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ABSTRACT

Cyber-Physical Systems are very vulnerable to sparse sensor attacks. But current protection mechanisms employ
linear and deterministic models which cannot detect attacks precisely. Therefore, in this paper, we propose a new
non-linear generalized model to describe Cyber-Physical Systems. This model includes unknown multivariable
discrete and continuous-time functions and different multiplicative noises to represent the evolution of physical
processes and random effects in the physical and computational worlds. Besides, the digitalization stage in hardware
devices is represented too. Attackers and most critical sparse sensor attacks are described through a stochastic
process. The reconstruction and protection mechanisms are based on a weighted stochastic model. Error probability
in data samples is estimated through different indicators commonly employed in non-linear dynamics (such as
the Fourier transform, first-return maps, or the probability density function). A decision algorithm calculates
the final reconstructed value considering the previous error probability. An experimental validation based on
simulation tools and real deployments is also carried out. Both, the new technology performance and scalability are
studied. Results prove that the proposed solution protects Cyber-Physical Systems against up to 92% of attacks and
perturbations, with a computational delay below 2.5 s. The proposed model shows a linear complexity, as recursive
or iterative structures are not employed, just algebraic and probabilistic functions. In conclusion, the new model
and reconstruction mechanism can protect successfully Cyber-Physical Systems against sparse sensor attacks, even
in dense or pervasive deployments and scenarios.
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1 Introduction

Cyber-Physical Systems (CPS) are seamless integrations of physical and computational processes
[1]. Many different architectures and approaches to support these unions have been reported, from
schemes based on the control theory [2] to feedback loops in computational systems [3]. But all
proposed CPS implementations include a sensing platform to monitor the evolution of the physical
world [1]. That platform is dense, including thousands of networked sensor nodes capable of capturing
information through several different physical parameters [4]. Those data must be injected into
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computational processes, to ensure that the cybernetic and physical worlds evolve together in a
feedback control loop [5].

Therefore, precise information about physical processes is essential to ensure that the loop is
convergent and follows the expected evolution [6]. However, it is hardly possible to obtain precise
information in real applications [4]. Many random effects have an impact on the behavior of CPS,
such as noise, transmission errors, measurement, digitalization, and discretization processes [4]. In that
way, information finally injected into computational processes is not the raw or authentic information
acquired from the physical world, but a non-deterministic transformation of it. And this transformed
information prevents the CPS from integrating the computational and physical processes with the
expected synchronicity and showing the required behavior [7].

Furthermore, as Cyber-Physical Systems are used in more scenarios and applications, including
critical infrastructures, they are more exposed to new risks. Eventual and unexpected cyberattacks are
the main ones. Although innovative attack strategies have been reported to exploit specific vulnera-
bilities of CPS [8], nowadays the greatest risks for CPS are still associated with classic cyberattacks
such as the Sparse Sensor Attack (SSA). In the SSA [9], attackers introduce false information and/or
cause delays in the sensing platform monitoring the physical world at a low level, so the CPS behavior
is altered or denied. It is the most common attack in control solutions, and new uncertainty about the
physical information injected into the computational processes is to be handled.

In this context, reconstruction mechanisms to recover the original and real information extracted
from the physical world are essential [10]. The state of any CPS may be described as a multidimensional
vector, where each position represents a physical parameter. By establishing the analytical law that
describes the trajectory of all those state variables in the phase space, the transformed information
received may be corrected through a theoretically predicted CPS state [11]. However, in the general
case, all physical parameters are not independent, but they are interrelated through complex physical
laws [12]. The appearance of complex non-linear laws, together with the need for stochastic terms to
describe random effects such as sparse sensor cyberattacks, turns quite difficult to find a general high-
precision model. Thus, traditional reconstruction schemes are based on some basic assumptions, so the
mathematical expressions describing the evolution of CPS are easier to manipulate and implement [13].

Our work is motivated by limitations and vulnerabilities caused by these simple assumptions,
which make CPS weaker against cyberattacks than other state-of-the-art technological systems.
Namely:

• First, Cyber-Physical Systems are assumed to evolve according to a linear law.
• Second, all terms are considered deterministic, including noise and attacking signals.
• Third, all physical variables are assumed to be fully independent of each other.
• And fourth, physical processes are assumed to be discrete, so digitalization and transmission

processes do not have to be explicitly considered. Although those linear deterministic models
present important advantages (for example, they can be manipulated to find analytical expres-
sions for the detection and identification of SSA), their applicability is very limited [14].

• Only closed CPS based on a reduced number of physical variables with a smooth and invariant
behavior (such as the temperature in a climatized space) are governed and can be secured and
protected by such a simple model.
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Therefore, more complex and general models are required to protect and mitigate SSA in
multidimensional CPS with a continuous-time non-linear behavior. In this paper, we address this
challenge.

Three innovative contributions are introduced in this paper:

• A complex non-linear model to describe the CPS behavior in a general situation.
• New signals and models for SSA and digitalization processes.
• The third and final contribution is an innovative reconstruction scheme.

