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ABSTRACT

Cloud computing and edge computing brought more software, which also brought a new danger of malicious
software attacks. Data synchronization mechanisms of software can further help reverse data modifications. Based
on the mechanisms, attackers can cover themselves behind the network and modify data undetected. Related
knowledge of software reverse engineering can be organized as rules to accelerate the attacks, when attackers
intrude cloud server to access the source or binary codes. Therefore, we proposed a novel method to resist this
kind of reverse engineering by breaking these rules. Our method is based on software obfuscations and encryptions
to enhance the security of distributed software and cloud services in the 5G era. Our method is capable of (1)
replacing the original assembly codes of the protected program with equivalent assembly instructions in an iteration
way, (2) obfuscating the control flow of the protected program to confuse attackers meanwhile keeps the program
producing the same outputs, (3) encrypting data to confuse attackers. In addition, the approach can periodically
and automatically modify the protected software binary codes, and the binary codes of the protected software are
encrypted to resist static analysis and dynamic analysis. Furthermore, a simplified virtual machine is implemented
to make the protected codes unreadable to attackers. Cloud game is one of the specific scenarios which needs low
latency and strong data consistency. Cheat engine, Ollydbg, and Interactive Disassembler Professional (IDA) are
used prevalently for games. Our improved methods can protect the software from the most vulnerable aspects.
The improved dynamic code swapping and the simplified virtual machine technologies for cloud games are the
main innovations. We inductively learned that our methods have been working well according to the security
mechanisms and time complexity analysis. Experiments show that hidden dangers can be eliminated with efficient
methods: Execution time and file sizes of the target codes can be multiple times than that of the original program
codes which depend on specific program functions.
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1 Introduction

The technologies of cloud computing, edge computing, and 5G have been becoming mature
and bringing more software, which also brings a new danger of malicious software attacks. Data
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synchronization mechanisms of software can further help reverse data modifications. Based on the
mechanisms, attackers can cover themselves behind the network and modify data undetected. Related
knowledge of software reverse engineering can be organized as rules to accelerate the attacks when
attackers intrude cloud server to access the source or binary codes. It is a specific scenario that needs
specific methods to protect software. Cloud game is one of the specific scenarios which needs low
latency and strong data consistency. Cheat engine, Ollydbg, and IDA are used prevalently for games
that are even protected by some security mechanisms. There are multiple ways to obtain sensitive data
or target codes, leading to single protection failure in most cases. How to hinder attackers to bypass
protection methods are complex.

Though software encryptions and decryptions can be used for hiding data, they are computation-
ally heavy for some distributed software (especially game) protections, thus few of them are applicable.
In contrast, software obfuscations and tamper-proofs are the most common techniques. To protect
software, software obfuscations aim at removing useful information. However, only protecting codes
is not enough because data attacks account for at least half of the total attacks. Data obfuscations are
used to hide the values of program variables. Some researchers did not consider game environments,
thus they lack efficiency compatible with gameplay. Some researchers used deep learning to enhance
software security. However, they only focus single aspect to protect software security. Our proposed
framework filled the above gaps by considering multiple protection ways to protect both game data
and codes.

We proposed corresponding methods to resist this kind of reverse engineering by breaking these
rules. Our countermeasures are based on software obfuscations and encryptions to enhance the
security of distributed software and cloud services. To protect the software from the most vulnerable
aspects, the improved dynamic code swapping and the simplified virtual machine technologies are our
features because no researcher used them in cloud games. We inductively learned that our methods
have been working well by security mechanisms and time complexity analysis. Improved dynamic code
swapping and simplified virtual machine technologies are easy to implement, by which readers can
design their sensitive functions. Technical details and main codes are shown in our methods, by which
readers can effortlessly implement them in any programming language. How to break the knowledge of
attackers to resist reverse data manipulations in distributed software? There are challenges for current
work in reality:

1. Attackers have enough software reverse tools for binary source codes. Recent commercial and
free software reverse tools are powerful but not smart enough, because a deep learning system
can hardly fulfill tasks of reverse engineering without human knowledge [1]. However, they
still save much time and effort for attackers.

