

DOI: 10.32604/cmc.2023.038670

ARTICLE

Ensemble of Population-Based Metaheuristic Algorithms

Hao Li, Jun Tang^{*}, Qingtao Pan, Jianjun Zhan and Songyang Lao

College of Systems Engineering, National University of Defense Technology, Changsha, 410000, China *Corresponding Author: Jun Tang. Email: tangjun06@nudt.edu.cn Received: 23 December 2022 Accepted: 10 April 2023 Published: 08 October 2023

ABSTRACT

No optimization algorithm can obtain satisfactory results in all optimization tasks. Thus, it is an effective way to deal with the problem by an ensemble of multiple algorithms. This paper proposes an ensemble of population-based metaheuristics (EPM) to solve single-objective optimization problems. The design of the EPM framework includes three stages: the initial stage, the update stage, and the final stage. The framework applies the transformation of the real and virtual population to balance the problem of exploration and exploitation at the population level and uses an elite strategy to communicate among virtual populations. The experiment tested two benchmark function sets with five metaheuristic algorithms and four ensemble algorithms. The ensemble algorithms are generally superior to the original algorithms by Friedman's average ranking and Wilcoxon signed ranking test results, demonstrating the ensemble framework's effect. By solving the iterative curves of different test functions, we can see that the ensemble algorithms have faster iterative optimization speed and better optimization results. The ensemble algorithms cannot fall into local optimum by virtual populations distribution map of several stages. The ensemble algorithms are superior to those of metaheuristic algorithms not included in the ensemble framework, further demonstrating the ensemble method's potential and superiority.

KEYWORDS

Ensemble; population-based metaheuristics; real and virtual population; elite strategy; swarm intelligence

1 Introduction

Multiple optimization techniques have been proposed to address the challenges of various optimization problems, which include accurate and approximate methods [1]. Accurate methods obtain an exact solution to guarantee optimality. Approximate methods can generate a high-quality solution in a reasonable time to meet the actual requirements, but they cannot ensure a globally optimal solution. As one type of approximate method, metaheuristics are general for solving optimization problems. Metaheuristics include single-solution-based and population-based by the number of solutions processed in the optimization phase [2].

Although engineers apply meta-heuristic algorithms to various optimization problems, the solution to a specific optimization problem is only sometimes satisfactory. Therefore, researchers widely use integration strategies to design general algorithms for particular problem sets. Many practical

and available algorithms have been developed for single-objective optimization [3], constrained optimization [4], multi-objective optimization [5], niche [6], and others. Metaheuristic algorithms have significantly been developed and applied to solving optimization problems in many fields [7], such as scheduling [8], data mining [9], and unmanned system [10].

When engineers integrate various optimization algorithms, they have to design appropriate integration schemes to take advantage of their respective strengths. The paper proposes an ensemble of population-based metaheuristics (EPM) to solve the single-objective problem. We consider each population-based metaheuristic algorithm as a whole in the ensemble framework without understanding its characteristics and internal mechanisms. The ensemble framework puts forward the transformation between the real and virtual populations to coordinate exploration and exploitation at the population level. It also adopts an elite strategy to realize information between the real and virtual populations. The transformation between the real and virtual populations to enhance the diversity of populations. The transformation between the real and virtual populations mainly solves the problem of falling into local optimum. We also apply an elite strategy to speed up the convergence. The practical issues that the ensemble framework can solve are related to the application field of its integrated meta-heuristic algorithms. If a meta-heuristic algorithm can be applied to solve a particular practical problem, then the algorithm can still solve the optimization problem in the ensemble framework.

The rest of this paper is structured as follows. Section 2 summarizes the ensemble methods of the population-based metaheuristic algorithms. Section 3 describes the design of the EPM framework and how to use it to integrate various metaheuristic algorithms. Section 4 conducts testing and analysis, where it tests the original and ensemble algorithms using two test function sets and two engineering application problems. Finally, in Section 5, the full text is summarized, pointing to future research.

2 Related Work

2.1 Population-Based Metaheuristics

Population-based metaheuristics have the same paradigm, as shown in Fig. 1. A population represents a set of solutions, and each individual represents a feasible solution. Generation strategies are designed to generate a new population, and the original individual is replaced by the newly generated individual according to selection strategies so that the population is continuously optimized until the set stop condition is met. The various population-based metaheuristic algorithms differ in how they perform the generation and selection processes.

The design of population-based metaheuristics is inspired by nature and human society, including evolutionary processes, physics, biology, chemistry, mathematics, human bodies, society, and so on. Evolutionary algorithms simulate the process of biological evolution, using crossover, mutation, reproduction, and other operators to produce better solutions. Typical algorithms include differential evolution [11], genetic algorithm [12], and genetic programming [13]. Biology-based algorithms mimic the behaviors in biological groups, such as foraging, mating, and movement, including particle swarm optimization [14], artificial bee swarm optimization [15], cuckoo search [16], and sand cat swarm optimization [17]. Human-based algorithms mainly simulate human body structure, way of thinking, and social behavior, including tabu search [18], cooperation search [19], brainstorming algorithms draw lessons from the classical laws of physics. For example, the idea of gravity search comes from the law of gravity [23]. The big bang algorithm simulates the big bang effects and the big bang processes [24]. The electromagnetic mechanism-like algorithm simulates charged particles' attraction and repulsion mechanisms in the electromagnetic field [25]. The algorithm based on mathematics draws lessons from

mathematical formulas and mathematical theorems, such as the sine cosine algorithm based on the mathematical properties of the sine and cosine functions [26], the chaotic golden section algorithm based on chaotic motion and golden section [27] and the arithmetic optimization algorithm based on the main arithmetic operators in mathematics [28].

Figure 1: The typical process diagram of population-based metaheuristics

Engineers apply metaheuristic algorithms in many fields, such as engineering, material, robot, computer, home life, and medical treatment. Chopra et al. proposed a golden jackal optimization algorithm for the economic load dispatch problem in electrical engineering [29]. Zhang et al. designed a generalized normal distribution optimization to improve the accuracy of extracting the model parameters in the photovoltaic material industry [30]. Ibrahim et al. proposed a hybrid wind-driven-based fruit fly optimization algorithm for adjusting several model parameters in the double-diode cell material industry [31]. Tang et al. combined fuzzy C-means clustering and ant colony optimization algorithm for mission planning of unmanned aerial vehicles in emergent scenarios [32]. Tian applied a backtracking search optimization algorithm to adjust the algorithm parameters of the least square support vector machine in the computer field [33]. Jordehi designed a quadratic binary particle swarm optimization to schedule multiple interruptible and non-interruptible appliances in an intelligent home [34]. Nadimi-Shahraki et al. applied an enhanced whale optimization algorithm to detect coronavirus disease 2019 [35].

The search steps of these algorithms include exploration and exploitation phases [36]. In the exploration phase, it ensures the diversity of the population as much as possible so that the individuals in the population can fully explore each area of the feature space. If there is insufficient exploration, the solution is locally optimal. In the exploitation phase, the search should focus on areas with high-quality solutions, constantly searching the neighborhood. If underexploited, there is no way to converge to a global solution.

2.2 Ensemble Approaches of Population-Based Metaheuristics

A single algorithm cannot handle all the optimization problems [37], so the ensemble of multiple meta-heuristic algorithms can increase the effect of optimization. The ensemble technology of the meta-heuristic algorithms includes low-level and high-level ensembles depending on the objects. The low-level ensemble integrates multiple search strategies and variable parameter values of a single algorithm. The high-level ensemble integrates multiple meta-heuristic algorithms and their variants.

An algorithm may be excellent at solving one type of optimization problem and not good at solving another. The search strategy of the algorithm mainly expresses this particularity. Therefore,

to enhance the effect of the algorithm on optimization problems that the algorithm is not good at, a variety of search strategies can be integrated to improve the algorithm to obtain a better solution. Qin et al. proposed a self-adaptive differential evolution algorithm that randomly assigned the experimental vector generation strategy and the control parameters to population individuals based on the characteristics of the historical solution [38]. Pan et al. designed an adaptive differential evolution algorithm based on the hybrid leapfrog strategy, which can maintain the overall diversity of the population during dynamic evolution [39]. Gong et al. applied a multi-operator search strategy based on a cheap agent model, using multiple sub-generation search operators and proxy models to select the best candidate solution [40]. Ali et al. divided the population into several subgroups, each adopting a modified mutation strategy based on differential evolution [41]. Rakhshani et al. proposed a new extension of the cuckoo algorithm, which combines the exploration capabilities of computer science with the development behavior provided by the covariance matrix adaptation evolution strategy through multiple search strategies [42]. Li et al. designed an adaptive learning framework for particle swarm optimization to select the optimal method from some strategies to deal with different search spaces [43].

When the set of optimization problems is vast, a single swarm intelligence optimization algorithm cannot handle it. So researchers ensemble multiple algorithms to solve optimization problems. Lynn et al. proposed an evolutionary particle swarm optimization algorithm that integrates different particle swarm optimization algorithms [44]. Zhang et al. proposed a multivariable coordination framework, which coordinates multiple improved differential evolution algorithms [45]. Thangavelu et al. designed an island-based dynamic data exchange algorithm mixing four classical differential evolution variants that fill each island with different dynamic data exchange variables as a possible way to implement a robust dynamic data exchange system [46]. Wu et al. proposed an algorithm based on an ensemble of multiple differential evolution variants, which divides the whole population into index and reward subpopulations and allocates the reward subpopulation dynamics to the well-performing differential evolution variant algorithm according to the performance of the index subpopulation [47]. Elsayed et al. applied a group of different particle swarm optimization variants to integrate and measure the performance of varying optimization variants according to the improvement index to adaptively determine the number of individuals allocated to the variant algorithm in each generation [48]. Vrugt et al. applied an adaptive learning strategy that integrates evolution strategy, genetic algorithm, and particle swarm optimization to dynamically adjust the influence of these three algorithms on individuals [49]. Xue et al. proposed an integrated evolutionary algorithm using an adaptive learning search technique incorporating three different algorithms [50]. Elsayed et al. designed a framework with multiple adaptive algorithms and operators, using two decisions to adaptively select the appropriate algorithm and search operator [51]. The existing ensemble frameworks are usually designed for specific algorithms and their variants, focusing on complementarity and neglecting generality.