The proposed model describes the behavior of CPS using unknown generic functions, which
are developed as Taylor series. This model also includes stochastic terms to represent physical,
transmission, and measurement noises. Besides, SS attacks are described as a new signal whose value
follows a probabilistic behavior according to a given discrete random variable. Physical processes are
represented by continuous-time signals that are discretized using an event-based scheme. The resulting
multidimensional model injects discrete data into computational processes, but is too complex to
generate analytic expressions to mitigate SSA in CPS. Finally, the proposed reconstruction scheme
is supported by a weighted stochastic model where the error probability is estimated through different
indicators commonly employed to describe non-linear dynamics (such as the Fourier transform,
first-return maps, or the probability density function). A decision algorithm calculates the final
reconstructed value considering the previous error probability.

The rest of the paper is organized as follows. Section 2 analyzes the state-of-the-art on cyberattacks
and countermeasures in CPS. Section 3 describes the proposed solution, including the mathematical
model to describe the behavior of the CPS and the reconstruction and protection scheme to mitigate
SSA. Finally, Section 4 describes the experimental validation and the results obtained. Section 5
concludes the paper.

2 Related Works

Cyber-Physical Systems are one of the most promising technological revolutions nowadays. They
are expected to govern all production, domestic, and critical digital systems. Due to this relevance,
many authors have investigated how to protect CPS against various well-known and innovative attacks.
In general, we can distinguish two different protection approaches: those based on control theory and
those supported by Information Technologies (IT).

IT protection mechanisms for CPS are usually data processing and filtering modules to remove
and correct malicious or corrupted data packets. Stochastic techniques and models [4], advanced
filtering algorithms such as the Kalman filter [15], hardware-enabled algorithms such as parameter
estimation [16], and pattern recognition techniques to identify unusual information [17] are the most
common technologies. As well as game-theory and other common technologies for CPS protection,
such as honeypots [18] or Software-Defined Networks [19]. However, a limited number of works
supporting this vision may be found, as information theory techniques are high-level and agnostic
concerning the underlying hardware platform [20]. And the most critical cyber risks in CPS nowadays
are associated with sensor and actuator nodes [8]. Different authors have identified new attack vectors
and strategies [8], so feedback loops in CPS can be used to magnify cyberattacks starting in a
single hardware node and spreading throughout the entire system. Furthermore, these IT protection
technologies are computationally heavy and require long processing times, so they are not effective
against fast cyberattacks. Other low-level lightweight techniques are required.
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Physical infrastructure protection is, then, a priority in CPS. And most works on CPS security
employ control theory to design new hardware protection schemes. Globally, all these technologies
follow the same strategy [21]: they estimate or predict a secure future state for the physical platform
and/or control loop, which is used to mitigate different types of attacks. Although this paradigm could
fully protect CPS [22], it is very difficult to implement in practice and the reported implementation
presents different weaknesses. Techniques may be local (or decentralized), distributed, or centralized.

Decentralized state estimation techniques are handled by independent sensing nodes. They are
sparse as individual sensors have very limited information and actuation capabilities, so the achieved
protection level is poor. Continuous bidimensional linear models are employed to detect perturbations
and attacks (typically Denial of Service attacks) and modify the behavior of nodes by, for example,
increasing their computational resources [23]. The objective is to guarantee the local stability of the
control loops by mitigating all perturbances [21]. In contrast, other decentralized CPS protection
schemes use variance-based strategies (also known as ‘secure control’ [14]). This approach is more
general and can be applied against a generic cyberattack. Using discrete bidimensional models, tuned
filters and tuned control loops can be varied to reduce system errors, even while a cyberattack
is running [24]. However, even if local control loops can operate normally, with variance-based
techniques the global system is handling corrupted data, and that impacts the later global behavior.
Some authors have shown that global system protection requires cooperation and information sharing
among all agents [21]. Distributed techniques fill this gap.

Distributed secure state estimation is useful against systemic attacks such as Byzantine attacks
[25]. System states are deducted through an optimization process where linear models represent the
sensors’ outputs and graphs [26], Markov chains [27], binary decision trees [28], and other mathe-
matical paradigms (such as the Lipschitz continuity) [29] are used to represent the interconnections
and transmissions among nodes. Custom quasi-linear models for specific applications, such as series-
parallel systems, have been also reported [30,31]. However, these protection mechanisms are passive
and cannot deploy countermeasures to mitigate the impact of cyberattacks. Then, they must be
complemented with specific controllers [32,33] to apply active protection policies on the CPS. Anyway,
the final performance of distributed protection techniques is highly dependent on the number of
trusted nodes, not affected by the attack [21,34]. Furthermore, linear and quasi-linear models cannot
represent the output of most complex sensing platforms [35]. Thus, reported schemes can only be
applied to a reduced number of application scenarios, excluding critical risks such as massive or viral
attacks and common nonlinear algorithms.

On the other hand, recently distributed artificial intelligent solutions, such as federated learning
[36], Support Vector Machines [37], feature selection [38] or eXplainable Artificial Intelligence (XAI)
[39], have also been applied to CPS securitization and intrusion detection. But performance must
be enhanced through additional techniques such as reinforcement learning [40]. Intelligent solutions
must be designed for very specific attacks, as they are usually focused on Denial-of-Service attacks.
Although the final results are promising, the balance between cost and performance is still worse
than the one observed in other distributed techniques, and they are preferred to be used for privacy
preservation [41].