2. Attackers have enough theoretical knowledge about software reverse engineering for non-
obfuscated original binary source codes. We assume they at least have basic theories as the
paper [2] presented.

To tackle the above challenges, we proposed a novel Self-Modified Encrypted Obfuscation
approach called SMEO to protect the software and games. The main contributions of this paper are
shown as follows:

1. Hidden dangers of distributed software, especially games, are revealed. Detailed countermea-
sures for reverse data modifications are illustrated: Our overall idea to avoid reverse data
modifications is that reversely do the reverse things.
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2. A novel obfuscation approach (SMEO) is proposed. The approach can periodically and
automatically modify the protected software binary codes, and the protected software binary
codes are always encrypted to resist static analysis and dynamic analysis. Furthermore, a
simplified virtual machine is implemented to make the protected codes unreadable. Especially,
SMEO is efficient for computer games.

This paper is organized as the followings: Section 2 discussed software analysis, obfuscations,
encryption, and tamper-proof. A protection methodology against reverse data modifications was
proposed in Section 3, which includes data encryptions, static and dynamic obfuscations, and tamper-
proof methods. Section 4 showed the experiment results and proved that our method is applicable
according to the evaluations of parameters of computer performance.

2 Related Work

Related research includes obfuscations, tamper-proofs, encryptions, and decryptions. Though
software encryptions and decryptions can be used for hiding data, they are computationally heavy for
some distributed software (especially game) protections, thus few of them are applicable. In contrast,
software obfuscations and tamper-proofs are the most common techniques.

To protect software, software obfuscations aim at removing useful information. Foket et al. [3]
proposed to combine five transformations that obfuscate the type hierarchy of Java applications and
eliminate much of the type information. Albrecht et al. [4] provided constructions of multilinear
groups equipped with natural hard problems from indistinguishability obfuscation, and homomorphic
encryption. Utilizing indistinguishability obfuscation, a multi-hop unidirectional proxy re-encryption
scheme against chosen-ciphertext attacks (CCA) is proposed [5]. Dachman-Soled et al. [6] proposed a
modular approach based on program obfuscation and presented a compiler. However, only protecting
codes is not enough because data attacks account for at least half of the total attacks.

Data obfuscations are used to conceal the actual values of program variables. An extension of
XOR-Masking is presented [7] where the mask is an opaque constant. An obfuscation approach
is proposed [8] by look-up tables as reconfigurable logic to replace the carefully selected gates. A
low-cost functional obfuscation methodology is proposed [9] through the employment of a robust
Intellectual property locking technique. Zhang et al. [10] proposed an obfuscation scheme achieved
through varying finite field constructions and primitive element representations. A set of quantitatively
evaluable metrics are proposed [11], and Olney et al. [12] proposed a tunable obfuscation approach
from typical bitstream attacks while enabling designers to trade off security with acceptable overhead.

Some researchers considered location-based obfuscation: A framework with geo-obfuscation is
proposed [13] to protect users’ locations during task assignments; A Proactive Topology Obfuscation
(ProTO) system that adopts a detect-then-obfuscate framework is proposed [14]; A location obfusca-
tion method [15] is proposed which is robust to privacy inferences by the service provider regarding
route source and destination.

Traditional cryptographic primitives for data integrity protection cannot be directly used because
they cannot ensure security in the case of collusion between the cloud server and the local host [16].
Sutton et al. [17] proposed a Linked Data-based method to create tamper-proof audit logs. Fully
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homomorphic encryption allows computations on encrypted data without the need for decryption
and it provides privacy in various applications [18].

Zhao et al. [19] used a deep neural network and semantic information of the disassembled binary
to predict if the program has been obfuscated. Bui et al. [20] introduced a deep network architecture to
compute temporal content hashes (TCHs) from audio-visual streams. TCHs are sensitive to accidental
or malicious content modification (tampering). Shayan et al. [21] introduced the use of a dummy
valve as a security primitive to obfuscate bioassay implementations and presented design rules and
security metrics to design and measure obfuscation. By investigating UI obfuscation, Zhou et al. [22]
pointed out the weaknesses in existing automated UI analysis methods and designed 9 UI obfuscation
approaches. An algorithm for reversible data hiding is proposed [23], which is further work for the
paper [24]. A code division multiplexing (CDM) algorithm-based reversible data hiding (RDH) scheme
is presented [24].

