

STD 247.3496 249.5483 240.8204 513.0978 698.4317 1485.932 368.3294 326.5094 521.3009
C17 AVE 2257.742 2274.431 2474.799 3639.855 3672.466 7247.96 2871.545 2960.49 3205.788

STD 155.2337 193.8793 194.0557 452.6595 473.4265 3760.402 242.0486 268.2297 326.7872
C18 AVE 19549.7 80794.79 90703.99 4242293 2935428 1.02E+08 207761.6 107742.9 33126

STD 12822.92 27734.12 50939.99 6473234 3355806 80050046 126316.6 35916.97 22584.63
C19 AVE 4774.262 10989.99 9610.29 62330.2 52244.67 2.15E+09 14225.18 201180.9 14846.17

STD 3910.518 12388.52 8085.775 45900.33 27950.68 1.68E+09 17052.33 54726.35 11388.86
C20 AVE 2287.938 2319.214 2533.119 3162.177 3257.845 4062.8 2818.477 2957.316 3179.556

STD 108.3397 139.2058 213.9936 311.8407 258.3304 404.9723 288.1831 253.0242 349.4163
C21 AVE 2388.669 2375.095 2420.159 2785.253 2812.891 3138.545 2492.834 2505.974 2563.45

STD 14.39998 19.76868 21.43885 72.10099 82.51934 97.2633 36.10054 45.65499 65.47573
C22 AVE 2300.425 2300.273 2302.295 10608.09 10422.03 16728.95 8257.222 9165.022 8619.539

STD 0.791301 0.679075 1.070631 1533.443 1014.829 853.0564 988.791 952.0107 1623.496
C23 AVE 2804.425 2796.67 2831.246 3801.936 3871.871 4141.234 2917.741 2938.457 3118.995

STD 14.84545 21.28376 27.53321 184.6423 223.2331 194.9199 44.99394 40.59267 101.1374
C24 AVE 2978.396 2970.417 3030.666 4096.05 4039.954 4620.13 3095.88 3078.31 3285.498

STD 14.84988 23.40616 28.51908 215.5657 174.8984 271.4433 36.24266 40.7089 104.6463
C25 AVE 2974.773 2971.509 2975.22 3249.563 3258.095 14143.84 3017.684 3023.769 3052.767

STD 8.554417 17.51097 12.64854 105.7085 93.53723 1790.841 38.19031 45.47396 35.97161
C26 AVE 3945.906 4502.135 4913.446 12205.31 12226.77 17256.95 5719.404 4752.921 6541.465

STD 887.4889 197.8206 249.1071 904.1735 1051.926 960.7725 373.1578 2102.883 3501.497
C27 AVE 3170.97 3170.389 3170.612 4830.036 4949.775 6216.204 3323.926 3368.092 3592.878

STD 9.292116 9.521278 8.661707 446.8078 543.9687 712.5707 65.79624 77.34347 145.1447
C28 AVE 3258.189 3259.178 3259.365 3757.093 3737.579 11912.49 3284.561 3301.465 3290.119

STD 1.823178 2.67E−01 0.280697 311.0017 217.6791 1688.529 22.72083 16.07822 28.54801
C29 AVE 3477.968 3495.964 3509.711 6852.671 6928.21 26533.06 4176.37 4571.589 4437.38

STD 159.98 140.3959 225.5474 1164.126 1186.805 17826.29 325.5151 294.3504 444.2482

The population size is 70, and the number of iterations is 500 × D. D is the dimension of the test
function. According to the characteristics of the EPM framework, the more algorithms are integrated
into the framework, the more times the function will be evaluated. To compare the results of the
integration algorithm and the original algorithm more fairly, we design a perfect ensemble (PE) that
takes the optimal value from the effects of multiple original algorithms. In each independent run, it
records the best result of several original algorithms as the result of this run, and after 25 runs, all the
results are averaged. This paper names the results obtained by the PE framework as “PE + number”,
where “number” represents the number of integrated results in the framework. It expresses the results
obtained by averaging the optimal values of HHO and SOA as PE2, the results obtained by averaging
the running results of HHO, SOA, and SMA as PE3, the results obtained by averaging the optimal



CMC, 2023, vol.76, no.3 2851

values of HHO, SOA, SMA, and SSA as PE4, the results obtained by averaging the optimal values of
HHO, SOA, SMA, SSA, and MRFO as PE5.