The main disadvantage of distributed protection mechanisms is the increase in system congestion,
due to the large number of transmissions required to run the distributed algorithms. On the contrary,
centralized approaches may handle global stability and attacks (as distributed techniques) but with a
lower system overload. Most reported works follow this paradigm.
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Centralized control is usual in CPS, as it is the traditional approach in legacy Supervisory Control
And Data Acquisition (SCADA) systems. Different kinds of multi-dimensional models are employed
to represent the state of every single node on the platform. These models can be analytically manip-
ulated to define protection algorithms based on Orthogonal-Triangular (QR) decomposition [42] or
Linear–Quadratic (LQ) control [43], mitigating the impact of attacks. Models can be deterministic
[44] or include some stochastic terms to represent noises [45]. Besides, continuous [44] and discrete
[46] models may be found. However, most of these models are linear and only consider the self-
maintained evolution of the node output and the measurement errors (in line with traditional control
theory models). While other relevant effects, such as the digitalization process or the transmission
protocols, are not considered, although they can be relevant. On the other hand, nonlinear models are
very rare [47] and they are only developed for specific use cases. This centralized approach is successful
against false information attacks (also known as sparse sensor attacks or deception attacks [14]), as it
handles a full picture of the CPS. However, current models are very limited, and analytical protection
algorithms have a reduced impact in real applications.

Table 1 summarizes the main current approaches and their associated open challenges.

Table 1: State-of-the-art

Reference Technology Short description Open challenges

[4]

Information theory and
technologies

Clustering techniques
and stochastics models
to big data collections

These high-level
technologies and
solutions cannot
represent precisely
attacks at physical
level, such as the
sparse sensor attack

[15] Numerical data filtering
(Kalman)

[16] Parameter estimation
for numerical models
and time series

[17] Pattern recognition for
numerical models and
time series

[18] Honeypots for attacker
capture using the game
theory

[19] Software-Defined
Network technologies
to create intrusion
detection systems

[21,24,23] Decentralized state
estimation

Sensor nodes apply
linear models to analyze
and guarantee the local
stability of feedback
control loops

Models are simple
and they can only
protect against some
few local (never
global) attacks

(Continued)
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Table 1 (continued)

Reference Technology Short description Open challenges

[26–31] Distributed state
estimation

Linear models and
optimization algorithms
to represent the nodes,
their relations, behavior,
and outputs

Models are still
linear, and they only
enable passive
protection (such as
alerts). Mitigation
action are not
possible

[32,33] Controllers for
distributed state
estimation

Modules monitoring
specific situation and
triggering mitigation
actions

They are specifically
tailored for some
applications, attacks,
number of nodes to

[36–40] Artificial intelligence Federated learning,
Support Vector
Machines,
reinforcement learning,
feature selection and
XAI to identify attacks
to the hardware
platform

protect . . . the
performance
decreases in other
scenarios. They can
cost network
congestion because
of the intense
information
exchange

[42–46] Centralized protection
control

Analytical
models to represent the
CPS and attackers’
behavior. They can be
discrete, continuous,
deterministic, or
stochastic

Linear models
cannot represent
CPS behavior in a
general case, and
important processes,
such as the
digitalization stage,
are not considered

[47] Nonlinear models for
state estimation

Specifically tailored
for some
applications, the
performance
decreases in other
scenarios

In this paper, we address this challenge, with a continuous-time generic multidimensional non-
linear model, and a protection policy based on probabilistic decision-making schemes.
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3 Proposed Scheme

The proposed solution includes two different phases. First, a multidimensional stochastic model is
employed to estimate or predict the future state of the CPS. Later, the obtained secure state estimation
is compared to the real state produced by the physical platform. Both values are compared using
a probabilistic model, where several indicators are considered. The system state may be replaced or
corrected using the predicted secure state if the decision-making algorithm indicates the information
is false (corrupted or caused by an SSA). This section describes in detail the entire scheme. Section 3.1
introduces the stochastic model, while Section 3.2 presents the decision-making and protection
algorithms.

3.1 Secure State Estimation. Model Description

A CPS is supported by a dense sensing platform including N different sensor nodes nm. These
nodes monitor and control a catalogue of P different physical variables xi (t) (1). Each variable is
monitored in Ki different geographical locations gxi

s (2), so every node controls a different physical
variable in a different location (3). If any node nm monitors more than one variable, we are analyzing
it as two independent nodes located in the same geographical position.

Hereinafter we are naming xs
i (t) the value of physical variable xi (t) in location gxi

s .

{xi (t) i = 1, . . . , P} (1){
gxi

s s = 1, . . . , Ki

}
(2)

N =
P∑

i=1

Ki (3)

The information to be finally injected into the computational processes (or system state) is a set of
M discrete state variables yj [k], related to the physical variables through a vector unknown function,
S (·), named as “system function” (4). This system function integrates five different processes: (i) the
physical world’s evolution, (ii) the transduction phase, (iii) the measurement scheme, (iv) the data
transmission, and (v) the final processing stage.{

yj [k] j = 1, . . . , M
} = S

(
xs

i (t) i = 1, . . . , P s = 1, . . . , Ki

)
(4)

The physical world (i) is considered a closed autonomous system, with no external intervention,
so the future evolution of the physical variables is only determined by the past values of those same
variables (5). The function relating the past and future values of the physical variables F xs

i (·) is

unknown and, in the general case, non-linear. For clarity, we are using vector
→
X to represent the full

ordered collection of physical variables (6). Although it is unknown, vector function F (·) could be
developed as Taylor’s series.