3 Consolidate Distributed Software by SMEO

Cheat engine, Ollydbg, and IDA are used prevalently for games that are even protected by some
security mechanisms. There are multiple ways to obtain sensitive data or target codes, leading to single
protection failure in most cases. How to hinder attackers to bypass protection methods are complex.
Therefore, we proposed several methods, especially for games. Improved dynamic code swapping and
simplified virtual machine technologies are our features, by which readers can design their sensitive
functions. Technical details and main codes are shown in our methods, by which readers can effortlessly
implement them in any programming language. Several methods are proposed in this section to confuse
attackers and prevent data reverse modifications.

3.1 Data Homomorphism Encrypt Method

Software data should be encrypted to confuse attackers, but the balance between computation
performances and security levels needs to be considered, especially in games. RSA (stands for Ron
Rivest, Adi Shamir and Leonard Adleman) algorithm only supports multiplication homomorphism,
while the Paillier algorithm is a heavy homomorphism encryption method that supports both multi-
plication homomorphism and addition homomorphism. In most cases, the theory of finite field gives
help, but finite field Galois (28) with the modular operation of polynomials is heavy too. Following
lightweight homomorphism encryption formulas are suitable for integer encryption in games, which
is used by SMEO.⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Encrypt (plain) = cipher = randoms × N + plain
Decrypt (cipher) = plain = cipher% N
Add (cipher1, cipher2) = cipher1 + cipher2
Mul (cipher2, cipher2) = cipher1 × cipher2

(1)

Variables (plain and cipher) are integers. N is a multiplication of two neighbor prime numbers,
and randoms are different values in different clients to further confuse attackers, which can be used
for hidden data.
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Data sequence should be reconstructed by folding (increasing the dimension of the array),
unfolding (decreasing the dimension of the array), or other identity transformations. The identity
transformations are based on the theory of the primitive root of a prime integer. If r is a primitive
root of a prime integer p, then sequence {r% p, r1% p, r2% p, r3% p, . . . , rp−1% p} is a substitution of
sequence {1, 2, 3, . . . ,}. Another lightweight homomorphism function can be used to rearrange a data
sequence:

homo (index) = (index × M) % N (2)

N is the length of the data sequence, and M is a relative prime number to N. For example, N = 5
and M = 3:{

index : 0, 1, 2, 3, 4
data : 1, 2, 3, 4, 5

}
homo (index)−→

{
index : 0, 1, 2, 3, 4
data : 1, 4, 2, 5, 3

}
(3)

3.2 Static Obfuscation Method

Static obfuscation can be used against static analysis. For example, SMEO uses variables A, B, C,
D, E, F, i, and ii to simplify a program where irrelevant variables are removed and substituted:

Example
class CombatUnit: GameObject

void Serialize (Stream & stream)
// local variables A,B,C,D,E,F,i,ii
A = B // auto& vars = dataType- > GetVars()
while i < 20 // foreach i in vars.size()

if ii ! = 0 // if ((1 < < i) & vars_BitField) ! = 0
E = C + D // void ∗ data = this + var.offset
switch F // switch var.primitiveType

case 0: //case P_int:
function() // stream.Serialize(∗(int∗)data)

case 1: //case P_float:
function() // stream.Serialize(∗(float ∗)data)

i++

Next, SMEO obfuscates the control flow of the above program to confuse attackers meanwhile
keeps the program producing the same outputs.