Table 7 displays the results of Friedman’s mean rank test for the benchmark functions. On the
23 standard benchmark functions, the mean rankings of EPM5, EPM3, and EPM2 are higher than
those of PE5, PE3, and PE2, respectively; the mean ranking of EPM4 is lower than that of PE4. On
the CEC2017 benchmark functions with 30 dimensions, the mean rankings of EPM5, EPM4, EPM3,
and EPM2 are higher than that of PE5, PE4, PE3, and PE2, respectively. On the CEC2017 benchmark
functions with 50 dimensions, the mean rankings of EPM5, EPM4, EPM3, and EPM2 are higher than
that of PE5, PE4, PE3, and PE2, respectively. In most cases, the algorithms in the ensemble framework
get a better ranking. Increasing the number of integrated metaheuristic algorithms enhances the
average optimization ability of the overall ensemble framework.

Table 7: Friedman’s mean ranking test results of benchmark functions

Benchmark functions Comparison EPM PE

23 standard benchmark functions

EPM2 vs. PE2 1.3478 1.6522
EPM3 vs. PE3 1.5435 1.4565
EPM4 vs. PE4 1.4348 1.5652
EPM5 vs. PE5 1.4348 1.5652

CEC2017 benchmark functions (D = 30)

EPM2 vs. PE2 1.3103 1.6897
EPM3 vs. PE3 1.1034 1.8966
EPM4 vs. PE4 1.2069 1.7931
EPM5 vs. PE5 1.0862 1.9138

CEC2017 benchmark functions (D = 50)

EPM2 vs. PE2 1.4138 1.5862
EPM3 vs. PE3 1.1034 1.8966
EPM4 vs. PE4 1.1379 1.8621
EPM5 vs. PE5 1.1207 1.8793

Table 8 displays the p-value test results on benchmark functions. On the 23 standard benchmark
functions, the p-value resulting from the comparison between EPM2 and PE2 is less than 0.1 and more
significant than 0.05, indicating that the results of the algorithms are different at the significance level
of 0.1. The p-values resulting from the comparisons between EPM3 and PE3, between EPM4 and
PE4, and between EPM5 and PE5 are greater than 0.1, indicating no significant difference between
the results. On the CEC2017 benchmark functions with 30 dimensions, the p-value resulting from the
comparison between EPM2 and PE2 is greater than 0.1, indicating no significant difference between
the results. The p-values for the comparison between EPM3 and PE3, between EPM4 and PE4,
and between EPM5 and PE5 are less than 0.01, indicating that the results of these algorithms are
significantly different at the significance level of 0.01. On the CEC2017 benchmark functions with
50 dimensions, the p-value resulting from the comparison between EPM2 and PE2 is greater than
0.1, indicating no significant difference between the results. The p-values for the comparison between
EPM3 and PE3, between EPM4 and PE4, and between EPM5 and PE5 are less than 0.01, indicating
that the results of these algorithms are significantly different at the significance level of 0.01.



2852 CMC, 2023, vol.76, no.3

Table 8: Wilcoxon signed ranking test results of benchmark functions

Benchmark functions Comparison R+ R- p-value α

23 standard benchmark functions

EPM2 vs. PE2 195 81 9.95E−02 0.1
EPM3 vs. PE3 131 145 1.00E+00 >0.1
EPM4 vs. PE4 175 101 1.56E−01 >0.1
EPM5 vs. PE5 171.5 104.5 1.39E−01 >0.1

CEC2017 benchmark functions (D = 30)