xs
i (t) t ≥ t0 = F xs

i
({

xs
i (t) t < t0 i = 1, .., P s = 1, . . . , Ki

}) ∀ i, s (5)
→
X (t) = {

xs
i (t) i = 1, .., P s = 1, . . . , Ki

} ∀ t (6)

Any multidimensional function may be developed as Taylor’s series using the partial derivation
(7). For simplicity, we are using a McLaurin development around the origin. In this expression
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terms

(
1

k1! · . . . · kN!
∂k1+...+kN

∂
(
x1

1

)k1 · . . . · ∂
(
xKP

P

)kN
F xs

i

(→
0
))

are unknown coefficients as function F xi (·) is

unknown too. We are representing them as λr (8). The purpose of our model is to estimate the future
CPS state, in order to mitigate any potential SSA. Then, the model must be numerically implementable.
Infinite series are not, and they must be limited to the R first terms (9). The error EF (10) we are
introducing because of this truncation is difficult to estimate as function F xs

i (·) is unknown, but the
Lagrange formula represents its analytical expression. Because this error is not easy to compute, the
value for RF parameter must be experimentally chosen, so the numerical model is precise enough
to represent the behavior of CPS. However, in order to handle uncertainties in our model, we are
proposing an estimation (maximum value) for error EF (11). We are assuming functionF xs

i grows expo-

nentially (the maximum increasing speed) in all directions, so term

(
∂k1+...+kN

∂
(
x1

1

)k1 · . . . · ∂
(
xKP

P

)kN
F xs

i

(→
0
))

is the unit. Besides, we choose the maximum value for term
(

1
k1! · . . . · kN!

)
which is achieved for

k1 = . . . = kN−1 = 1.

F xs
i

(→
X (t)

)
=

∞∑
k1=0

. . .

∞∑
kN =0

(
1

k1! · . . . · kN!
∂k1+...+kN

∂
(
x1

1

)k1 · . . . · ∂
(
xKP

P

)kN
F xs

i

(→
0
))

· (x1
1

)k1 · . . . · (xKP
P

)kN (7)

F xs
i

(→
X (t)

)
=

∞∑
r = 0

k1 + . . . + kN = r

λr · (x1
1

)k1 · . . . · (xKP
P

)kN (8)

F xs
i

(→
X (t)

)
≈

RF∑
r = 0

k1 + . . . + kN = r

λr · (x1
1

)k1 · . . . · (xKP
P

)kN (9)

|EF | ≤ max
{
λRF+1

} = max

{
1

k1! · . . . · kN!
∂k1+...+kN

∂
(
x1

1

)k1 · . . . · ∂
(
xKP

P

)kN
F xs

i

(→
0
)

k1 + . . . + kN = RF + 1

}
(10)

|EF | ≤ 1
(RF − N + 2) !

(11)

The second process represented by the system function S (·) is the transduction phase (ii). Physical
variables xs

i (t) are transformed into electrical signals vs
i (t) through an unknown function Tm which is

different for each sensor node nm (12). Functions Tm are unidimensional (scalar) as the transduction
process must be bijective to preserve the information. Besides, two different kinds of multiplicative
noises affect the transduction phase. On the one hand, multiplicative physical noises ε

xs
i

r (t) (such
as thermal noise or environmental radiation) are mixed with real physical variables xs

i (t) in the

transformation function Tm. On the other hand, multiplicative electrical noises ξ
xs

i
r (t) are added to

the obtained electrical signals, because of the impact of electronic circuits. Each noise (electrical
or physical) has a similar probability distribution f [·] (13). Noises are white (Gaussian), mutually
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uncorrelated with zero mean and unitary variances [42]. We are considering all these stochastic
processes are stationary, and their probability distribution remains stable along time (14). Parameters
R1

vs
i

and R2
vs
i

are positive integer numbers.

Unknown function Tm can be developed as Taylor’s series as well, but in this case, expressions
are simpler are unidimensional techniques can be applied (15). As done before, unknown coefficients(

1
r!

drTm

d
(̃
xs

i

)r (0)

)
are represented by variables αr. Besides, Taylor’s series must be truncated too, to make

our model computationally handleable (16), although an error ET is introduced (17). An estimation for
the maximum value of error ET is proposed too (18), in order to enable the uncertainty management.

vs
i (t) = Tm

⎛⎜⎝xs
i (t) +

R1
vs
i∑

r=1

ε
xs

i
r (t)

⎞⎟⎠ +
R2

vs
i∑

r=1

ξ
xs

i
r (t) +

R3
vs
i∑

r=1

m
xs

i
r (t) (12)

P (a ≤ ε ≤ b) =
∫ b

a

fε (u) du (13)

P
(
ξ

xs
i

r (t) = u
)

∼ P
(
ε

xs
i

r (t) = u
)

∼ 1√
2π

e
−u2

2 ∀t (14)

Tm

(̃
xs

i

) =
∞∑

r=0

1
r!

drTm

d
(̃
xs

i

)r (0) · (̃xs
i

)r

being x̃s
i (t) = xs

i (t) +
R1

vs
i∑

r=1

ε
xs

i
r (t)

(15)

Tm

(̃
xs

i

) ≈
RT∑
r=0

αr · (̃xs
i

)r
(16)

ET ≤ αRT +1 = 1
(RT + 1) !

dRT +1Tm

d
(̃
xs

i

)RT +1 (0) (17)

ET ≤ 1
(RT + 1) !