Protection Program in SMEO: Obfuscate the Control Flow
Partial class CombatUnit: GameObject
int roller[] = {2,3,5,7,11}
int n = roller.size
int ∗ alias1, alias2 = &n
void Serialize (Stream & stream)

// local variables A,B,C,D,E,F,i,ii
int next, rot = 0

(Continued)
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Protection Program in SMEO: Obfuscate the Control Flow (continued)
bool run = true
while(run)

switch (next)
case 0: A = B; next = roller[(0 + rot)%n] − 1 = 1; break;
case 1: if (i < 20) next = 2; else run = false; break;
case 2: if (ii ! = 0) next = ∗alias1-2 = 3; else next = 7; break;
case 3: E = C + D; next = roller[(3 + rot)%n]-roller[(1 + rot)%n] = 4;break;
case 4: if (F = = 0) next = 5; else next = ∗alias1 + 1 = 6; break;
case 5: function(); next = roller[(roller[(1 + rot)%n] + rot)%n] = 7;break;
case 6: if (F = = 1) next = 5; else next = 7; break;
case 7: x = a random positive integer; G = x∗(x + 1)% 2;

if (G) next = 2; else next = 9; break;
case 8: x = a random positive integer; P = a prime number;

G = pow(x, P − 1)% P; if (G) next = 9; else next = 4; break;
case 9: i++; next = 1; break;
case 10: ∗alias1 = 3; ∗alias2 = 6; next = roller[(3 + rot)%n]∗2; break;

Rotation ()
rot = (rot + 1)% roller.size

void Rotation ()
int tmp = roller[n − 1]
for (i = n – 2; i > = 0; i–)

roller[i + 1] = roller[i]
roller[0] = tmp

To confuse attackers, opaque predicates are used in case 7 and case 8, where it is inevitable that
next = 9. The reasons are that an odd number multiplied by an even number produces an even number
in case 7; the Fermat theorem is used in case 8. In addition, redundant case 10 is inserted which will
never be executed in any case. To increase dynamic data, function Rotation() is used to move each
element in the roller to the right, meanwhile “rot” is used to keep the “next” calculation not changed.
Alias analysis often consumes attackers lots of time, thus alias should be used in the control flow.

If obfuscation occurs in assembly codes, the following target instructions in Table 1 can be
replaced by equivalent instructions in an iteration way. For the example of “push eax”, the game
developers can use semantic style 2.3 to replace it, then replace sub esp, 4 with semantic style 1.

Table 1: Equivalent instructions

Semantic style Semantic Target instructions Equivalent instructions

1 Change esp by sub esp, 4 push register
subtraction mov register, esp

xchg [esp], register
pop esp

2 Push the value of a push register push 0x0

(Continued)
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Table 1 (continued)

Semantic style Semantic Target instructions Equivalent instructions

register to the stack mov [esp], register
lea esp, [esp-4]
mov [esp], register
sub esp, 4
mov [esp], register

3 Move an immediate mov register, 0xD 0x0: call 0x05
number to a register 0x05: pop register

0x06: xor register, 0x08
4 Jump to a jmp 0x66 push 0x66

memory address Ret
0x00: call 0x66
0x05: interference codes or
data
. . .

0x66: add esp, 4
0x00: call function
0x05: interference codes or
data
. . .

0x66: nop
function: add [esp], 0x61
function+n: ret

Example Push the value of eax to push eax push eax
the stack mov eax, esp

xchg [esp], eax
pop esp
mov [esp], eax

3.3 Dynamic Obfuscation Method

Return-Oriented Programming (ROP) can be used to change control flow. Sometimes disassembly
codes cannot be parsed correctly by linear scanning of machine codes when data and instructions are
mixed. Therefore, recursive methods are used to parse machine codes into assembly codes. However,
return addresses of functions in the stack can be modified in runtime (e.g., inc dword ptr [esp+n]),
leading to failures of static analysis, which are called self-modifying codes. This kind of technique can
also be applied to anti-cheat modules. We used dynamic obfuscation and self-modification to destroy
the prior knowledge of attackers that:

(1) Program instructions must locate in the same Relative Virtual Address (RVA).
(2) There is no data block in code segments.