EPM2 vs. PE2 265 170 3.04E−01 >0.1
EPM3 vs. PE3 427 8 5.90E−06 0.01
EPM4 vs. PE4 378 57 5.19E−04 0.01
EPM5 vs. PE5 414.5 20.5 2.52E−05 0.01

CEC2017 benchmark functions (D = 50)

EPM2 vs. PE2 222 213 9.22E−01 >0.1
EPM3 vs. PE3 419 16 1.32E−05 0.01
EPM4 vs. PE4 413 22 2.36E−05 0.01
EPM5 vs. PE5 398.5 36.5 1.08E−04 0.01

4.4 Iterative Curves

We select some test functions, draw the iterative curve of the experimental algorithm, and visually
observe the convergence of the algorithms. The iterative curves in Fig. 5 correspond to functions F3,
F15, F20, C5, C16, and C20, representing the performance of EPM5 under different types of functions.
It is observed that the EPM5 algorithm has a faster iterative optimization speed and achieves better
results through the iterative curves.

Figure 5: Iterative curves of partial test functions



CMC, 2023, vol.76, no.3 2853

4.5 Evolution Process of Real Population and Virtual Population

We analyzed the process of solving function F3 by the EPM5 algorithm to observe the relationship
between the real and virtual populations and follow the evolution process more intuitively during the
operation of the ensemble algorithm. Fig. 6 shows the position changes of the virtual populations in
the x1 and x2 dimensions, before and after 1, 2, 5, 6, 20, 21, 100, 101, 1000, 1001, 14999, and 15000
iterations, where ‘a’ represents the population before the iteration and ‘b’ represents the population
after the iteration. It lists the historical optimal solutions corresponding to the number of partial
iterations in Table 9.

Figure 6: (Continued)



2854 CMC, 2023, vol.76, no.3

Figure 6: The virtual population distribution diagram of the EPM5 algorithm under some iterations
in the process of solving the function F3

Table 9: Number of partial iterations on F3 function and historical optimal solution

t H t H t H t H t H t H

0 102389.5 4 0.178303 19 5.78E−16 99 2.72E−97 999 0 14998 0
1 374.6011 5 0.103464 20 1.78E−17 100 2.09E−99 1000 0 14999 0
2 314.3702 6 0.103464 21 1.48E−17 101 1.32E−99 1001 0 15000 0

In Iteration 1.a, it is observed that the positions of the five virtual populations come from the
same real population before the start of the first iteration. After the high-level generation sub-stage,
the five virtual populations update their locations independently, and the positions of the populations
are different, as shown in Iteration 1.b. Because the fitness value of the best elite is smaller than the
historical optimum, it materializes the population where the optimal elite resides, and the population
distribution after materialization is shown by Iteration 2.a. It transforms the five virtual populations
into the real population. In Iteration 5.b and Iteration 6.a, the best elite of the virtual populations
after the fifth iteration is not less than an order of magnitude smaller than the historically best fitness
value. Thus, the virtual population continues to exist. In Iteration 20.a, the entity population has
converged at this time. However, after the high-level generation sub-stage, the virtual population
can still be distributed in every corner of the map, as shown in Iteration 20.b. After the high-level
selection sub-stage, it obtains the population distributed in iteration 21.a, and the virtual populations
are transformed into the real population again. It can be seen from this figure that the premature
convergence of single or multiple populations will not lead to the convergence of all populations, and
other populations still have good exploratory properties. In Iteration 100.b and Iteration 101.b, it is
observed that the red population has converged. But in Iteration 1000.a, the red population is dispersed
again, indicating that the converged population has a chance to reexplore. In Iteration 14999.a and
Iteration 15000.b, all populations have converged. The red population has several individual sporadic
distributions related to the corresponding algorithm characteristics of the population.

4.6 Engineering Application Problems

The pressure vessel design optimization problem optimizes the cost of welding, material, and
forming of the pressure vessel by adjusting the shell thickness, head thickness, inner diameter, and
length of the vessel under four constraints [59]. The three-bar truss design optimization problem is
based on the stress constraint of each bar to optimize the total weight of the bar structures [60].
Table 10 gives the mathematical description of these problems. It abbreviates the first engineering
problem as E1 and the second engineering problem as E2.