In this paper, we design an ensemble framework based on common structural features of metaheuristic algorithms rather than a specific algorithm. The ensemble framework belongs to the highlevel ensemble, which could integrate various meta-heuristic and variant algorithms. These algorithms can have multiple search strategies, including low-level ensembles.

3 Ensemble of Population-Based Metaheuristics

This section introduces the EPM framework in detail. Section 3.1 explains the idea and features of the framework. Section 3.2 shows the stages of using the EPM framework to integrate the metaheuristic algorithm. It presents the implementation procedure and pseudocode in Section 3.3.

3.1 Basic Concepts

3.1.1 Algorithm Library

After filling in multiple meta-heuristic algorithms, the ensemble framework can only solve optimization problems. These meta-heuristic algorithms are placed together in the algorithm library. It is hard to judge which population-based metaheuristic algorithm is the best for a particular optimization problem, especially when there is not enough information about the problem. While engineers can find better algorithms through trial and error, it would be time-consuming and labor-intensive. In addition, to solve some problems, a satisfactory solution cannot be obtained through a search strategy using a single algorithm. Neither the specific transition point from one algorithm to another nor which algorithms to apply is known. Each algorithm has its characteristics: local search, global search, optimization speed, and population diversity. The role of the EPM framework is to make all kinds of algorithms give full play to their respective strengths and provide a communication bridge for these algorithms. It requires that as many algorithms as possible be included in the algorithm library.

3.1.2 Real and Virtual Populations

The EPM framework proposes the setting and conversion of real and virtual populations. Virtual populations represent various virtual states of the population obtained by the evolution of the real population in different directions. All virtual populations come from the real population. Each virtual population applies a population-based metaheuristic algorithm, which updates the population by selection rules to obtain individuals with better fitness values. Each virtual population can exchange information to facilitate population optimization. When certain conditions are satisfied, it retains the optimal virtual population as the optimal population, which materializes into a real population. After that, it uses the same operation to virtualize and set up the next population. The adjustment of parameters for each swarm intelligence algorithm is not considered, nor is the specific update strategy within the population. The setting of the real and virtual populations is a new idea for coordinated exploration and exploitation at the population level.

3.1.3 Elite Strategy

The exchange of information among virtual populations enables the population to obtain satisfactory solutions more quickly in the renewal process, reducing the incidences of falling into local optima. The algorithm framework designed in this study uses an elite strategy to communicate between virtual populations. To minimize the interference in the virtual population, the individual with the smallest fitness value is an elite in each virtual population. If multiple individuals have the same fitness value, it randomly selects one as the elite. It brings these elites together to form a group and selects the best elite according to their fitness. When meeting certain conditions, the best elite individual is added to each virtual population to complete the exchange of information between populations. In this way, it reduces the interference of virtual populations and realizes population optimization with the help of the optimal individual's influence on the population.

3.2 The Framework of EPM

The EPM framework consists of three stages: the initial stage, the update stage, and the final stage. The update stage includes two sub-stages high-level generation and selection. Fig. 2 shows the entire process diagram of EPM. These three stages are described in detail below.

Figure 2: The entire process diagram of EPM

3.2.1 The Initial Stage

The search space dimension of the optimization problem is *D*. Its upper boundary **U** is $(u_1, u_2, \ldots, u_d, \ldots, u_D)$, and its lower boundary **L** is $(l_1, l_2, \ldots, l_d, \ldots, l_D)$. The number of individuals in the population is *N*, and the population set **X** is $\{\mathbf{X}_1, \mathbf{X}_2, \ldots, \mathbf{X}_n, \ldots, \mathbf{X}_N\}$. The position of the *n*th individual \mathbf{X}_n is $(x_1^n, x_2^n, \ldots, x_d^n, \ldots, x_D^n)$, where x_d^n is calculated according to Eq. (1), *r* is a random number in the [0, 1].

It selects the required algorithm in the algorithm library, and the number of algorithms selected is M. The set of algorithms **A** is $\{A_1, A_2, \dots, A_m, \dots, A_M\}$. **R** represents the real population, and $\mathbf{X}^{\mathsf{R}}(\mathsf{t})$ represents the population at the t^{th} iteration. The virtual population set **V** is $\{V_1, V_2, \dots, V_m, \dots, V_M\}$. $\mathbf{X}^{\mathsf{vm}}(\mathsf{t})$ represents the virtual population corresponding to the m^{th} algorithm at the t^{th} iteration. When t = 0, $\mathbf{X}^{\mathsf{R}}(t)$ and $\mathbf{X}^{\mathsf{vm}}(t)$ are obtained from Eq. (2).

$$x_d^n = u_d + r(u_d - l_d) \tag{1}$$

$$\mathbf{X}^{\mathbf{v}_{\mathbf{m}}}(0) = \mathbf{X}^{\mathbf{R}}(0) = \mathbf{X}(0), m = 1, 2, 3, \dots M$$
⁽²⁾

3.2.2 The Update Stage

At the high-level generation process, each virtual population adopts the corresponding algorithm to update separately, where their internal update strategy set **Rw** is $\{Rw_1, Rw_2, \ldots, Rw_m, \ldots, Rw_M\}$. Rw_m represents the internal update strategy of the algorithm A_m , and the update process of the virtual population position X^{V_m} is shown in Fig. 3.

____ /

Figure 3: The updating process diagram of the virtual population position

At the $(t + 1)^{th}$ iteration, $\mathbf{X}^{\mathbf{v}_{\mathbf{m}}'}(\mathbf{t} + 1)$ is obtained from $\mathbf{X}^{\mathbf{v}_{\mathbf{m}}}(\mathbf{t})$ through the generation and selection strategy within the algorithm A_m , as shown in Eq. (3). However, it is not the virtual population for the next update $\mathbf{X}^{\mathbf{v}_{\mathbf{m}}}(\mathbf{t} + 1)$, which needs to be determined according to the high-level selection process.

$$\mathbf{X}^{\mathsf{v}}(\mathbf{t}+\mathbf{1}) = Rw_m(\mathbf{X}^{\mathsf{v}}(\mathbf{t})) \tag{3}$$

The entire high-level selection process is shown in Fig. 4. The elite swarm consists of individuals corresponding to the minimum fitness value in each virtual population. The set of these fitness values **E** is $\{E_1, E_2, \ldots, E_m, \ldots, E_M\}$, where E_m represents the minimum fitness value in the m^{th} virtual population. At the $(t + 1)^{th}$ iteration, $E_m(t + 1)$ is calculated by Eq. (4), where f() represents calculating the fitness value. *B* is the minimum in the set **E**, and B(t + 1) is calculated by Eq. (5). Then, the individual with the minimum fitness value of the elite swarm **B** is considered as the best elite. Its corresponding virtual population is called the optimal virtual population V_b and its corresponding individual position is $X_e^{v_b}$. If there are multiple individuals corresponding to the minimum fitness value, random selection is performed.

Figure 4: The process of a high-level selection

$$E_m(t+1) = \min f(\mathbf{X}_i^{\mathbf{V}_m'}(\mathbf{t}+1)), i = 1, 2, 3, \dots, N$$
(4)

$$B(t+1) = \min\{E_1(t+1), \dots, E_j(t+1), \dots, E_M(t+1)\}$$
(5)

H is the minimum fitness value of the best elite in history. When $B(t + 1) \ge H$, all virtual populations are preserved, and no information exchange is carried out among them. The virtual populations to be updated next time is shown in Eq. (6).

$$\mathbf{X}^{\mathbf{V}_{j}}(\mathbf{t+1}) = \mathbf{X}^{\mathbf{V}_{j}'}(\mathbf{t+1}), j = 1, 2, \dots M$$
(6)

When B(t + 1) < H, if $B(t + 1) \ll H$, the optimal virtual population V_b is materialized to the real population. The real population generates new virtual populations to be updated next time, as shown in Eq. (7). In this process, the parameters in the algorithms corresponding to the original virtual populations are retained. In this paper, it can be determined that the difference is large if one of the following three conditions is met: $\{B(t + 1) \times H > 0, B(t + 1) > 0, a \le 0.1\}$, $\{B(t + 1) \times H > 0, H < 0, a \ge 10\}$, $\{B(t + 1) \times H < 0, e^{B(t+1)} < e^H\}$, where *a* is the ratio of B(t+1) to *H*, as shown in Eq. (8). If B(t+1) is not much different from *H*, the best elite is copied and distributed to other virtual populations and an individual in each virtual population is randomly replaced in the process. For virtual population V_m , *q* is a random integer in [1, N], representing a random individual which will be replaced by the best elite. The improved population will be updated in the next time as the new virtual populations, and the process is shown in Eq. (9).

$$\mathbf{X}^{\mathbf{V}_{j}}(\mathbf{t+1}) = \mathbf{X}^{\mathbf{R}}(\mathbf{t+1}) = \mathbf{X}^{\mathbf{V}_{\mathbf{b}}'}(\mathbf{t+1}), j = 1, 2, \dots, N$$
(7)

$$a = \frac{B(t+1)}{H}, H \neq 0 \tag{8}$$

$$\mathbf{X}^{\mathbf{V}_{j}}(\mathbf{t+1}) \stackrel{\mathbf{X}_{q}^{\mathbf{V}_{j}'}(\mathbf{t+1})=\mathbf{X}_{e}^{\mathbf{V}_{b}(\mathbf{t+1})}}{\longleftarrow} \mathbf{X}^{\mathbf{V}_{j}'}(\mathbf{t+1}), j = 1, 2, \dots, M$$
(9)

3.2.3 The Final Stage

The update stage repeats until reaching the maximum of iterations T, then the whole process ends. In the last iteration, the optimal virtual population V_b is materialized to obtain the real population, as shown in Eq. (10). After the last iteration, the optimal virtual population is transformed into the real population.

$$\mathbf{X}^{\mathbf{R}}(\mathbf{T}) = \mathbf{X}^{\mathbf{V}_{\mathbf{b}}}(\mathbf{T}) \tag{10}$$