We proposed a dynamic obfuscation method combined with a simplified virtual machine. The
dynamic obfuscation method can modify instruction addresses and encrypt code blocks. The rationale
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of the dynamic obfuscation method is that 3 xors can replace the position of two objects (A, B).
Furthermore, 6 xors can restore the position of the two objects (A, B):
A
B↓⊕ ⇒ A

A⊕B↑⊕ ⇒ A⊕A⊕B
A⊕B ↓⊕ ⇒ B

A↑⊕ ⇒ B⊕A
A ↓⊕ ⇒ B⊕A

B ↑⊕ ⇒ A
B (4)

Fig. 1 shows the process of our dynamic obfuscation. Space 0–5 are memory address spaces that
store code blocks. Only one space stores plain code blocks and other spaces store mutation code blocks
at any time. Furthermore, the code blocks are executed in a linear sequence, but not in linear address
space to destroy the expectation of attackers. Fig. 1 shows space travel if a program contains code
blocks A, B, C, D, E, and F, which should be executed in order. A mutant code block (M0, M1, M2,
M3, M4, and M5) is either a plain code block or a mutation code block. Codes in the plain code
block must be readable and executable by a CPU, while codes in the mutation code blocks must be
unreadable to attackers.

In the first step, M0 in space 0 must be readable and executable by the CPU, thus M0 is code
block A. Meanwhile, Space 1, Space 2, Space 3, Space 4, and Space 5 should store the mutation code
blocks, which means M1, M2, M3, M4, and M5 should be the mutation code blocks. In step 1.2, each
mutation code block in the lower part (M3, M4, M5) is xor by each mutation code block in the upper
part (M0, M1, M2).

In the second step, M0 ⊕ M3 in Space 3 must be readable and executable by the CPU, thus
M0 ⊕ M3 is code block B. Meanwhile, Space 0, Space 1, Space 2, Space 4, and Space 5 should store
the mutation code blocks. In step 2.2, each mutation code block in the upper part (M0, M1, M2) is
xor by each mutation code block in the lower part (M0 ⊕ M3, M1 ⊕ M4, M2 ⊕ M5).

In the third step, M4 in space 1 must be readable and executable by the CPU, thus M4 is code
block C. Meanwhile, Space 0, Space 2, Space 3, Space 4, and Space 5 should store the mutation code
blocks. In step 3.2, each mutation code block in the lower part (M0 ⊕ M3, M1 ⊕ M4, M2 ⊕ M5) is xor
by each mutation code block in the upper part (M3, M4, M5).

Likewise, code blocks D, E, and F are executed in a crossed order, and the program is executed one
time until F is finished. Therefore, one execution is a circle containing 6 steps. The following equations
reveal a map of the code blocks and the mutation code blocks.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

M0 = A
M0 ⊕ M3 = B
M4 = C
M1 = D
M2 ⊕ M5 = E
M5 = F

⇒

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

M0 = A
M1 = D
M2 = E ⊕ F
M3 = A ⊕ B
M4 = C
M5 = F

(5)
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Figure 1: Dynamic obfuscation with encryptions

The following program shows how SMEO encrypts the code blocks and changes the memory
addresses of the code blocks.

Protection Program in SMEO: Self Modification
void xor (int source_addr, int dest_addr, int len, int key)

for (i = 0; i < len; i++)
∗dest_addr ∧ = ∗source_addr
∗dest_addr ∧ = key
dest_addr++

(Continued)
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Protection Program in SMEO: Self Modification (continued)
source_addr++

void swap_code (int source_addr, int dest_addr, int len)
for (i = 0; i < len; i++)

int t = ∗source_addr
∗source_addr = ∗dest_addr
∗dest_addr = t

According to the above equations, the program is stored in the memory address in the order of A,
D, E ⊕ F, A ⊕ B, C, and F. However, it is still obvious that code blocks A, D, C, and F are exposed to
attackers. Therefore, the green key in Fig. 1 is used for xor with any exposed code block, so that only
one code block is exposed at one time. In practice, any plain code block will be xor with k in each step
x.1. Notice that the result of 0 xors with arbitrary codes will change nothing. Right now the exposed
plain code block is Achilles’ heel, thus the following simplified virtual machine can be used for boots.