CMC, 2023, vol.76, no.3 2855

Table 10: Engineering optimization problems

No. Problem name D Initialization
range

Constraints Known
optimum

E1 Pressure Vessel Design
f (x) = 0.6224z1x3x4 + 1.7781z2x3

2

+ 3.1661z1
2x4 + 19.84z1

2x3

4

1 ≤ x1 ≤ 99(int),
1 ≤ x2 ≤ 99(int),
10 ≤ x3 ≤ 200,
10 ≤ x4 ≤ 200

0.00954x3 ≤ z2,
0.0193x3 ≤ z1,
x4 ≤ 240,

−πx2
3x4 − 4

3
πx3

3 ≤ −1296000,

z1 = 0.0625x1

z2 = 0.0625x2

5885.3327736

E2 Three-bar Truss Design Problem

f (x) = l
(

2
√

2x1 + x2

) 2
0 ≤ x1 ≤ 1,
0 ≤ x2 ≤ 1

x2

2x2x1 + √
2x2

1

P − σ

x2 + √
2x1

2x2x1 + √
2x2

1

P − σ

1

x1 + √
2x2

P − σ

l = 100, P = 2, σ = 2

263.89584338

The average and standard deviation of the best solutions obtained by all test algorithms in 25
independent runs and 500 iterations in each dimension were recorded and compared (see Table 11).
For the optimization results of the pressure vessel design problem, EPM3, EPM4, and EPM5 are
better than their integrated original algorithms. EPM2 is better than SOA but worse than HHO. For
the optimization results of the three-bar truss design problem, both EPM4 and EPM5 are better than
their integrated original algorithm. EPM3 is better than HHO and SOA but worse than SMA. EPM2 is
better than SOA but worse than HHO. Two practical engineering problems obtain better optimization
results from the average optimization results by adopting the ensemble framework.

Table 11: The results of engineering optimization problems by different optimization algorithms

EPM5 EPM4 EPM3 EPM2 HHO SOA SMA SSA MRFO

E1 AVE 6066.6913 6085.2628 6098.4798 8074.5080 7964.7286 13856.8187 6216.5912 6353.9354 6271.0216
STD 12.5129 20.6386 33.2818 1752.8158 1414.2115 6088.7058 219.9751 246.7167 228.2141

E2 AVE 263.895861 263.896028 263.896757 263.917593 263.914440 266.142034 263.896307 263.896183 263.895862
STD 1.7451E−05 2.6238E−04 1.1884E−03 3.8590E−02 2.5215E−02 2.0515E+00 8.2330E−04 5.1781E−04 1.8544E−05

5 Conclusion

We propose a new population-based metaheuristic ensemble framework in this paper. The
main innovation is to use the common structural characteristics of the population-based meta-
heuristic algorithms to design a framework, which is a bridge for cooperative optimization of
multiple algorithms through the transformation of virtual population and entity population and elite
strategy. The framework leverages the differentiation and unification of real and virtual populations
to coordinate exploration and exploitation at the population level. Meanwhile, an elitist strategy is
adopted to communicate among virtual populations to guarantee diversity and reduce the internal
influence on each metaheuristic algorithm. In the experiment, five algorithms, SOA, HHO, SMA,
SSA, and MRFO, are integrated using the ensemble framework to obtain EPM algorithms. The EPM
algorithms perform superior on 23 standard benchmark functions and the CEC2017 benchmark
functions. According to Friedman’s average ranking, the results of algorithms integrated with the



2856 CMC, 2023, vol.76, no.3

EPM framework, in most cases, outperformed the results of the same algorithms integrated with the
PE framework, demonstrating the superiority of the ensemble framework. The ensemble framework
also demonstrated excellent results in solving two practical engineering problems and obtained better
solutions.