3.3 General Process of EPM

The ensemble range covered by the EPM framework includes all population-based metaheuristic algorithms and their modified versions. The larger the number of algorithms in the algorithm library, the better the possibility of covering many aspects of the optimization problem. First, it selects an appropriate number of algorithms from the algorithm library for the ensemble. In this process, the number of algorithms can be set without prior knowledge and then selected randomly. In the case of specific prior knowledge, it chooses the appropriate algorithm according to the previous knowledge. The pseudocode of EPM is presented below:

Input N, T, M Initialize Initialize the population position X according to Eq. (1)Get $X^{\mathbb{R}}$, $X^{\mathbb{V}}$ according to Eq. (2) Update repeatedly *While* t < TFor i = 1:MGet $X^{Vj'}(t+1)$ from $X^{V_j}(t)$ according to Eq. (3) End *Obtain* B(t + 1) *according to* Eqs. (4) *and* (5) For j = 1: M *If* B(t+1) > HGet $X^{V_j}(t+1)$ from $X^{V_j'}(t+1)$ according to Eq. (6) *Else if* $B(t+1) \ll H$ Get $X^{V_j}(t+1)$ from $X^{V_b'}(t+1)$ according to Eq. (7) Else Get $X^{V_j}(t+1)$ from $X^{V_j'}(t+1)$ according to Eq. (9) End End Get the historically best elite H t = t + 1End while **Output** H

4 Experiment Results

It applies ensemble algorithms to two test sets, 23 standard benchmark functions [52] and the 2017 congress on evolutionary computation (CEC2017) benchmark functions [53]. Section 4.1 describes these functions in detail. Section 4.2 presents the five algorithms in the algorithm library along with a comprehensive comparison between the integrated and original algorithms, introducing the parameters of each algorithm in the experiment. Section 4.3 illustrates the experimental results of the nine algorithms. It gives the iterative curves of all algorithms on some functions in Section 4.4 to directly observe the optimization effect and convergence of the algorithms. Section 4.5 shows the evolution of the real and virtual populations in the optimization process. Section 4.6 applies the ensemble framework to solve two engineering application problems.

4.1 Benchmark Functions

We select two sets of benchmark functions. One set consists of the 23 standard benchmark functions of the experiment, which are described in detail in Table 1, including function type, function name, and function definition. D denotes the number of independent variables in the function, and the initialization range means the range of variables. The optimal value corresponding to each function is the global optimum. In these functions, F1–F13 are high-dimensional with a dimension of 30; F1–F7 are unimodal; F8–F13 are multi-peak; F14–F23 are low-dimensional with only a few local minima. The other set is the CEC2017 benchmark functions set, as described in Table 2. Among these functions,

C1–C2 are unimodal; C3–C9 are simple multi-peak; C10–C19 are mixed; C20–C29 are compound. The variable dimensions range from [-100, 100]. We set the dimensions uniformly to 30 and 50.

Function type	No.	Function name	D	Initialization range	Global optimum
	F1	Sphere model	30	$-100 \le x_i \le 100$	0
	F2	Schwefel's problem 2.22	30	$-10 \leq x_i \leq 10$	0
	F3	Schwefel's	30	$-100 \le x_i \le 100$	0
Unimodal test	F4	Schwefel's	30	$-100 \le x_i \le 100$	0
Tunctions	F5	Generalized Rosenbrock's function	30	$-30 \le x_i \le 30$	0
	F6	Step function	30	$-100 < x_i < 100$	0
	F7	Quartic function	30	$-1.28 \le x_i \le 1.28$	0
	F8	Generalized Schwefel's problem 2.26	30	$-500 \le x_i \le 500$	$-418.9829 \times d$
	F9	Generalized Rastrigin's function	30	$-5.12 \le x_i \le 5.12$	0
	F10	Ackley's function	30	$-32 < x_i < 32$	0
Multimodal test functions	F11	Generalized Griewank function	30	$-600 \le x_i \le 600$	0
	F12	Generalized Penalized functions	30	$-50 \le x_i \le 50$	0
	F13	Generalized Penalized functions	30	$-50 \le x_i \le 50$	0
	F14	Shekel's Foxholes function	2	$-65.53 \le x_i \le 65.53$	1
	F15	Kowalik's	4	$-5 \le x_i \le 5$	0.0003
	F16	Six-hump camel-back function	2	$-5 \le x_i \le 5$	-1.0316
	F17	Branin function	2	$-5 \le x_i \le 10, \\ 0 \le x_2 \le 15$	0.398

 Table 1: 23 standard benchmark functions [52]

Fable 1 (continued)										
Function type	No.	Function name	D	Initialization range	Global optimum					
Multimodal test functions with fix dimension	F18	Goldstein-price function	2	$-5 \le x_i \le 5$	3					
	F19	Hartman's family	3	$0 \le x_i \le 1$	-3.86					
	F20	Hartman's family	6	$0 \le x_i \le 10$	-3.32					
	F21	Shekel's family	4	$0 \le x_i \le 10$	-10.1532					
	F22	Shekel's family	4	$0 \le x_i \le 10$	-10.4028					
	F23	Shekel's family	4	$0 \le x_i \le 10$	-10.5363					

Function type	No.	Function name	Dim	Initialization range	Global optimum
Unimodal	C1	Shifted and rotated bent cigar function	30, 50	$-100 \le x_i \le 100$	100
Tunctions	C2	Shifted and rotated Zakharov function	30, 50	$-100 \le x_i \le 100$	200
	C3	Shifted and rotated Rosenbrock's function	30, 50	$-100 \le x_i \le 100$	300
	C4	Shifted and rotated Rastrigin's function	30, 50	$-100 \le x_i \le 100$	400
	C5	Shifted and rotated expanded Scaffer's F6 function	30, 50	$-100 \le x_i \le 100$	500
Simple multimodal	C6	Shifted and rotated Lunacek Bi_Rastrigin	30, 50	$-100 \le x_i \le 100$	600
lunctions	C7	Shifted and rotated non-continuous Rastrigin's function	30, 50	$-100 \le x_i \le 100$	700
	C8	Shifted and rotated Levy function	30, 50	$-100 \le x_i \le 100$	800
	C9	Shifted and rotated Schwefel's function	30, 50	$-100 \le x_i \le 100$	900
	C10	Hybrid function 1	30, 50	$-100 \le x_i \le 100$	1000
	C11	Hybrid function 2	30, 50	$-100 \le x_i \le 100$	1100
	C12	Hybrid function 3	30, 50	$-100 \le x_i \le 100$	1200
	C13 C14	Hybrid function 4 Hybrid function 5	30, 50 30, 50	$-100 \le x_i \le 100$ $-100 \le x_i \le 100$	1300 1400

Table 2 (continued))				
Function type	No.	Function name	Dim	Initialization range	Global optimum
Hybrid functions	C15 C16 C17 C18 C19	Hybrid function 6 Hybrid function 7 Hybrid function 8 Hybrid function 9 Hybrid function 10	30, 50 30, 50 30, 50 30, 50 30, 50	$-100 \le x_i \le 100 \\ -100 \le x_i \le 100$	1500 1600 1700 1800 1900
Composition functions	C20 C21 C22 C23 C24 C25 C26 C27 C28 C29	Composition function 1 Composition function 2 Composition function 3 Composition function 4 Composition function 5 Composition function 6 Composition function 7 Composition function 8 Composition function 9 Composition function 10	$\begin{array}{c} 30, 50\\ 30, 50\\ 30, 50\\ 30, 50\\ 30, 50\\ 30, 50\\ 30, 50\\ 30, 50\\ 30, 50\\ 30, 50\\ 30, 50\\ 30, 50\\ \end{array}$	$\begin{array}{c} -100 \leq x_i \leq 100 \\ -100 \leq x_i \leq 100 \end{array}$	2000 2100 2200 2300 2400 2500 2600 2700 2800 2900

4.2 Original Algorithms and Ensemble Algorithms

In the experiment, we select some new representative algorithms for the ensemble, which are Harris hawks optimization (HHO) [54], seagull optimization algorithm (SOA) [55], slime mold algorithm (SMA) [56], salp swarm algorithm (SSA) [57], manta ray foraging optimization (MRFO) algorithm [58]. The EPM class algorithms represent the algorithms integrated under the EPM framework. This paper names the algorithms integrated by the EPM framework as "EPM + number", where "number" represents the number of filled algorithms in the ensemble framework. It obtains the EPM2 algorithm by integrating HHO and SOA, the EPM3 algorithm by integrating HHO, SOA, and SMA, the EPM4 algorithm by integrating HHO, SOA, SMA, and SSA, the EPM5 algorithm by integrating HHO, SOA, SMA, and SSA, the integrated algorithms, so researchers can adjust their parameters according to the characteristics of the original algorithms. The parameters of the original algorithms are the same as the original algorithms. The parameters in integrated algorithms are the same as the original algorithms. It lists the settings of the parameters in Table 3.

Algorithm	Parameter	Introduction and settings
ННО	$r_1, r_2, r_3, r_4, q, E_0, r, J, S, \beta$	r_1 , r_2 , r_3 , r_4 , q , E_0 , r are all random numbers in [0, 1]; J is the following number within [0, 2]; S is a random vector of dimension D; the elements are random numbers in [0, 1]; and β is set to 1.5.
-		

 Table 3: The parameter settings of the algorithms

Tuble 5 (con	Tuble 5 (continued)									
Algorithm	Parameter	Introduction and settings								
SOA	$f_c, r_d, \theta, u, v, e$	f _c decreases linearly from 2 to 0, r_d is a random number in [0, 1]; θ is a random angle in [0, 2π]; $u = 1$, $v = 1$; e is the base of the natural logarithm								
SMA	rand, z, v_b , v_c , r	rand is in [0, 1], and the location update parameter $z = 0.03$; v_b is in [-a, a]; v_c linearly decreases from 1 to								
SSA	c_1, c_2, c_3	0, and r represents a random value in [0, 1]. c_1 decreases from 2 to 0, and c_2 and c_3 are random numbers in [0, 1].								
MRFO	$\mathbf{r}, \mathbf{r}_2, \mathbf{r}_3, \mathbf{r}_3$	r, r_1 , r_2 , r_3 and rand represent random numbers in [0, 1].								