(18)

Although white noises ε
xs

i
r are affected by functions Tm and then, they are part of the Taylor’s series

(15)–(16) because of the fact they follow a Gaussian distribution, these expressions can be simplified, so
only the physical variables are part of the Taylor’s polynomial. Every term in the Taylor’s series where
a noise ε

xs
i

r is included may be considered as a non-monotonous transformation T (·) of a Gaussian
random variable. The transformation theorem (19) shows that any transformed Gaussian distribution
is a new Gaussian distribution with mean μt and variance σt (20). Later, all the transformed Gaussian
distributions may be aggregated, and, because of the central limit theorem, the resulting random
variable χ xs

i is a Gaussian distribution too. However, mean μtt and variance σtt (21) are unknown, as
the final value for the mean and variance of the global distribution χ xs

i depends on the transformations
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and the value of RT parameter. Taylor’s series for function Tm may be finally rewritten (22).

f
Tm

(
ε
xs

i
r

) (u) = ∑
u

f
ε
xs

i
r

(u)∣∣∣∣∣ d

dε
xs

i
r

T
(
ε

xs
i

r

)∣∣∣∣
ε=u

∣∣∣∣∣
being {u} the roots of T

(
ε

xs
i

r

) (19)

P
(
Tm

(
ε

xs
i

r

)
= u

)
∼ 1

σt

√
2π

e
−(u−μt)

2

2σ2
t (20)

P
(
χ xs

i (t) = u
) ∼ 1

σtt

√
2π

e
−(u−μtt)

2

2σ2
tt ∀t (21)

Tm

(̃
xs

i

) ≈ Tm

(
xs

i

) =
RT∑
r=0

αr · (xs
i

)r + χ xs
i (22)

Finally, it is necessary to estimate the value for mean μtt and variance σtt, so error in the proposed
model may be properly handled. In general, errors are bigger as values for the mean μt and variance σt

go up. Then, a superior limit is a good approximation for both parameters (23), which may be easily
calculated considering the reproducibility of the Gaussian random variables. In order to get the final
values for the mean μtt and variance σtt it is enough to apply the same reproducibility law a second
time (24).

f
Tm

(
ε
xs

i
r

) (u) =
∑

u

f
ε
xs

i
r

(u)∣∣∣∣ d

dε
xs

i
r

T
(
ε

xs
i

r

)∣∣∣∣
ε=u

∣∣∣∣ ≤
∑

u

f
ε
xs

i
r

(u) ∼ 1√
2π · RT

e
−
(

u−∑RT
r=1(xs

i)
r
)2

2RT (23)

σtt =
√

RT · R1
vs
i

μtt = R1
vs
i
·

RT∑
r=1

(
xs

i

)r (24)

The transduction phase is open, so it can be affected by SSA and malicious signals. In order
to represent this risk, we are considering a set of additive malicious signals m

xs
i

r (t) whose value is
determined by a stochastic process. This stochastic process is characterized by a Bernoulli distribution

a, representing the existence of a running SSA. Parameter a is equal to the unit if the attack is running,
or zero in the opposite case (25). The attack probability ρa varies with time (as 
a is a stochastic
process). The estimation scheme for this probability is part of the attack detection algorithm (see
Section 3.2). In our model, a SSA consists of adding a false data signal z

xs
i

r (t) to the data electrical
signal vs

i (t), according to the previously described distribution (26). R3
vs
i
different uncorrelated attackers

may be operating over the CPS at the same time. False data signals, in our model, are understood as
unreported and unexpected perturbations. This is relevant in order to define a precise attack detection
and mitigation strategy (see Section 3.2).


a (t) : P (a; t) =
{

1 − ρa (t) if a = 0
ρa (t) if a = 1

(25)

m
xs

i
r = a

xs
i

r · z
xs

i
r (t) (26)
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Finally, as every sensor node nm has a different function Tm, the whole CPS is represented by a set
of N different Eq. (27), which can be represented in one vector expression (28).⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

v1
1 (t) =

RJ∑
r=0

α
x1

1
r · (xs
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)r + X x1
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x1

1
r (t) +
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r=1

m
x1

1
r (t)

· · ·

vkp
p (t) =

RJ∑
r=0
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x
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r · (xs
i

) + X x
kp
p +

R
2kp
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ξ
x

kp
p

r (t) +
R

3kp
vp∑

r=1

m
x

kp
p

r (t)

(27)

→
V (t) =

RT∑
r=0

→
αr ·

(→
X (t)

)r

+ →
χ +

R2
v1
1∑

r=1

→
ξr (t) +

R3
v1
1∑

r=1

→
mr (t) (28)

The third subprocess to be represented in our model is the measurement scheme (iii). This,
basically, is a digitalization scheme, developed internally by sensor nodes (see Fig. 1). Discrete signal
ds

i [k] are obtained through an ideal sampling scheme (29), where electrical signals are multiplied by a
Dirac comb or impulse train ωTm (t) with period Tm (30). This period Tm is different for each sensor
node nm.

ds
i (t) = vs

i (t) · ωTm (t) + qs
i (t) =

∞∑
k=−∞

vs
i (k · Tm) · δ (t − k · Tm) + qs

i (k · Tm)

ds
i [k] = vs

i (k · Tm) + qs
i (k · Tm) k ∈ N

(29)

ωTm (t) =
∞∑

k=−∞
δ (t − k · Tm) (30)

Figure 1: Ideal sampling scheme

In this digitalization process only the quantification noise qs
i (t) is relevant. This noise, as the

digitalization scheme is invariant in time, is also time-invariant, and characterized by a uniform
random variable (31).