With the increase in the number of optimization algorithms integrated into the ensemble frame-
work, the information exchange between various algorithms will increase, and these algorithms will
be more likely to jump out of the local optimization. However, we cannot distinguish the role of each
algorithm in optimization and the influence of algorithm parameters on the optimization results.
Meanwhile, each additional algorithm in the ensemble framework will increase the calculation of
the virtual population corresponding to the algorithm, the storage cost of the calculation results,
and the cost of information exchange, reducing the optimization speed. In future research, we will
study two aspects: improving the optimization ability and speed. We will analyze the contribution
of a single algorithm in the integration framework and adjust the algorithm parameters to improve
the optimization ability. We will study the factors that affect the optimization speed and reduce
unnecessary computing and storage costs to improve the optimization speed according to the role
of different algorithms in the different stages.

Acknowledgement: The authors would like to acknowledge the editor-in-chief, associate editors, and
reviewers for their contributions to the improvement of this paper.

Funding Statement: This work was supported by National Natural Science Foundation of China under
Grant 62073330. The auther J. T. received the grant.

Author Contributions: Study conception and design: H. Li, J. Tang, S. Lao; data collection: Q. Pan,
J. Zhan; analysis and interpretation of results: H. Li, Q. Pan; draft manuscript preparation: H. Li, J.
Zhan. All authors reviewed the results and approved the final version of the manuscript.

Availability of Data and Materials: Data available on request from the authors. The data that support
the findings of this study are available from the corresponding author, (J. T.), upon reasonable request.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
[1] E. G. Talbi, “Optimization methods,” in Metaheuristics: From Design to Implementation, vol. 1. Hoboken,

NJ, USA: John Wiley & Sons, no. 3, pp. 18–33, 2009.
[2] T. G. Crainic and M. Toulouse, “Meta-heuristics and parallelism,” in Handbook of Metaheuristics, vol. 17.

New York, NY, USA: Springer, no. 2, pp. 498–505, 2010.
[3] I. Boussaïd, J. Lepagnot and P. Siarry, “A survey on optimization metaheuristics,” Information Sciences,

vol. 237, pp. 82–117, 2013.
[4] D. P. Bertsekas, “Lagrangian methods–local convergence,” in Constrained Optimization and Lagrange

Multiplier Methods, vol. 4. New York, NY, USA: Academic Press, no. 5, pp. 231–256, 1982.
[5] K. Deb, “Two approaches to multi-objective optimization,” in Search Methodologies, vol. 15. New York,

NY, USA: Springer, no. 2, pp. 407–410, 2014.
[6] J. H. Vandermeer, “Niche theory,” Annual Review of Ecology and Systematics, vol. 3, no. 1, pp. 107–132,

1972.



CMC, 2023, vol.76, no.3 2857

[7] J. Tang, G. Liu and Q. Pan, “A review on representative swarm intelligence algorithms for solving
optimization problems: Applications and trends,” IEEE/CAA Journal of Automatica Sinica, vol. 8, no. 10,
pp. 1627–1643, 2021.

[8] E. Pacini, C. Mateos and C. G. Garino, “Distributed job scheduling based on swarm intelligence: A survey,”
Computers & Electrical Engineering, vol. 40, no. 1, pp. 252–269, 2014.

[9] B. H. Nguyen, B. Xue and M. Zhang, “A survey on swarm intelligence approaches to feature selection in
data mining,” Swarm and Evolutionary Computation, vol. 54, pp. 100663, 2020.

[10] J. Tang, H. Duan and S. Lao, “Swarm intelligence algorithms for multiple unmanned aerial vehicles
collaboration: A comprehensive review,” Artificial Intelligence Review, vol. 56, no. 5, pp. 4295–4327, 2022.

[11] K. V. Price, “Differential evolution,” in Handbook of Optimization, vol. 2. New York, NY, USA: Springer,
no. 1, pp. 187–214, 2013.