 Table 3 (continued)

4.3 Comparison Results

The average (AVE) and standard deviation (STD) of the best solutions obtained by all test algorithms in 25 independent runs and 500 iterations in each dimension were recorded (see Tables 4-6) and compared.

Function	Metric	EPM5	EPM4	EPM3	EPM2	HHO	SOA	SMA	SSA	MRFO
F1	AVE	0	0	0	0	0	0	0	3.09E-09	0
	STD	0	0	0	0	0	0	0	7.33E-10	0
F2	AVE	0	0	0	0	0	0	0	0.355149	0
	STD	0	0	0	0	0	0	0	0.784676	0
F3	AVE	0	0	0	0	0	2.45912	0	1.77E-08	0
	STD	0	0	0	0	0	5.722051	0	4.23E-09	0
F4	AVE	0	0	0	0	0	0	0	4.48E-05	0
	STD	0	0	0	0	0	0	0	2.86E-05	0
F5	AVE	4.07E-26	7.13E-10	1.62E-09	2.13E-09	1.03E-06	18.78447	0.000457	35.12469	3.85E-11
	STD	1.59E-25	1.78E-09	3.82E-09	5.7E-09	1.24E - 06	13.60155	0.000292	44.13715	4.72E-11
F6	AVE	4.44E-33	3.15E-11	4.46E-11	6.52E-11	1.34E-08	0.563822	1.61E-06	2.87E-09	7.4E-34
	STD	1.06E - 32	5.12E-11	1.02E - 10	1.51E-10	1.61E-08	0.542323	5.27E-07	5.49E-10	2.56E-33
F7	AVE	1.81E-06	1.74E-06	1.77E - 06	2.12E-06	2.11E-06	4.14E-06	2.7E - 06	0.00271	206
	STD	1.44E-06	1.5E-06	1.54E - 06	1.87E-06	1.47E-06	4.02E - 06	3.11E-06	0.001164	1.45E-06
F8	AVE	-12569.5	-12569.5	-12569.5	-12569.5	-12569.5	-12569.5	-12569.5	-7895.55	-8805.3
	STD	1.96E-12	8.4E-10	8.01E-09	7.67E-11	6.6E-05	2.81E-05	0.000112	720.5855	480.4721
F9	AVE	0	0	0	0	0	0	0	55.08084	0
	STD	0	0	0	0	0	0	0	14.91848	0
F10	AVE	8.88E-16	8.88E-16	8.88E-16	8.88E-16	8.88E-16	8.88E-16	8.88E-16	1.743802	8.88E-16
	STD	0	0	0	0	0	0	0	0.922858	0
F11	AVE	0	0	0	0	0	0	0	0.014162	0
	STD	0	0	0	0	0	0	0	0.012837	0
F12	AVE	1.59E-32	3.87E-12	8.57E-12	1.23E-11	1.05E-09	0.01385	4.64E - 07	0.355485	1.58E-32
	STD	3.1E-34	4.38E-12	1.04E - 11	2.02E-11	1.52E-09	0.011173	4.2E - 07	0.615933	1.2E - 34
F13	AVE	1.38E-32	5.84E-11	9.1E-11	9.06E-11	6.77E-09	0.132341	8.44E-07	0.002637	1.355246
	STD	1.04E-33	8.07E-11	1.42E-10	1.91E-10	1.19E-08	0.12463	5.17E-07	0.004789	1.412608
F14	AVE	0.998004	0.998004	0.998004	1.037765	1.037765	4.687508	0.998004	0.998004	0.998004

 Table 4: The comparison results of 23 standard benchmark functions by different optimization algorithms

Table 4	(contii	nued)								
Function	Metric	EPM5	EPM4	EPM3	EPM2	HHO	SOA	SMA	SSA	MRFO
	STD	0	7.02E-15	5.48E-14	0.198805	0.198805	4.688223	3.01E-15	1.83E-16	0
F15	AVE	0.000307	0.000307	0.000308	0.000308	0.000308	0.001109	0.000368	0.000815	0.000385
	STD	2.06E-19	1.21E-11	6.38E-08	4.96E-08	4.58E-08	0.00072	0.000192	0.000363	0.000253
F16	AVE	-1.03163	-1.03163	-1.03163	-1.03163	-1.03163	-1.03163	-1.03163	-1.03163	-1.03163
	STD	6.8E-16	1.33E-15	2.2E-14	5.87E-14	9.27E-15	3.21E-07	1.25E-12	1.38E-14	6.8E-16
F17	AVE	0.397887	0.397887	0.397887	0.397887	0.397887	0.398059	0.397887	0.397887	0.397887
	STD	0	2.35E-14	3.56E-09	1.75E-08	1.14E - 08	0.000401	1.96E-09	1.32E-14	0
F18	AVE	3	3	3	4.08	5.16	12.20428	3	3	3
	STD	1.26E-15	2.91E-13	5.97E-12	5.400001	7.475962	13.71568	3.01E-14	2.46E-13	5.94E-16
F19	AVE	-3.86278	-3.86278	-3.86278	-3.86278	-3.86278	-3.74259	-3.86278	-3.86278	-3.86278
	STD	2.27E-15	1.81E-14	5.47E-08	1.39E-06	6.15E-07	0.170625	4.29E-09	5.74E-15	2.27E-15
F20	AVE	-3.29346	-3.26493	-3.25541	-3.25539	-3.25538	-2.96169	-3.21261	-3.21261	-3.26493
	STD	0.051824	0.060624	0.060235	0.060236	0.060235	0.170635	0.03292	0.03292	0.060624
F21	AVE	-10.1532	-10.1532	-10.1532	-6.07478	-5.05519	-4.44062	-10.1532	-9.74901	-9.94928
	STD	5.44E-15	1.94E-05	1.81E-05	2.081226	5.5E-06	1.754009	7.69E-06	1.398954	1.0196
F22	AVE	-10.4029	-10.4029	-10.4029	-6.57593	-5.08767	-5.83812	-10.4029	-9.58101	-10.1903
	STD	1.92E-15	5.69E-06	2.45E-05	2.435741	6.22E-06	2.508465	1.02E-05	2.305573	1.063054
F23	AVE	-10.5364	-10.5364	-10.5364	-6.21004	-5.5611	-4.8448	-10.5364	-10.322	-10.5364
	STD	1.92E-15	1.48E-05	2.86E-05	2.207733	1.497374	2.028815	7.76E-06	1.072153	1.81E-15

Table 5: The comparison results of the CEC2017 benchmark functions by different optimization algorithms (D = 30)

		EPM5	EPM4	EPM3	EPM2	HHO	SOA	SMA	SSA	MRFO
C1	AVE	902.7646	3290.374	2685.852	489759.6	5825.588	4.71E+10	7489.476	3354.55	3953.039
	STD	1118.24	4044.062	4243.236	2418277	3309.647	9.59E+09	7115.915	3783.203	4491.838
C2	AVE	200	200.0002	200.0012	8.88E+33	4.77E+31	2.57E+49	200.0002	200.0001	200
	STD	1.76E-05	6.6E-05	0.00085	4.28E+34	1.64E + 32	1.28E + 50	0.000123	3.04E-05	9.63E-06
C3	AVE	300	300	300.847	28223.06	32767.91	137237.7	300.001	300	300
	STD	0	7.04E-09	0.5768	5322.439	4405.763	45948.26	0.000584	3.77E-09	0
C4	AVE	404.4552	436.6484	428.9964	662.9686	634.4399	11593.27	488.2914	479.8565	409.3811
	STD	11.44006	25.74595	23.56127	218.7391	108.0743	3366.472	5.52105	25.40835	21.0248
C5	AVE	536.893	531.9988	559.8022	730.6306	746.4483	880.6916	575.2127	609.7334	649.9196
	STD	9.786207	12.33574	16.24438	33.09082	29.05142	43.61556	18.01149	29.2981	40.06929
C6	AVE	600.8313	600.5959	601.5444	653.6156	657.7857	678.0107	600.3176	625.4053	619.4164
	STD	0.593362	0.375077	0.882561	7.245739	4.69095	9.483725	0.192387	11.44769	12.61308
C7	AVE	766.9689	761.2482	792.5594	1199.308	1256.393	1418.424	811.1121	859.4338	989.8419
	STD	8.979743	10.43814	15.01733	63.29684	66.28971	58.77982	20.65983	35.38709	86.96931
C8	AVE	836.8598	833.5277	850.9737	960.6261	968.3868	1106.081	877.8322	894.8789	932.9259
	STD	6.6184	9.776067	14.33767	23.16343	25.06896	28.21193	13.90581	31.50098	28.2599
C9	AVE	900.3583	900.6909	900.5986	4955.688	5063.042	9446.444	1506.398	2220.573	3669.055
	STD	0.374084	0.724316	0.718643	698.6464	609.5586	1539.526	1027.192	879.4835	1097.606
C10	AVE	2628.831	2540.615	2678.661	6063.822	5253.509	9541.206	3559.888	4575.969	4808.949
	STD	308.2059	345.6339	473.6041	994.8354	885.5511	529.2566	475.7757	705.6062	715.4212
C11	AVE	1126.983	1132.647	1139.906	1276.364	1287.052	10240.64	1194.034	1256.286	1184.318
	STD	8.540598	10.10047	14.1604	75.00597	64.74324	3050.719	41.25983	44.91092	31.17383
C12	AVE	15027.23	88204.73	100155.4	45934047	67881154	8.45E+09	238634.7	771305.1	19146.42
	STD	9080.098	56539.9	60453.42	72150740	1.1E + 08	3.71E+09	145317.3	689276.8	12496.58
C13	AVE	5477.185	27176.19	25679.45	173224	19554468	2.3E+09	26860.77	95078.71	16508.89
	STD	4442.871	20246.44	25013.57	194785	97111555	3.12E+09	25417.04	62176.79	12679.22
C14	AVE	1567.886	3082.811	4749.069	339770.8	280555	1441032	9348.684	3512.879	1604.296
	STD	45.90245	1584.016	3683.581	329934.4	287152.8	1445004	6823.33	2262.68	71.7545
C15	AVE	3623.123	8074.151	10605.32	33162.86	37733.69	4.18E+08	30796.05	50766.18	5584.899