Protection Program in SMEO: Virtual Machine
Partial class CombatUnit: GameObject

void Serialize (Stream & stream) {
int stack [20], stack_pointer = 0;
void ∗ prologue[] = {
//A = B
&&pushl, &A, &&pushr, &B, &&store,
// if (i < 20)
&&if_i_less_20,

// if ii ! = 0
&&if_ii_ne_0, &prologue [17]

//E = C + D
&&pushl, &E, &&pushr, &C, &&pushr, &D, &&add, &&store,
//switch F
&&if_F_e_0_1,

//case 0:
// function()

//case 1:
//function()

//i++
&&inc_i,
&&jump, &prologue [0]

};
void ∗∗ prog_counter = (void∗∗) & prologue;
goto ∗∗ prog_counter++;
if_i_less_20: if (i < 20) goto ∗∗ prog_counter ++; else return;
if_ii_ne_0: if (ii ! = 0) prog_counter ++; else prog_counter = ∗ prog_counter ;

goto ∗∗ prog_counter ++;
if_F_e_0_1: if (F = = 0 || F = = 1) function(); goto ∗∗ prog_counter ++;
pushl: stack[stack_pointer ++] = (int) ∗ prog_counter;

prog_counter ++; goto ∗∗ prog_counter ++;
(Continued)
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Protection Program in SMEO: Virtual Machine (continued)
pushr: stack[stack_pointer ++] = ∗ (int∗) ∗ prog_counter;

prog_counter ++; goto ∗∗ prog_counter ++;
store: stack[stack_pointer ++] = ∗ ((int∗) stack[stack_pointer-2])= stack[stack_

pointer −1];
stack_pointer-=2; goto ∗∗ prog_counter ++;

inc_i: i++; goto ∗∗prog_counter++;
add: stack[stack_pointer-2] + = stack[stack_pointer-1]; stack_pointer–;

goto ∗∗ prog_counter ++;
jump: prog_counter = ∗ prog_counter ; goto ∗∗ prog_counter ++;

}

A data stack is built for math operations, and data can be retrieved by a stack_pointer. In addition,
a program instruction counter of the virtual machine is simulated by prog_counter.

3.4 Tamper Proofing Method

Attackers can do bad things even without recompiling the software that is written in Python
once the attackers intrude cloud servers. The second wall against attackers is tamper-proofing. The
differences between obfuscation and tamper-proofing are that tamper-proofing assumes attackers
have broken through the obfuscation, and they are modifying the program codes. Check summing
and program-monitor are most frequently used for tamper proofing.

A monitor program can detect malicious modifications to an original program, but can we design
a monitor program that can detect malicious modifications to itself? A complete self-monitor program
is related to a Russell paradox or a halting problem, thus we use a protection net as Fig. 2 shows.

Restore1 Monitor1 Monitor2

Restore2 Send Recv Restore3

Monitor4

Serialize

CreateObject
Monitor3

Invoked Restore4

Figure 2: Protection net

This protection net of SMEO can protect program codes, where dot lines are invocation relations.
Monitor programs (e.g., Monitor1) are used to detect malicious modifications to original program
functions (e.g., Send), and restore programs (e.g., Restore1) are used to restore tampered functions to
the original functions. If two monitor programs are used to monitor each other, the following program
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should be used. Therefore, the Russell paradox is avoided by skipping the address of “compare_hash”.

Protection Program in SMEO: Self Monitor
int Integrity (int address_start, int address_end, int odd)

int hash = 0
while address_start < = address_end

if address_start = = address_compare_hash
continue

hash = odd ∗ (∗address_start + hash)
address_start ++

return hash
int SelfMonitor (int address_start, int address_end, int odd)

if Integrity(address_start, address_end, odd) ! = hash_value
Restore (address_start, address_end)
return 0

3.5 Bypassing Injection Prevention Mechanism and Countermeasures in Practice

Attackers can easily inject their DLLs (Dynamic Link Library) into software processes if the soft-
ware has not or has weak prevention mechanisms to protect the integrity. For example, the software can
hook function NtOpenFile in ntdll.dll to detect DLL injection. However, anti-load library protections
can be bypassed by restoring several bytes of the original NtOpenFile, which is a “jmp” instruction. In
addition to LoadLibrary detection, thread creation detections can be used. For example, we can use
DLL_THREAD_ATTACH in DllMain to call the function NtQueryInformationThread in ntdll.dll
to get the start address of the newly created thread. Therefore, several bytes should be patched with
the instruction “jmp” to skip thread creation detection.