[12] D. Whitley, “A genetic algorithm tutorial,” Statistics and Computing, vol. 4, no. 2, pp. 65–85, 1994.
[13] J. R. Koza, “Overview of genetic programming,” in Genetic Programming: On the Programming of

Computers by Means of Natural Selection, vol. 5. Cambridge, MA, USA: MIT Press, no. 1, pp. 73–78,
1992.

[14] J. Kennedy and R. C. Eberhart, “A discrete binary version of the particle swarm algorithm,” in 1997 IEEE
Int. Conf. on Systems, Man, and Cybernetics. Computational Cybernetics and Simulation, Orlando, FL,
USA, vol. 5, pp. 4104–4108, 1997.

[15] D. Karaboga and B. Basturk, “A powerful and efficient algorithm for numerical function optimization:
Artificial bee colony (ABC) algorithm,” Journal of Global Optimization, vol. 39, no. 3, pp. 459–471, 2007.

[16] X. S. Yang and S. Deb, “Cuckoo search via lévy flights,” in 2009 World Congress on Nature & Biologically
Inspired Computing (NaBIC), Coimbatore, India, pp. 210–214, 2009.

[17] A. Seyyedabbasi and F. Kiani, “Sand cat swarm optimization: A nature-inspired algorithm to solve global
optimization problems,” Engineering with Computers, pp. 1–25, 2022.

[18] F. Glover, “Tabu search—Part I,” ORSA Journal on Computing, vol. 1, no. 3, pp. 190–206, 1989.
[19] Z. Feng, W. Niu and S. Liu, “Cooperation search algorithm: A novel metaheuristic evolutionary intelligence

algorithm for numerical optimization and engineering optimization problems,” Applied Soft Computing,
vol. 98, pp. 106734, 2021.

[20] Y. Shi, “Brain storm optimization algorithm,” in Int. Conf. in Swarm Intelligence, Chongqing, China, pp.
303–309, 2011.

[21] Q. Askari, M. Saeed and I. Younas, “Heap-based optimizer inspired by corporate rank hierarchy for global
optimization,” Expert Systems with Applications, vol. 161, pp. 113702, 2020.

[22] T. S. Ayyarao, N. S. Ramakrishna, R. M. Elavarasan, N. Polumahanthi, M. Rambabu et al., “War strategy
optimization algorithm: A new effective metaheuristic algorithm for global optimization,” IEEE Access,
vol. 10, pp. 25073–25105, 2022.

[23] E. Rashedi, H. Nezamabadi-Pour and S. Saryazdi, “GSA: A gravitational search algorithm,” Information
Sciences, vol. 179, no. 13, pp. 2232–2248, 2009.

[24] O. K. Erol and I. Eksin, “A new optimization method: Big bang–big crunch,” Advances in Engineering
Software, vol. 37, no. 2, pp. 106–111, 2006.

[25] Ş. İ. Birbil and S. C. Fang, “An electromagnetism-like mechanism for global optimization,” Journal of
Global Optimization, vol. 25, no. 3, pp. 263–282, 2003.

[26] S. Mirjalili, “SCA: A sine cosine algorithm for solving optimization problems,” Knowledge-Based Systems,
vol. 96, pp. 120–133, 2016.

[27] J. A. Koupaei, S. M. M. Hosseini and F. M. Ghaini, “A new optimization algorithm based on chaotic maps
and golden section search method,” Engineering Applications of Artificial Intelligence, vol. 50, pp. 201–214,
2016.

[28] L. Abualigah, A. Diabat, S. Mirjalili, M. Abd Elaziz and A. H. Gandomi, “The arithmetic optimization
algorithm,” Computer Methods in Applied Mechanics and Engineering, vol. 376, pp. 113609, 2021.

[29] N. Chopra and M. M. Ansari, “Golden jackal optimization: A novel nature-inspired optimizer for
engineering applications,” Expert Systems with Applications, vol. 198, pp. 116924, 2022.



2858 CMC, 2023, vol.76, no.3

[30] Y. Zhang, Z. Jin and S. Mirjalili, “Generalized normal distribution optimization and its applications in
parameter extraction of photovoltaic models,” Energy Conversion and Management, vol. 224, pp. 113301,
2020.