Table	Table 5 (continued)										
		EPM5	EPM4	EPM3	EPM2	HHO	SOA	SMA	SSA	MRFO	
	STD	2810.202	6215.589	8942.196	29081.38	32078.31	5.53E+08	11458.03	40469.1	6645.642	
C16	AVE	1801.661	1949.337	2125.943	3153.129	3258.431	4787.399	2400.258	2407.28	2631.215	
	STD	130.349	205.3241	214.2251	495.0602	448.0817	824.6578	303.5794	228.4946	279.2315	
C17	AVE	1832.242	1820.747	1955.324	2518.757	2620.966	3751.296	2063.12	1993.909	2129.348	
	STD	57.19301	63.95016	131.0033	317.6166	327.4079	1679.326	186.789	164.0414	215.483	
C18	AVE	22870.17	60371.9	65056.1	1053220	924321.3	53180666	166444.2	86677.09	29835.96	
	STD	19990.05	38430.41	48955.33	1342197	827943.6	75027162	76311.93	48923.04	17856.1	
C19	AVE	3824.338	13040.8	10533.51	50554.58	42888.47	4.7E + 08	41470.4	108043.6	10004.24	
	STD	3315.617	12306.69	10690.86	37080.57	56123.46	6.29E+08	17380.8	49528.17	10141.75	
C20	AVE	2119.088	2148.06	2169.274	2616.076	2650.025	2957.38	2313.325	2351.115	2380.781	
	STD	65.23756	90.19009	116.4725	153.5199	168.6338	200.5934	129.0021	146.3238	209.8808	
C21	AVE	2338.545	2338.708	2354.376	2506.347	2548.73	2681.681	2388.157	2405.765	2412.039	
	STD	9.689742	8.679737	14.91288	40.69084	46.96825	61.8029	23.58705	33.65642	27.48967	
C22	AVE	2300.121	2300.223	2301.24	6730.48	6983.713	9654.64	5344.452	3911.237	2607.776	
	STD	0.57528	0.597588	1.233973	1600.559	678.1923	1098.703	530.8082	2053.508	1065.147	
C23	AVE	2685.296	2683.946	2703.451	3166.514	3206.271	3328.737	2731.09	2739.832	2790.808	
	STD	9.284617	11.54514	13.65706	135.4268	150.4809	139.2706	19.91425	25.89812	44.39223	
C24	AVE	2856.568	2857.054	2888.855	3335.164	3359.277	3583.298	2929.555	2898.986	2979.212	
	STD	12.73916	11.06584	14.77498	141.8446	141.0508	195.7917	21.97067	24.94498	66.27963	
C25	AVE	2885.649	2886.709	2886.745	2958.363	2952.888	4572.914	2886.848	2893.028	2895.376	
	STD	1.601232	0.681923	0.685797	32.52224	39.78769	460.3713	1.030813	14.86022	16.38967	
C26	AVE	3725.473	3934.553	4036.657	7607.326	8304.568	10358.2	4472.035	4464.339	4870.579	
	STD	464.9816	165.8759	275.9082	1334.879	1258.937	1119.672	235.3289	831.3642	1641.959	
C27	AVE	3166.58	3168.203	3168.97	3611.143	3741.738	3976.634	3206.848	3224.959	3267.911	
	STD	10.76602	8.738246	8.745193	148.5094	197.485	322.848	12.5343	15.85913	24.35195	
C28	AVE	3100	3100.003	3100.089	3453.845	3394.916	6406.415	3224.79	3132.602	3126.623	
	STD	0	0.015433	0.026477	160.969	169.3918	710.1894	66.59074	47.08401	55.40508	
C29	AVE	3390.706	3437.384	3431.83	5012.228	5167.606	6355.715	3697.814	3789.834	3942.537	
	STD	79.95842	94.77418	108.0931	434.1358	712.0787	824.497	174.1942	173.2771	271.9866	

Table 6: The comparison results of the CEC2017 benchmark functions by different optimization algorithms (D = 50)

		EPM5	EPM4	EPM3	EPM2	HHO	SOA	SMA	SSA	MRFO
C1	AVE	1564.423	3363.094	5868.441	15223.61	14185.43	1.01E+11	15409.67	4773.522	4792.013
	STD	2074.851	3416.559	6299.051	5317.337	4192.902	8.13E+09	11336.18	6920.711	6722.137
C2	AVE	200	202.2101	340.291	1.86E+59	5.31E+59	6.26E+84	201.7396	200.8243	200
	STD	9.59E-06	7.80E+00	90.16485	8.38E+59	2.66E + 60	3.12E+85	7.430594	4.12E + 00	1.48E-05
C3	AVE	300	300	303.7261	44216.94	47427.25	252790.3	300.0082	300	300
	STD	4.84E-13	2.31E-08	1.75844	7642.29	9387.97	90954.65	0.002057	9.08E-09	2.39E-13
C4	AVE	417.1868	433.3292	430.2082	933.5133	945.979	30758.01	504.3023	544.9028	422.8925
	STD	14.18587	20.07223	1.988095	599.3669	483.4245	6286.819	59.34425	47.54378	28.53133
C5	AVE	586.8017	570.0516	615.8567	852.495	849.6292	1150.826	687.0763	742.8122	815.8375
	STD	11.33574	19.6727	18.62161	33.7776	26.29409	36.83114	41.034	59.28636	51.54474
C6	AVE	604.7959	603.0001	606.5931	661.39	663.1714	694.9141	601.0333	638.0651	640.2838
	STD	1.728911	1.287632	2.364182	5.401158	4.73241	7.585304	0.506592	9.609981	11.76814
C7	AVE	826.695	834.6281	879.2088	1648.979	1693.569	2042.556	926.7816	1009.936	1367.78
	STD	15.39112	13.70104	28.97706	80.90631	53.91651	46.16475	45.60423	72.26719	178.9801
C8	AVE	885.8617	870.7809	915.449	1144.098	1163.041	1441.307	963.9156	1038.168	1119.021
	STD	16.68351	17.65313	18.10443	28.4163	31.71651	33.01192	24.77768	57.34869	54.97388
C9	AVE	937.6997	920.8308	1088.04	12716.74	12612.68	34561.62	5948.958	8208.887	9954.461
	STD	61.96252	26.5344	363.9745	1621.532	985.5352	5698.828	3876.126	2373.46	2379.059
C10	AVE	3694.749	3761.504	3700.033	7626.868	8230.649	13892.13	6280.105	7617.053	7348.594

Table	6 (conti	inued)								
		EPM5	EPM4	EPM3	EPM2	ННО	SOA	SMA	SSA	MRFO
	STD	558.9742	532.997	582.0079	935.1439	1204.979	758.1973	626.1485	783.3506	939.2402
C11	AVE	1177.74	1166.028	1180.263	1396.777	1383.864	22591.94	1303.236	1322.368	1261.253
	STD	15.6531	9.219968	16.98053	71.8303	87.64393	4489.043	63.97801	37.66977	30.2221
C12	AVE	37036.41	893674.8	991485.5	1.37E + 08	1.35E + 08	5.26E+10	1598430	4238014	83609.84
	STD	22014.37	627633	857632.9	2.04E + 08	2.99E+08	1.81E+10	1074183	2520333	41626.2
C13	AVE	4075.313	16996.81	14110.42	212873.9	125767.5	1.82E + 10	29634.34	130309.7	4124.072
	STD	3396.271	12763.81	11479.36	507175.8	94114.22	9.25E+09	10151.04	75453.32	4256.024
C14	AVE	2426.744	7447.321	15906.74	1680775	1705491	31389494	52348.57	15112.99	3072.003
	STD	658.6872	6164.037	11337.99	3798183	3885700	32006311	25969.55	12145.55	1094.581
C15	AVE	5616.482	12308.82	13023.14	4694751	4537062	6.16E+09	29350.23	39421.45	9413.125
	STD	4499.291	7888.652	8786.184	23254860	22398016	3.85E+09	6731.168	22304.52	6287.582
C16	AVE	2237.506	2332.344	2553.069	4028.273	4048.173	8094.206	3164.62	3063.408	3297.917
	STD	247.3496	249.5483	240.8204	513.0978	698.4317	1485.932	368.3294	326.5094	521.3009
C17	AVE	2257.742	2274.431	2474.799	3639.855	3672.466	7247.96	2871.545	2960.49	3205.788
	STD	155.2337	193.8793	194.0557	452.6595	473.4265	3760.402	242.0486	268.2297	326.7872
C18	AVE	19549.7	80794.79	90703.99	4242293	2935428	1.02E + 08	207761.6	107742.9	33126
	STD	12822.92	27734.12	50939.99	6473234	3355806	80050046	126316.6	35916.97	22584.63
C19	AVE	4774.262	10989.99	9610.29	62330.2	52244.67	2.15E+09	14225.18	201180.9	14846.17
	STD	3910.518	12388.52	8085.775	45900.33	27950.68	1.68E+09	17052.33	54726.35	11388.86
C20	AVE	2287.938	2319.214	2533.119	3162.177	3257.845	4062.8	2818.477	2957.316	3179.556
	STD	108.3397	139.2058	213.9936	311.8407	258.3304	404.9723	288.1831	253.0242	349.4163
C21	AVE	2388.669	2375.095	2420.159	2785.253	2812.891	3138.545	2492.834	2505.974	2563.45
	STD	14.39998	19.76868	21.43885	72.10099	82.51934	97.2633	36.10054	45.65499	65.47573
C22	AVE	2300.425	2300.273	2302.295	10608.09	10422.03	16728.95	8257.222	9165.022	8619.539
	STD	0.791301	0.679075	1.070631	1533.443	1014.829	853.0564	988.791	952.0107	1623.496
C23	AVE	2804.425	2796.67	2831.246	3801.936	3871.871	4141.234	2917.741	2938.457	3118.995
	STD	14.84545	21.28376	27.53321	184.6423	223.2331	194.9199	44.99394	40.59267	101.1374
C24	AVE	2978.396	2970.417	3030.666	4096.05	4039.954	4620.13	3095.88	3078.31	3285.498
	STD	14.84988	23.40616	28.51908	215.5657	174.8984	271.4433	36.24266	40.7089	104.6463
C25	AVE	2974.773	2971.509	2975.22	3249.563	3258.095	14143.84	3017.684	3023.769	3052.767
	STD	8.554417	17.51097	12.64854	105.7085	93.53723	1790.841	38.19031	45.47396	35.97161
C26	AVE	3945.906	4502.135	4913.446	12205.31	12226.77	17256.95	5719.404	4752.921	6541.465
	STD	887.4889	197.8206	249.1071	904.1735	1051.926	960.7725	373.1578	2102.883	3501.497
C27	AVE	3170.97	3170.389	3170.612	4830.036	4949.775	6216.204	3323.926	3368.092	3592.878
	STD	9.292116	9.521278	8.661707	446.8078	543.9687	712.5707	65.79624	77.34347	145.1447
C28	AVE	3258.189	3259.178	3259.365	3757.093	3737.579	11912.49	3284.561	3301.465	3290.119
	STD	1.823178	2.67E-01	0.280697	311.0017	217.6791	1688.529	22.72083	16.07822	28.54801
C29	AVE	3477.968	3495.964	3509.711	6852.671	6928.21	26533.06	4176.37	4571.589	4437.38
	STD	159.98	140.3959	225.5474	1164.126	1186.805	17826.29	325.5151	294.3504	444.2482