P
(
qs

i (t) = u
) ∼

⎧⎨⎩
1

�m

u ∈ [−�m, �m]

0 otherwise
(31)

where �m is the quantification step, fixed for every node nm.

The fourth process to be represented is the data transmission (iv). In general, hardware platforms
in CPS are low-energy, and they sleep most of the time. Being event-based, they only activate the
transmission subsystem when an event is detected in the physical world. We are defining function φm [k]
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as event-triggering function (32). This function takes as value the unit in the discrete time instant a
new event must be generated. Its value is zero otherwise. Function u (·) is the Heaviside step function,
ke is the last time instant where an event took place, and em is a parameter, different for each node nm.
If signal ds

i changes its value more than em units, a new event is triggered.

φm [k] = u
(
ds

i [k] ds
i [ke] − (em)

2
)

(32)

Data transmission is, once again, an open process, so it is vulnerable to attacks. Denial-of-Service
(DoS) attacks in this case. But SSA too (as the transduction phase). Bernoulli distribution 
b represents
the probability of a DoS attack to be running. Parameter b is equal to the unit if an attack is being
performed, or zero if not (33). The attack probability ρb varies with time (as 
b is a stochastic process).
The estimation scheme for this probability is part of the attack detection algorithm (see Section 3.2).
Similarly, Bernoulli distribution 
c represents the probability of a SSA to be running at the data
transmission stage (34).


b [k] : P [b; k] =
{

1 − ρb [k] if b = 0

ρb [k] if b = 1
(33)


c [k] : P [c; k] =
{

1 − ρc [k] if c = 0

ρc [k] if c = 1
(34)

All parameters and their meaning are equivalent to distributions 
a and 
b.

In our model, a DoS attack is represented by an arbitrary delay of kd units in the data transmission,
while an SSA is represented by injected false signals hs

i [k] (35). Then, the received signal by the remote
central control platform ws

i [k] depends on function φm [k] and distributions 
b and 
c, but also is
affected by transmission errors and noises.

ws
i [k] = c · hs

i [k] + (1 − c) · (b · ds
i [k − kd] + (1 − b) · ds

i [k]
) +

Rws
i∑

r=1

ϕ
ws

i
r [k]

being k
... φm [k] = 1

(35)

Our model considers Rws
i

multiplicative white Gaussian uncorrelated noises, ϕ
ws

i
r with zero mean

and unitary variance, affecting the data transmission.

Finally, information injected into computational processes yj [k] may not be the raw physical
information, but a transformation of it (mean, minimum or maximum values, for example). Then, the
final step in the system function S (·) is the processing stage (v). Processing processes may combine
different transmitted signals ws

i [k] according to function Pyj (·) which, in general, is unknown and,
even, may change with time (36). This is an internal process where only numerical errors may affect
the final result. However, central control systems are usually computationally powerful, and numerical
error are negligible.

yj [k] = P yj

(−−−→
W [k]

)
= P yj

(
ws

i [k] i = 1, . . . , P s = 1, . . . , Ki

)
(36)

Function P yj (·) may be developed as Taylor’s series, in a similar way as done for function
F xs

i . Considering unknown coefficients βr, the final equation of our model may be described as a
polynomial (37). Introducing an error EP , whose maximum value may be estimated using the same
techniques described before (38), the model may be truncated and limited to RP terms (39) so it can
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be managed by computational infrastructures.

P yj

(−−−→
W [k]

)
=

∞∑
r = 0

k1 + · · · + kN = r

βr · (w1
1

)k1 · . . . · (wKP
P

)kN

being βr =
(

1
k1! · . . . · kN!

∂k1+...+kN

∂
(
x1

1

)k1 · . . . · ∂
(
xKP

P

)kN
P yj

(→
0
)) (37)

|EF | ≤ max
{
βRP+1

} ≤ 1
(RP − N + 2) !

(38)

P yj

(−−−→
W [k]

)
≈

RP∑
r = 0

k1 + . . . + kN = r

βr · (w1
1

)k1 · . . . · (wKP
P

)kN (39)

Then, the final analytical model to describe the behavior of CPS includes five different Eq. (40). All
parameters and coefficients are known (or may be estimated) but λr, αr and βr which must be calculated.
The value for those parameters is obtained from an initial calibration process and an optimization
algorithm based on the minimization of the Mean Square Error (MSE).⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
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λr · (x1
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)k1 · . . . · (xKP
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)kN t ≥ t0

→
V (t) =

RT∑
r=0

→
αr ·

(→
X (t)