[31] I. A. Ibrahim, M. Hossain and B. C. Duck, “A hybrid wind driven-based fruit fly optimization algorithm
for identifying the parameters of a double-diode photovoltaic cell model considering degradation effects,”
Sustainable Energy Technologies and Assessments, vol. 50, pp. 101685, 2022.

[32] J. Tang, X. Chen, X. Zhu and F. Zhu, “Dynamic reallocation model of multiple unmanned aerial vehicle
tasks in emergent adjustment scenarios,” IEEE Transactions on Aerospace and Electronic Systems, vol. 59,
no. 2, pp. 1139–1155, 2023.

[33] Z. Tian, “Backtracking search optimization algorithm-based least square support vector machine and its
applications,” Engineering Applications of Artificial Intelligence, vol. 94, pp. 103801, 2020.

[34] A. R. Jordehi, “Binary particle swarm optimisation with quadratic transfer function: A new binary
optimization algorithm for optimal scheduling of appliances in smart homes,” Applied Soft Computing,
vol. 78, pp. 465–480, 2019.

[35] M. H. Nadimi-Shahraki, H. Zamani and S. Mirjalili, “Enhanced whale optimization algorithm for medical
feature selection: A COVID-19 case study,” Computers in Biology and Medicine, vol. 148, pp. 105858, 2022.

[36] S. Salcedo-Sanz, “Modern meta-heuristics based on nonlinear physics processes: A review of models and
design procedures,” Physics Reports, vol. 655, pp. 1–70, 2016.

[37] D. H. Wolpert and W. G. Macready, “No free lunch theorems for optimization,” IEEE Transactions on
Evolutionary Computation, vol. 1, no. 1, pp. 67–82, 1997.

[38] A. K. Qin, V. L. Huang and P. N. Suganthan, “Differential evolution algorithm with strategy adaptation
for global numerical optimization,” IEEE Transactions on Evolutionary Computation, vol. 13, no. 2, pp.
398–417, 2008.

[39] Q. Pan, J. Tang, H. Wang, H. Li, X. Chen et al., “SFSADE: An improved self-adaptive differential evolution
algorithm with a shuffled frog-leaping strategy,” Artificial Intelligence Review, vol. 55, no. 5, pp. 3937–3978,
2021.

[40] W. Gong, A. Zhou and Z. Cai, “A Multi-operator search strategy based on cheap surrogate models for
evolutionary optimization,” IEEE Transactions on Evolutionary Computation, vol. 19, no. 5, pp. 746–758,
2015.

[41] M. Z. Ali, N. H. Awad and P. N. Suganthan, “Multi-population differential evolution with balanced
ensemble of mutation strategies for large-scale global optimization,” Applied Soft Computing, vol. 33, pp.
304–327, 2015.

[42] H. Rakhshani and A. Rahati, “Intelligent multiple search strategy cuckoo algorithm for numerical and
engineering optimization problems,” Arabian Journal for Science and Engineering, vol. 42, no. 2, pp. 567–
593, 2017.

[43] C. Li, S. Yang and T. T. Nguyen, “A self-learning particle swarm optimizer for global optimization
problems,” IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 42, no. 3, pp.
627–646, 2011.

[44] N. Lynn and P. N. Suganthan, “Ensemble particle swarm optimizer,” Applied Soft Computing, vol. 55, pp.
533–548, 2017.

[45] S. X. Zhang, S. Y. Zheng and L. M. Zheng, “An efficient multiple variants coordination framework for
differential evolution,” IEEE Transactions on Cybernetics, vol. 47, no. 9, pp. 2780–2793, 2017.

[46] S. Thangavelu and C. S. Velayutham, “An investigation on mixing heterogeneous differential evolution
variants in a distributed framework,” International Journal of Bio-Inspired Computation, vol. 7, no. 5, pp.
307–320, 2015.