The population size is 70, and the number of iterations is $500 \times D$. D is the dimension of the test function. According to the characteristics of the EPM framework, the more algorithms are integrated into the framework, the more times the function will be evaluated. To compare the results of the integration algorithm and the original algorithm more fairly, we design a perfect ensemble (PE) that takes the optimal value from the effects of multiple original algorithms. In each independent run, it records the best result of several original algorithms as the result of this run, and after 25 runs, all the results are averaged. This paper names the results obtained by the PE framework as "PE + number", where "number" represents the number of integrated results in the framework. It expresses the results obtained by averaging the optimal values of HHO and SOA as PE2, the results obtained by averaging the optimal values of HHO and SMA as PE3, the results obtained by averaging the optimal

values of HHO, SOA, SMA, and SSA as PE4, the results obtained by averaging the optimal values of HHO, SOA, SMA, SSA, and MRFO as PE5.

Table 7 displays the results of Friedman's mean rank test for the benchmark functions. On the 23 standard benchmark functions, the mean rankings of EPM5, EPM3, and EPM2 are higher than those of PE5, PE3, and PE2, respectively; the mean ranking of EPM4 is lower than that of PE4. On the CEC2017 benchmark functions with 30 dimensions, the mean rankings of EPM5, EPM4, EPM3, and EPM2 are higher than that of PE5, PE4, PE3, and PE2, respectively. On the CEC2017 benchmark functions with 50 dimensions, the mean rankings of EPM5, EPM4, EPM3, and EPM2 are higher than that of PE5, PE4, PE3, and PE2, respectively. In most cases, the algorithms in the ensemble framework get a better ranking. Increasing the number of integrated metaheuristic algorithms enhances the average optimization ability of the overall ensemble framework.

Benchmark functions	Comparison	EPM	PE
	EPM2 vs. PE2	1.3478	1.6522
22 standard hanghmark functions	EPM3 vs. PE3	1.5435	1.4565
25 standard benchmark functions	EPM4 vs. PE4	1.4348	1.5652
	EPM5 vs. PE5	1.4348	1.5652
	EPM2 vs. PE2	1.3103	1.6897
CEC2017 handbrown functions (D = 20)	EPM3 vs. PE3	1.1034	1.8966
CEC2017 benchmark functions ($D = 30$)	EPM4 vs. PE4	1.2069	1.7931
	EPM5 vs. PE5	1.0862	1.9138
	EPM2 vs. PE2	1.4138	1.5862
$CEC2017$ has shown by functions (D ≤ 0)	EPM3 vs. PE3	1.1034	1.8966
CEC2017 benchmark functions ($D = 50$)	EPM4 vs. PE4	1.1379	1.8621
	EPM5 vs. PE5	1.1207	1.8793

 Table 7: Friedman's mean ranking test results of benchmark functions

Table 8 displays the *p*-value test results on benchmark functions. On the 23 standard benchmark functions, the *p*-value resulting from the comparison between EPM2 and PE2 is less than 0.1 and more significant than 0.05, indicating that the results of the algorithms are different at the significance level of 0.1. The *p*-values resulting from the comparisons between EPM3 and PE3, between EPM4 and PE4, and between EPM5 and PE5 are greater than 0.1, indicating no significant difference between the results. On the CEC2017 benchmark functions with 30 dimensions, the *p*-value resulting from the comparison between EPM3 and PE3, between EPM4 and PE4, and between EPM2 and PE2 is greater than 0.1, indicating no significant difference between the results. The *p*-values for the comparison between EPM3 and PE3, between EPM4 and PE4, and between EPM5 and PE5 are less than 0.01, indicating that the results of these algorithms are significantly different at the significance level of 0.01. On the CEC2017 benchmark functions with 50 dimensions, the *p*-value resulting from the comparison between EPM2 and PE2 is greater than 0.1, indicating that the results of these algorithms are significantly different at the significance level of 0.01. On the CEC2017 benchmark functions with 50 dimensions, the *p*-value resulting from the comparison between EPM2 and PE2 is greater than 0.1, indicating no significant difference between the results. The *p*-values for the comparison between EPM2 and PE2 is greater than 0.1, indicating no significant difference between the results. The *p*-values for the comparison between EPM2 and PE2 is greater than 0.1, indicating no significant difference between the results. The *p*-values for the comparison between EPM3 and PE3, between EPM4 and PE4, and between EPM5 and PE5 are less than 0.01, indicating that the results of these algorithms are significantly different at the significantly difference between EPM5 and PE5 are less than 0.01, indicating that the results of these algorithms are significant

Benchmark functions	Comparison	R+	R-	<i>p</i> -value	α
	EPM2 vs. PE2	195	81	9.95E-02	0.1
22 standard banchmark functions	EPM3 vs. PE3	131	145	1.00E + 00	>0.1
25 standard benchmark functions	EPM4 vs. PE4	175	101	1.56E-01	>0.1
	EPM5 vs. PE5	171.5	104.5	1.39E-01	>0.1
	EPM2 vs. PE2	265	170	3.04E-01	>0.1
CEC2017 banchmark functions $(D - 20)$	EPM3 vs. PE3	427	8	5.90E-06	0.01
CEC2017 benchmark functions ($D = 50$)	EPM4 vs. PE4	378	57	5.19E-04	0.01
	EPM5 vs. PE5	sonR+R-p-value α α PE2195819.95E-020.1 α PE31311451.00E+00>0.1 α PE41751011.56E-01>0.1 α PE5171.5104.51.39E-01>0.1 α PE22651703.04E-01>0.1 α PE342785.90E-060.01 α PE342785.90E-040.01 α PE5414.520.52.52E-050.01 α PE22222139.22E-01>0.1 α PE3419161.32E-050.01 α PE4413222.36E-050.01 α PE5398.536.51.08E-040.01	0.01		
	EPM2 vs. PE2	222	213	9.22E-01	>0.1
CEC2017 benchmark functions $(D - 50)$	EPM3 vs. PE3	419	16	1.32E-05	0.01
CEC2017 benchmark functions ($D = 50$)	EPM4 vs. PE4	413	22	2.36E-05	0.01
	EPM5 vs. PE5	398.5	36.5	1.08E-04	0.01

Table 8: Wilcoxon signed ranking test results of benchmark functions

4.4 Iterative Curves

We select some test functions, draw the iterative curve of the experimental algorithm, and visually observe the convergence of the algorithms. The iterative curves in Fig. 5 correspond to functions F3, F15, F20, C5, C16, and C20, representing the performance of EPM5 under different types of functions. It is observed that the EPM5 algorithm has a faster iterative optimization speed and achieves better results through the iterative curves.

Figure 5: Iterative curves of partial test functions

4.5 Evolution Process of Real Population and Virtual Population

We analyzed the process of solving function F3 by the EPM5 algorithm to observe the relationship between the real and virtual populations and follow the evolution process more intuitively during the operation of the ensemble algorithm. Fig. 6 shows the position changes of the virtual populations in the x_1 and x_2 dimensions, before and after 1, 2, 5, 6, 20, 21, 100, 101, 1000, 1001, 14999, and 15000 iterations, where 'a' represents the population before the iteration and 'b' represents the population after the iteration. It lists the historical optimal solutions corresponding to the number of partial iterations in Table 9.

Figure 6: (Continued)

Figure 6: The virtual population distribution diagram of the EPM5 algorithm under some iterations in the process of solving the function F3

t	Н	t	Н	t	Н	t	Н	t	Н	t	Η
0	102389.5	4	0.178303	19	5.78E-16	99	2.72E-97	999	0	14998	0
1	374.6011	5	0.103464	20	1.78E-17	100	2.09E-99	1000	0	14999	0
2	314.3702	6	0.103464	21	1.48E-17	101	1.32E-99	1001	0	15000	0

Table 9: Number of partial iterations on F3 function and historical optimal solution

In Iteration 1.a, it is observed that the positions of the five virtual populations come from the same real population before the start of the first iteration. After the high-level generation sub-stage, the five virtual populations update their locations independently, and the positions of the populations are different, as shown in Iteration 1.b. Because the fitness value of the best elite is smaller than the historical optimum, it materializes the population where the optimal elite resides, and the population distribution after materialization is shown by Iteration 2.a. It transforms the five virtual populations into the real population. In Iteration 5.b and Iteration 6.a, the best elite of the virtual populations after the fifth iteration is not less than an order of magnitude smaller than the historically best fitness value. Thus, the virtual population continues to exist. In Iteration 20.a, the entity population has converged at this time. However, after the high-level generation sub-stage, the virtual population can still be distributed in every corner of the map, as shown in Iteration 20.b. After the high-level selection sub-stage, it obtains the population distributed in iteration 21.a, and the virtual populations are transformed into the real population again. It can be seen from this figure that the premature convergence of single or multiple populations will not lead to the convergence of all populations, and other populations still have good exploratory properties. In Iteration 100.b and Iteration 101.b, it is observed that the red population has converged. But in Iteration 1000.a, the red population is dispersed again, indicating that the converged population has a chance to reexplore. In Iteration 14999.a and Iteration 15000.b, all populations have converged. The red population has several individual sporadic distributions related to the corresponding algorithm characteristics of the population.