)r

+ →
χ +

R2
v1
1∑

r=1

→
ξr (t) +

R3
v1
1∑

r=1

→
mr (t)

ds
i [k] = vs

i (k · Tm) + qs
i (k · Tm) k ∈ N

ws
i [k] = c · hs

i [k] + (1 − c) · (b · ds
i [k − kd] + (1 − b) · ds

i [k]
) +

Rws
i∑

r=1

ϕ
ws

i
r [k]

yj [k] =
RP∑

r = 0
k1 + . . . + kN = r

βr · (w1
1

)k1 · . . . · (wKP
P

)kN

(40)

3.2 Reconstruction and Protection Mechanisms

The proposed model (see Section 3.1) considers seven sources of perturbations. On the one
hand, errors may be caused by four different phenomena: erratic behaviors in the physical variables,
electrical noises, quantification noise, and transmission perturbations. And, on the other hand, three
different potential attacks affect CPS in the general case: SSA at the transduction phase, and SSA and
Denial-of-Service attacks at the transmission phase. Fig. 2 represents the proposed reconstruction and
protection mechanisms.
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Figure 2: Protection and reconstruction mechanism

As a novelty, the proposed reconstruction and protection mechanism evaluates all these potential
perturbations to build a global stochastic process (contrary to traditional deterministic models).
This stochastic process B [p, k] (41) is discrete. p is a discrete variable representing the four possible
situations a CPS state may achieve: unperturbed (p = 0), noisy (p = 1), SSA-attacked (p = 2) and
DoS-attacked (p = 3). While k is a variable representing the discrete time. Similarly, we can define M
stochastic sub-processes Bj [p, k] for each one of the M state variables yj considered in the CPS.

B [p, k] →

⎧⎪⎪⎪⎨⎪⎪⎪⎩
γ0 [k] = B [0, k]
γ1 [k] = B [1, k]
γ2 [k] = B [2, k]
γ3 [k] = B [3, k]

(41)

In the proposed protection mechanism, five indicators are employed to evaluate the probability
distribution of the stochastic process B [p, k] at every time instant k: 1© the probability density
function, 2© the Short-Time Fourier transform, 3© the first-return map, 4© the autocorrelation and 5©
the first order forward difference. To evaluate all these indicators, the protection algorithm operates
with two numerical series. Y j

Rr (42) represents the series of the last Rr reconstructed states for the j-th
state variable, and Ỹ j

Run (43) represents the series of the last Run unreconstructed states for the j-th state
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variable (being k the current time instant).

Y j
Rr

= {
yj [k − r − Run] r = 1, . . . , Rr

}
(42)

Ỹ j
Run

= {
ỹj [k − r] r = 1, . . . , Run

}
(43)

In order to make feasible the calculation of all these indicators from time series Y j
Rr and Ỹ j

Run , in
this work we propose a specifically tailored definition. The calculation process for every indicator is
described below.

Regarding the probability density function 1©, the probability μ1
j of any unreconstructed state

ỹj [k] for the j-th state variable to happen in a given CPS, may be evaluated considering the previous
reconstructed states Y j

Rr achieved by that CPS and the Laplace definition of probability (44), and being
δ [·] the Kronecker’s delta function. The probability μ

j
pdf for the entire Ỹ j

Run series of unreconstructed
states may be obtained as the mean value of all the individual probabilities (45). And, finally, the global
probability μpdf for all the M state variables may be calculated as the average value (46).

μ1
j =

∑Rr
r=1δ

[
yj [k − r − Run] − ỹj [k]

]
Rr

(44)

μ
j
pdf =

∑Run
m=1

∑Rr
r=1δ

[
yj [k − r − Run] − ỹj [k − m]

]
Run · Rr

(45)

μpdf = 1
M

M∑
j=1

μ
j
pdf (46)

But even if the unreconstructed CPS state has a relevant probability, it can still be manipulated
and not be coherent with the system evolution. This situation may be detected through two different
indicators: the Short-Time Fourier Transform (STFT) and the first-return map. Considering the Short-
Time Fourier Transform (STFT) 2©, the Fourier spectrum tends to be stable in a CPS, so any abrupt
change may indicate an attack. The STFT (47) is equivalent to the traditional Fourier transform, but
only considering a limited number of samples (instead of the usual infinite sum) through a window
function � [k, Rsam], typically the Hann (Hanning) window (48) with a width of Rsam samples. Then,
the STFT Y j

Rr for the reconstructed states Y j
Rr (49) may be calculated using a numerical algorithm, as

well as the STFT Ỹ j
Run for the reconstructed states Ỹ j

Run (50).

STFT {y [k]} = Y (m, ν) =
∞∑

k=−∞
y [k] · � [k − m, Rsam] · e−jkν (47)

� [k, Rsam] = 1
2

− 1
2

cos
(

2πk
Rsam

)
(48)

Y j
Rr

= STFT
{
Y j

Rr

} =
∞∑

k=−∞
yj [k] · �

[
k − Rr

2
− Run, Rr

]
· e−jkν (49)

Ỹ j
Run

= STFT
{
Ỹ j

Run

} =
∞∑

k=−∞
ỹj [k] · �

[
k − Run

2
, Run

]
· e−jkν (50)

Then, using the Euclidean definition for distance, we can analyze how different Y j
Rr and Ỹ j

Run are
(51). As the distance μ

j
Fou gets bigger, the probability of unreconstructed states Ỹ j

Run to be manipulated
increases. As done before, the global distance μFou for all the M state variables may be calculated as
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the average value of all partial distances μ
j
Fou (52).