[47] G. Wu, X. Shen, H. Li, H. Chen, A. Lin et al., “Ensemble of differential evolution variants,” Information
Sciences, vol. 423, pp. 172–186, 2018.

[48] S. M. Elsayed, R. A. Sarker and E. Mezura-Montes, “Self-adaptive mix of particle swarm methodologies
for constrained optimization,” Information Sciences, vol. 277, pp. 216–233, 2014.



CMC, 2023, vol.76, no.3 2859

[49] J. A. Vrugt, B. A. Robinson and J. M. Hyman, “Self-adaptive multimethod search for global optimization
in real-parameter spaces,” IEEE Transactions on Evolutionary Computation, vol. 13, no. 2, pp. 243–259,
2008.

[50] Y. Xue, S. Zhong, Y. Zhuang and B. Xu, “An ensemble algorithm with self-adaptive learning techniques for
high-dimensional numerical optimization,” Applied Mathematics and Computation, vol. 231, pp. 329–346,
2014.

[51] S. M. Elsayed, R. A. Sarker and D. L. Essam, “Adaptive configuration of evolutionary algorithms for
constrained optimization,” Applied Mathematics and Computation, vol. 222, pp. 680–711, 2013.

[52] X. Yao, Y. Liu and G. Lin, “Evolutionary programming made faster,” IEEE Transactions on Evolutionary
Computation, vol. 3, no. 2, pp. 82–102, 1999.

[53] G. Wu, R. Mallipeddi and P. N. Suganthan, “Problem definitions and evaluation criteria for the CEC
2017 competition on constrained real-parameter optimization,” Technical Report, 2017. [Online]. Available:
https://www.researchgate.net/publication/317228117_Problem_Definitions_and_Evaluation_Criteria_for_
the_CEC_2017_Competition_and_Special_Session_on_Constrained_Single_Objective_Real-Parameter_
Optimization

[54] A. A. Heidari, S. Mirjalili, H. Faris, I. Aljarah, M. Mafarja et al., “Harris hawks optimization: Algorithm
and applications,” Future Generation Computer Systems, vol. 97, pp. 849–872, 2019.

[55] G. Dhiman and V. Kumar, “Seagull optimization algorithm: Theory and its applications for large-scale
industrial engineering problems,” Knowledge-Based Systems, vol. 165, pp. 169–196, 2019.

[56] S. Li, H. Chen, M. Wang, A. A. Heidari and S. Mirjalili, “Slime mold algorithm: A new method for
stochastic optimization,” Future Generation Computer Systems, vol. 111, pp. 300–323, 2020.

[57] S. Mirjalili, A. H. Gandomi, S. Z. Mirjalili, S. Saremi, H. Faris et al., “Salp swarm algorithm: A bio-inspired
optimizer for engineering design problems,” Advances in Engineering Software, vol. 114, pp. 163–191, 2017.

[58] W. Zhao, Z. Zhang and L. Wang, “Manta ray foraging optimization: An effective bio-inspired optimizer
for engineering applications,” Engineering Applications of Artificial Intelligence, vol. 87, pp. 103300, 2020.

[59] E. Sandgren, “Nonlinear integer and discrete programming in mechanical design,” in Int. Design Engineer-
ing Technical Conf. and Computers and Information in Engineering Conf., Kissimmee, FL, USA, vol. 26584,
pp. 95–105, 1988.

[60] H. Nowacki, “Optimization in pre-contract ship design,” in Int. Conf. on Computer Applications in the
Automation of Shipyard Operation and Ship Design, Tokyo, Japan, pp. 1–12, 1973.

https://www.researchgate.net/publication/317228117_Problem_Definitions_and_Evaluation_Criteria_for_the_CEC_2017_Competition_and_Special_Session_on_Constrained_Single_Objective_Real-Parameter_Optimization

	Ensemble of Population-Based Metaheuristic Algorithms
	1 Introduction
	2 Related Work
	3 Ensemble of Population-Based Metaheuristics
	4 Experiment Results
	5 Conclusion
	References