4.6 Engineering Application Problems

The pressure vessel design optimization problem optimizes the cost of welding, material, and forming of the pressure vessel by adjusting the shell thickness, head thickness, inner diameter, and length of the vessel under four constraints [59]. The three-bar truss design optimization problem is based on the stress constraint of each bar to optimize the total weight of the bar structures [60]. Table 10 gives the mathematical description of these problems. It abbreviates the first engineering problem as E1 and the second engineering problem as E2.

No.	Problem name	D	Initialization range	Constraints	Known optimum
E1	Pressure Vessel Design $f(x) = 0.6224z_1x_3x_4 + 1.7781z_2x_3^2$ $+ 3.1661z_1^2x_4 + 19.84z_1^2x_3$	4	$1 \le x_1 \le 99(\text{int}), \\ 1 \le x_2 \le 99(\text{int}), \\ 10 \le x_3 \le 200, \\ 10 \le x_4 \le 200$	$\begin{array}{l} 0.00954x_3 \leq z_2, \\ 0.0193x_3 \leq z_1, \\ x_4 \leq 240, \\ -\pi x_3^2 x_4 - \frac{4}{3}\pi x_3^3 \leq -1296000, \\ z_1 = 0.0625x_1 \\ z_2 = 0.0625x_2 \end{array}$	5885.3327736
E2	Three-bar Truss Design Problem $f(x) = l(2\sqrt{2}x_1 + x_2)$	2	$0 \le x_1 \le 1,$ $0 \le x_2 \le 1$	$\frac{x_2}{2x_2x_1 + \sqrt{2}x_1^2}P - \sigma$ $\frac{x_2 + \sqrt{2}x_1}{2x_2x_1 + \sqrt{2}x_1^2}P - \sigma$ $\frac{1}{x_1 + \sqrt{2}x_2}P - \sigma$ $l = 100, P = 2, \sigma = 2$	263.89584338

Table 10: Engineering optimization problems

The average and standard deviation of the best solutions obtained by all test algorithms in 25 independent runs and 500 iterations in each dimension were recorded and compared (see Table 11). For the optimization results of the pressure vessel design problem, EPM3, EPM4, and EPM5 are better than their integrated original algorithms. EPM2 is better than SOA but worse than HHO. For the optimization results of the three-bar truss design problem, both EPM4 and EPM5 are better than their integrated original algorithm. EPM3 is better than HHO and SOA but worse than SMA. EPM2 is better than SOA but worse than HHO. Two practical engineering problems obtain better optimization results from the average optimization results by adopting the ensemble framework.

Table 11: The results of engineering optimization problems by different optimization algorithms

		EPM5	EPM4	EPM3	EPM2	ННО	SOA	SMA	SSA	MRFO
E1	AVE	6066.6913	6085.2628	6098.4798	8074.5080	7964.7286	13856.8187	6216.5912	6353.9354	6271.0216
	STD	12.5129	20.6386	33.2818	1752.8158	1414.2115	6088.7058	219.9751	246.7167	228.2141
E2	AVE	263.895861	263.896028	263.896757	263.917593	263.914440	266.142034	263.896307	263.896183	263.895862
	STD	1.7451E-05	2.6238E-04	1.1884E-03	3.8590E-02	2.5215E-02	2.0515E+00	8.2330E-04	5.1781E-04	1.8544E-05

5 Conclusion

We propose a new population-based metaheuristic ensemble framework in this paper. The main innovation is to use the common structural characteristics of the population-based metaheuristic algorithms to design a framework, which is a bridge for cooperative optimization of multiple algorithms through the transformation of virtual population and entity population and elite strategy. The framework leverages the differentiation and unification of real and virtual populations to coordinate exploration and exploitation at the population level. Meanwhile, an elitist strategy is adopted to communicate among virtual populations to guarantee diversity and reduce the internal influence on each metaheuristic algorithm. In the experiment, five algorithms, SOA, HHO, SMA, SSA, and MRFO, are integrated using the ensemble framework to obtain EPM algorithms. The EPM algorithms perform superior on 23 standard benchmark functions and the CEC2017 benchmark functions. According to Friedman's average ranking, the results of algorithms integrated with the

EPM framework, in most cases, outperformed the results of the same algorithms integrated with the PE framework, demonstrating the superiority of the ensemble framework. The ensemble framework also demonstrated excellent results in solving two practical engineering problems and obtained better solutions.

With the increase in the number of optimization algorithms integrated into the ensemble framework, the information exchange between various algorithms will increase, and these algorithms will be more likely to jump out of the local optimization. However, we cannot distinguish the role of each algorithm in optimization and the influence of algorithm parameters on the optimization results. Meanwhile, each additional algorithm in the ensemble framework will increase the calculation of the virtual population corresponding to the algorithm, the storage cost of the calculation results, and the cost of information exchange, reducing the optimization speed. In future research, we will study two aspects: improving the optimization ability and speed. We will analyze the contribution of a single algorithm in the integration framework and adjust the algorithm parameters to improve the optimization ability. We will study the factors that affect the optimization speed and reduce unnecessary computing and storage costs to improve the optimization speed according to the role of different algorithms in the different stages.

Acknowledgement: The authors would like to acknowledge the editor-in-chief, associate editors, and reviewers for their contributions to the improvement of this paper.

Funding Statement: This work was supported by National Natural Science Foundation of China under Grant 62073330. The auther J. T. received the grant.

Author Contributions: Study conception and design: H. Li, J. Tang, S. Lao; data collection: Q. Pan, J. Zhan; analysis and interpretation of results: H. Li, Q. Pan; draft manuscript preparation: H. Li, J. Zhan. All authors reviewed the results and approved the final version of the manuscript.

Availability of Data and Materials: Data available on request from the authors. The data that support the findings of this study are available from the corresponding author, (J. T.), upon reasonable request.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the present study.

References

- [1] E. G. Talbi, "Optimization methods," in *Metaheuristics: From Design to Implementation*, vol. 1. Hoboken, NJ, USA: John Wiley & Sons, no. 3, pp. 18–33, 2009.
- [2] T. G. Crainic and M. Toulouse, "Meta-heuristics and parallelism," in *Handbook of Metaheuristics*, vol. 17. New York, NY, USA: Springer, no. 2, pp. 498–505, 2010.
- [3] I. Boussaïd, J. Lepagnot and P. Siarry, "A survey on optimization metaheuristics," *Information Sciences*, vol. 237, pp. 82–117, 2013.
- [4] D. P. Bertsekas, "Lagrangian methods-local convergence," in Constrained Optimization and Lagrange Multiplier Methods, vol. 4. New York, NY, USA: Academic Press, no. 5, pp. 231–256, 1982.
- [5] K. Deb, "Two approaches to multi-objective optimization," in *Search Methodologies*, vol. 15. New York, NY, USA: Springer, no. 2, pp. 407–410, 2014.
- [6] J. H. Vandermeer, "Niche theory," *Annual Review of Ecology and Systematics*, vol. 3, no. 1, pp. 107–132, 1972.