In addition, some anti-reverse engineering methods can be used to enhance prevention mecha-
nisms at the system level. Game developers can use anti-debug methods to protect important codes
and data. The current privilege of the CPU can be changed by instructions “int 3” (ring 3 to ring
0) and “iret” (ring 0 to ring 3). For anti-debug, game developers can insert the instruction “int 3”
into programs and put important codes in exception functions to avoid execution when the programs
are being debugged because “int 3” will be considered a breakpoint by a debugger. In addition,
“debugging” and “NtGlobalFlags” in PEB (Process Environment Block) indicate the game programs
are being debugged.

4 Experiments
4.1 Evaluations

We developed three games to evaluate and analyze the performances of the protection methods.
Two computers with 2.5 GHZ intel i7 CPU and 16 G Memory, are used for experiments and
evaluations. The results of our obfuscation and tamper-proof methods are shown, which assures
high-level security and high-speed computations (xor operations) because xor operations are fast in
encryption methods.
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What is changed for software with and without protections? There are two factors changed, which
are file sizes and process execution time. Table 2 shows the comparison of file sizes with and without
protection.

Table 2: File size

Protected software Without protection (MB) With protection (MB)

game1 26 47
game2 135 313
game3 412 967

SMEO expands the file sizes of the protected software by changing assembly codes and patching
functions, based on static obfuscations. In practice, a smaller file size means that fewer codes are
executed and less time is consumed. In contrast, a larger file size is easier to confuse attackers, but it
may affect game performance. Therefore, game security experts need to have a good balance. Table 3
shows the comparison of execution time with and without protection.

Table 3: Execution time of the target codes

Protected software Without protection (microsecond) With protection (microsecond)

game1 0.6 121
game2 2.3 269
game3 6.2 818

Target codes are core codes that need to be hidden or protected. How to choose target codes is
another technique. SMEO increases the execution time of protected software by dynamic obfuscation
and self-monitor. Increment in the execution time of the target codes sometimes affects game
performance but does not decrease players’ game experiences.

How do the actions of game players affect game performances in scenarios with and without
protections? Different player actions and different protected code blocks affect the computation
performances, which will be comprehensively analyzed for different kinds (Massively Multiplayer
Online, Simulations, Adventure, Real-Time Strategy, First Person Shooters, Sports, and Role-Playing)
of computer games to help game developers validate performances in various online games.

4.2 Time Complexity

The time complexity of our methods is discussed comprehensively. The inputs of data encryption
methods are program variables, and the inputs of code encryption methods are program codes. The
time complexity of the Data Homomorphism Encrypt Method depends on the number of target
variables in the protected program, while the data encryption operation does not depend on the number
of target variables, thus the total cost is O(n), meaning that time increases linearly when the number
of target variables increases n times. The time complexity of the Static Obfuscation Method depends
on the number of target codes for the function in the protected program, which (1) manipulates the
control flow; (2) expands the machine codes. The first part depends on the target function and the
roller size. Its principle is a specific-designed rearrange, thus it is O(n). The second part depends on the
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epochs (suppose m, which fortunately can be set by program developers) of instruction substitutions
from Table 1, thus it is O(nm). The time complexity of the Dynamic Obfuscation Method depends on
the number of target codes for the function in the protected program, which manipulates the control
flow. The main loop of Self Modification is six iterations for code blocks and O(n) for swapping codes
in each iteration, thus it is O(n). The time complexity of the Virtual Machine depends on the target
function and its principle is instruction expansion. The increased time can be ignored when the number
of target codes increases n times in most cases, thus it is O(1).

4.3 Discussions

In most cases, attackers just manipulate high-level data, and no need to destroy the integrity
of network data synchronization. Especially, online multi-player games are the distributed software
systems, thus problems of data synchronization are considered like ordinary distributed software
systems. Game data synchronization maintains the consistency and uniformity of game data across
all player clients and game servers. When one client modifies data by the game operations of a player,
other clients or game servers (if P2P is not used) must be notified of the changes. The process of
data synchronization also can be exploited by reverse engineering of network protocol of distributed
software systems. Taint analysis can be used to mark instructions and data to obtain repeating patterns
for partitioning message fields of a network protocol. Furthermore, a protocol state machine can be
revealed by a sufficient quantity of successive messages, once message fields and message types are
identified.

Knowing whether Transmission Control Protocol (TCP) or User Datagram Protocol (UDP)
or modified transport protocols (e.g., sequential-assurance UDP) that software used is the priority
of attackers. TCP keeps software data synchronization reliable because it uses flow control and
congestion control and keeps packets arrival in order. To reduce send times, most TCP programs use
Nagle’s algorithm, which accumulates data until it reaches Maximum Segment Size (MSS) size (1460
bytes) instead of sending small data immediately and frequently. This advantage in general software
just needs to be disabled for game synchronization that is pursuing real-time. In the contrast, UDP
provides unreliable connections for software data synchronization. Hence, some programs implement
reliable UDP for data synchronization. In addition, TCP hole punching or Simple Traversal of UDP
through NAT (STUN) is used to access computers inside Network Address Translation (NAT). Some
software platforms only allow clients to send packets by IDs instead of IP addresses. However, the
platform server IPs can be obtained by WireShark or Netstat.

Network latencies cannot be ignored even in the 5G era. For most software, network latencies
include transmission delays, propagation delays in medium, queuing delays, and processing delays in
routers. Either an unreliable physical layer, data link layer, or network layer may cause packet losses
especially when the channel is full. In addition, a jitter may cause disordered arrival packets, which
may lead to software stalls.

For 3D video games or other virtual reality software, input sampling latencies, render pipeline
latencies and VSync latencies enlarge the distance to “current time”, while players think they are
interacting with others in real-time. Some online games use interpolations or predictions to fill in
the time blanks. However, what if player_A is shooting at player_B in a prediction position when the
prediction is wrong? Human hero Neo should be kept unaware he is in the Matrix. Some games use
server-side replays to keep shooting without a miss if a player feels his shooting is accurate. What a
coincidence, this mechanism can help reverse data modification for automatic aiming.
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SMEO increases the execution time of protected software by dynamic obfuscation and self-
monitor. Target codes are core codes that need to be hidden or protected. How to choose target codes
is another technique, which is the weakness and limitation of the model, because it depends on the
experiences of developers and experts.

5 Conclusions

The technology and trends of information security in different communication schemes, such as
information encryption and data hiding are discussed in this paper. We presented implementation
details in high-level programming languages (C++) so that readers can understand the proposed
methodology for distributed software protections. In addition, hidden dangers of distributed software
(especially games) are revealed. Detailed countermeasures for reverse data modifications are illus-
trated: Our overall idea to avoid reverse data modifications is that reversely do the reverse things. A
novel obfuscation approach (SMEO) is proposed. The approach can periodically and automatically
modify the protected software binary codes, and the protected software binary codes are always
encrypted to resist static analysis and dynamic analysis. Furthermore, a simplified virtual machine
is implemented to make the protected codes unreadable. Especially, SMEO is efficient to protect
online computer 3D games. Experiments show that hidden dangers can be eliminated with our efficient
methods.

Target codes are core codes that need to be hidden or protected. How to choose target codes is
another technique. SMEO increases the execution time of protected software by dynamic obfuscation
and self-monitor. Increment in the execution time of the target codes sometimes affects game
performance but does not decrease players’ game experiences. How do the actions of game players
affect game performances in scenarios with and without protections? Different player actions and
different protected code blocks affect the computation performances, which will be comprehensively
analyzed in future work for different kinds (Massively Multiplayer Online, Simulations, Adventure,
Real-Time Strategy, First Person Shooters, Sports, and Role-Playing) of computer games to help game
developers validate performances in various online games.
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