- [7] J. Tang, G. Liu and Q. Pan, "A review on representative swarm intelligence algorithms for solving optimization problems: Applications and trends," *IEEE/CAA Journal of Automatica Sinica*, vol. 8, no. 10, pp. 1627–1643, 2021.
- [8] E. Pacini, C. Mateos and C. G. Garino, "Distributed job scheduling based on swarm intelligence: A survey," *Computers & Electrical Engineering*, vol. 40, no. 1, pp. 252–269, 2014.
- [9] B. H. Nguyen, B. Xue and M. Zhang, "A survey on swarm intelligence approaches to feature selection in data mining," *Swarm and Evolutionary Computation*, vol. 54, pp. 100663, 2020.
- [10] J. Tang, H. Duan and S. Lao, "Swarm intelligence algorithms for multiple unmanned aerial vehicles collaboration: A comprehensive review," *Artificial Intelligence Review*, vol. 56, no. 5, pp. 4295–4327, 2022.
- [11] K. V. Price, "Differential evolution," in *Handbook of Optimization*, vol. 2. New York, NY, USA: Springer, no. 1, pp. 187–214, 2013.
- [12] D. Whitley, "A genetic algorithm tutorial," Statistics and Computing, vol. 4, no. 2, pp. 65–85, 1994.
- [13] J. R. Koza, "Overview of genetic programming," in *Genetic Programming: On the Programming of Computers by Means of Natural Selection*, vol. 5. Cambridge, MA, USA: MIT Press, no. 1, pp. 73–78, 1992.
- [14] J. Kennedy and R. C. Eberhart, "A discrete binary version of the particle swarm algorithm," in 1997 IEEE Int. Conf. on Systems, Man, and Cybernetics. Computational Cybernetics and Simulation, Orlando, FL, USA, vol. 5, pp. 4104–4108, 1997.
- [15] D. Karaboga and B. Basturk, "A powerful and efficient algorithm for numerical function optimization: Artificial bee colony (ABC) algorithm," *Journal of Global Optimization*, vol. 39, no. 3, pp. 459–471, 2007.
- [16] X. S. Yang and S. Deb, "Cuckoo search via lévy flights," in 2009 World Congress on Nature & Biologically Inspired Computing (NaBIC), Coimbatore, India, pp. 210–214, 2009.
- [17] A. Seyyedabbasi and F. Kiani, "Sand cat swarm optimization: A nature-inspired algorithm to solve global optimization problems," *Engineering with Computers*, pp. 1–25, 2022.
- [18] F. Glover, "Tabu search—Part I," ORSA Journal on Computing, vol. 1, no. 3, pp. 190–206, 1989.
- [19] Z. Feng, W. Niu and S. Liu, "Cooperation search algorithm: A novel metaheuristic evolutionary intelligence algorithm for numerical optimization and engineering optimization problems," *Applied Soft Computing*, vol. 98, pp. 106734, 2021.
- [20] Y. Shi, "Brain storm optimization algorithm," in *Int. Conf. in Swarm Intelligence*, Chongqing, China, pp. 303–309, 2011.
- [21] Q. Askari, M. Saeed and I. Younas, "Heap-based optimizer inspired by corporate rank hierarchy for global optimization," *Expert Systems with Applications*, vol. 161, pp. 113702, 2020.
- [22] T. S. Ayyarao, N. S. Ramakrishna, R. M. Elavarasan, N. Polumahanthi, M. Rambabu *et al.*, "War strategy optimization algorithm: A new effective metaheuristic algorithm for global optimization," *IEEE Access*, vol. 10, pp. 25073–25105, 2022.
- [23] E. Rashedi, H. Nezamabadi-Pour and S. Saryazdi, "GSA: A gravitational search algorithm," *Information Sciences*, vol. 179, no. 13, pp. 2232–2248, 2009.
- [24] O. K. Erol and I. Eksin, "A new optimization method: Big bang-big crunch," *Advances in Engineering Software*, vol. 37, no. 2, pp. 106–111, 2006.
- [25] Ş. İ. Birbil and S. C. Fang, "An electromagnetism-like mechanism for global optimization," *Journal of Global Optimization*, vol. 25, no. 3, pp. 263–282, 2003.
- [26] S. Mirjalili, "SCA: A sine cosine algorithm for solving optimization problems," *Knowledge-Based Systems*, vol. 96, pp. 120–133, 2016.
- [27] J. A. Koupaei, S. M. M. Hosseini and F. M. Ghaini, "A new optimization algorithm based on chaotic maps and golden section search method," *Engineering Applications of Artificial Intelligence*, vol. 50, pp. 201–214, 2016.
- [28] L. Abualigah, A. Diabat, S. Mirjalili, M. Abd Elaziz and A. H. Gandomi, "The arithmetic optimization algorithm," *Computer Methods in Applied Mechanics and Engineering*, vol. 376, pp. 113609, 2021.
- [29] N. Chopra and M. M. Ansari, "Golden jackal optimization: A novel nature-inspired optimizer for engineering applications," *Expert Systems with Applications*, vol. 198, pp. 116924, 2022.

- [30] Y. Zhang, Z. Jin and S. Mirjalili, "Generalized normal distribution optimization and its applications in parameter extraction of photovoltaic models," *Energy Conversion and Management*, vol. 224, pp. 113301, 2020.
- [31] I. A. Ibrahim, M. Hossain and B. C. Duck, "A hybrid wind driven-based fruit fly optimization algorithm for identifying the parameters of a double-diode photovoltaic cell model considering degradation effects," *Sustainable Energy Technologies and Assessments*, vol. 50, pp. 101685, 2022.
- [32] J. Tang, X. Chen, X. Zhu and F. Zhu, "Dynamic reallocation model of multiple unmanned aerial vehicle tasks in emergent adjustment scenarios," *IEEE Transactions on Aerospace and Electronic Systems*, vol. 59, no. 2, pp. 1139–1155, 2023.
- [33] Z. Tian, "Backtracking search optimization algorithm-based least square support vector machine and its applications," *Engineering Applications of Artificial Intelligence*, vol. 94, pp. 103801, 2020.
- [34] A. R. Jordehi, "Binary particle swarm optimisation with quadratic transfer function: A new binary optimization algorithm for optimal scheduling of appliances in smart homes," *Applied Soft Computing*, vol. 78, pp. 465–480, 2019.
- [35] M. H. Nadimi-Shahraki, H. Zamani and S. Mirjalili, "Enhanced whale optimization algorithm for medical feature selection: A COVID-19 case study," *Computers in Biology and Medicine*, vol. 148, pp. 105858, 2022.
- [36] S. Salcedo-Sanz, "Modern meta-heuristics based on nonlinear physics processes: A review of models and design procedures," *Physics Reports*, vol. 655, pp. 1–70, 2016.
- [37] D. H. Wolpert and W. G. Macready, "No free lunch theorems for optimization," *IEEE Transactions on Evolutionary Computation*, vol. 1, no. 1, pp. 67–82, 1997.
- [38] A. K. Qin, V. L. Huang and P. N. Suganthan, "Differential evolution algorithm with strategy adaptation for global numerical optimization," *IEEE Transactions on Evolutionary Computation*, vol. 13, no. 2, pp. 398–417, 2008.
- [39] Q. Pan, J. Tang, H. Wang, H. Li, X. Chen *et al.*, "SFSADE: An improved self-adaptive differential evolution algorithm with a shuffled frog-leaping strategy," *Artificial Intelligence Review*, vol. 55, no. 5, pp. 3937–3978, 2021.
- [40] W. Gong, A. Zhou and Z. Cai, "A Multi-operator search strategy based on cheap surrogate models for evolutionary optimization," *IEEE Transactions on Evolutionary Computation*, vol. 19, no. 5, pp. 746–758, 2015.
- [41] M. Z. Ali, N. H. Awad and P. N. Suganthan, "Multi-population differential evolution with balanced ensemble of mutation strategies for large-scale global optimization," *Applied Soft Computing*, vol. 33, pp. 304–327, 2015.
- [42] H. Rakhshani and A. Rahati, "Intelligent multiple search strategy cuckoo algorithm for numerical and engineering optimization problems," *Arabian Journal for Science and Engineering*, vol. 42, no. 2, pp. 567– 593, 2017.
- [43] C. Li, S. Yang and T. T. Nguyen, "A self-learning particle swarm optimizer for global optimization problems," *IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics)*, vol. 42, no. 3, pp. 627–646, 2011.
- [44] N. Lynn and P. N. Suganthan, "Ensemble particle swarm optimizer," *Applied Soft Computing*, vol. 55, pp. 533–548, 2017.
- [45] S. X. Zhang, S. Y. Zheng and L. M. Zheng, "An efficient multiple variants coordination framework for differential evolution," *IEEE Transactions on Cybernetics*, vol. 47, no. 9, pp. 2780–2793, 2017.
- [46] S. Thangavelu and C. S. Velayutham, "An investigation on mixing heterogeneous differential evolution variants in a distributed framework," *International Journal of Bio-Inspired Computation*, vol. 7, no. 5, pp. 307–320, 2015.
- [47] G. Wu, X. Shen, H. Li, H. Chen, A. Lin *et al.*, "Ensemble of differential evolution variants," *Information Sciences*, vol. 423, pp. 172–186, 2018.
- [48] S. M. Elsayed, R. A. Sarker and E. Mezura-Montes, "Self-adaptive mix of particle swarm methodologies for constrained optimization," *Information Sciences*, vol. 277, pp. 216–233, 2014.

- [49] J. A. Vrugt, B. A. Robinson and J. M. Hyman, "Self-adaptive multimethod search for global optimization in real-parameter spaces," *IEEE Transactions on Evolutionary Computation*, vol. 13, no. 2, pp. 243–259, 2008.
- [50] Y. Xue, S. Zhong, Y. Zhuang and B. Xu, "An ensemble algorithm with self-adaptive learning techniques for high-dimensional numerical optimization," *Applied Mathematics and Computation*, vol. 231, pp. 329–346, 2014.
- [51] S. M. Elsayed, R. A. Sarker and D. L. Essam, "Adaptive configuration of evolutionary algorithms for constrained optimization," *Applied Mathematics and Computation*, vol. 222, pp. 680–711, 2013.
- [52] X. Yao, Y. Liu and G. Lin, "Evolutionary programming made faster," *IEEE Transactions on Evolutionary Computation*, vol. 3, no. 2, pp. 82–102, 1999.
- [53] G. Wu, R. Mallipeddi and P. N. Suganthan, "Problem definitions and evaluation criteria for the CEC 2017 competition on constrained real-parameter optimization," *Technical Report*, 2017. [Online]. Available: https://www.researchgate.net/publication/317228117_Problem_Definitions_and_Evaluation_Criteria_for_ the_CEC_2017_Competition_and_Special_Session_on_Constrained_Single_Objective_Real-Parameter_ Optimization
- [54] A. A. Heidari, S. Mirjalili, H. Faris, I. Aljarah, M. Mafarja *et al.*, "Harris hawks optimization: Algorithm and applications," *Future Generation Computer Systems*, vol. 97, pp. 849–872, 2019.
- [55] G. Dhiman and V. Kumar, "Seagull optimization algorithm: Theory and its applications for large-scale industrial engineering problems," *Knowledge-Based Systems*, vol. 165, pp. 169–196, 2019.
- [56] S. Li, H. Chen, M. Wang, A. A. Heidari and S. Mirjalili, "Slime mold algorithm: A new method for stochastic optimization," *Future Generation Computer Systems*, vol. 111, pp. 300–323, 2020.
- [57] S. Mirjalili, A. H. Gandomi, S. Z. Mirjalili, S. Saremi, H. Faris et al., "Salp swarm algorithm: A bio-inspired optimizer for engineering design problems," Advances in Engineering Software, vol. 114, pp. 163–191, 2017.
- [58] W. Zhao, Z. Zhang and L. Wang, "Manta ray foraging optimization: An effective bio-inspired optimizer for engineering applications," *Engineering Applications of Artificial Intelligence*, vol. 87, pp. 103300, 2020.
- [59] E. Sandgren, "Nonlinear integer and discrete programming in mechanical design," in *Int. Design Engineer-ing Technical Conf. and Computers and Information in Engineering Conf.*, Kissimmee, FL, USA, vol. 26584, pp. 95–105, 1988.
- [60] H. Nowacki, "Optimization in pre-contract ship design," in *Int. Conf. on Computer Applications in the Automation of Shipyard Operation and Ship Design*, Tokyo, Japan, pp. 1–12, 1973.