μj
Fou =‖ Y j

Rr
− Ỹ j

Run
‖=

√(
Y j

Rr − Ỹ j
Run

) · (Y j
Rr − Ỹ j

Run

)
(51)

μFou = 1
M

M∑
j=1

μj
Fou (52)

Another indicator we can use to identify situations where the unreconstructed CPS state is
manipulated is the first-return map 3©. The first return map is a function �(·), which can be
obtained numerically, and shows the relation between consecutive (reconstructed) CPS states (53). The
minimum Euclidean distance μ2

j between every ordered pair of unreconstructed states π [m] (54) and
the first return map �(·) represents how close the unreconstructed states are to the expected behavior
(55). The global distance μj

rt for the entire Ỹ j
Run series may be obtained as the mean value (56), and the

global distance μrt for all the M state variables may be calculated as the average value of all partial
distances μj

rt (57).

yj [k + 1] = �
(
yj [k]

)
(53)

π [m] = (̃
yj [k − m] , ỹj [k − m + 1]

)
(54)

μ2
j = min

η(r) ∈ �(·)
|| π [m] − η (r) ||

= min
r ∈ (2, Rr)

||π [m] − (
yj [k − Run − r] , yj [k − Run − r + 1]

) || (55)

μj
rt = 1

Run

Run∑
m=2

(
min

r ∈ (2, Rr)
||π [m] − (

yj [k − Run − r] , yj [k − Run − r + 1]
) ||

)
(56)

μrt = 1
M

M∑
j=1

μj
rt (57)

But in some situations, very noisy states are difficult to distinguish from attacks. To clarify
and separate these two situations we use the autocorrelation 4©. Noise is a random effect, so
autocorrelation tend to the null value very quickly. While planned attacks follow a certain structure,
and autocorrelation oscillates but not disappears because of these patterns. But autocorrelation cannot
be directly applied to series Ỹ j

Run or Y j
Rr , as they contain actual information, and it would be always

non-null. Then, before calculating the autocorrelation we are using a stop-band filter to remove the
legitimate information (see Fig. 3).

Figure 3: Stop-band filtering for autocorrelation calculation
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From the STFT yj
Rr we can obtain the central frequency �0 and the bandwidth �c of the j-th

information signal (state variable). And then, the stop-band filter in the Laplace domain may be
described as a quotient function (58). And the filtering process as a product (59). The resulting filtered
signal yj [k] (60), thus, only contains information about the noise and/or attacks affecting the CPS. The
autocorrelation μj

au [r] can be now obtained (61).

H (s) = s + �2
0

s2 + �c · s + �2
0

(58)

Y
j

Run
= Ỹ j

Run
· H (s) (59)

yJ [k] = STFT−1

{
Y

j

Run

}
(60)

μj
au [r] =

∑Run
m=1

(
yj [k − m] − �j

)
·
(

yj [k − m + r] − �j

)
∑Run

m=1

(
yj [k − m] − �j

)2 r ∈
[

0,
Run

2

]

�j = 1
Run

Run∑
r=1

yj [k − r]

(61)

This autocorrelation μj
au [r] should disappear as r parameter increases if the CPS is just noisy. To

get that confirmation but avoid possible transitory effects, we are aggregating the last Rcor samples in
the autocorrelation function μj

au [r] (62). The resulting indicator μj
au will be lower as the perturbations

in the unreconstructed state are more similar to Gaussian white noise. As in all the previous indicators,
the global autocorrelation μau for all the M state variables may be calculated as the average value of
all partial distances μj

au (63).

μj
au =

Run
2∑

r= Run
2 −Rcor

μj
au [r] (62)

μau = 1
M

M∑
j=1

μj
au (63)

However, some attacks may use perturbations within the information signals’ bandwidth, and
autocorrelation may not generate a conclusive result. To analyze this situation, we are using our
last indicator, the first order forward difference 5©. The first order forward difference μ

j
diff [k] (60)

represents the tendency, evolution or growing of the j-th unreconstructed state variable. In general,
CPS states fluctuate but do not increase or decrease in a monotonous manner. Even less if the evolution
is divergent (for example, exponential). Then, the sum μ

j
diff of all (Run − 1) samples in the first order

forward difference μ
j
diff [m] is typically very small (61), as growing periods are cancelled by decreasing

phases and vice versa. But if the CPS state is manipulated and it does not oscillate but increases
or decreases monotonously and diverges, the sum μ

j
diff will take very extreme values (positive or

negative). The global tendency (aggregated first order differences) μdiff for all the M state variables
may be calculated as the average value (62).

μ
j
diff [m] = ỹj [m + 1] − ỹj [m] m ∈ [k − 2, k − Run] (64)

μ
j
diff =

k−Run∑
m=k−2

μ
j
diff [m] (65)
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μdiff = 1
M

M∑
j=1

μ
j
diff (66)

Using these five indicators, we can now estimate the probability distribution of the stochastic
process B [p, k]. Mathematical models for all this probability distribution are a genuine contribution
of this work. The unperturbed state (p = 0) is only probable when the probability μpdf is very high (close
to the unit), and distances μFou and μrt are very low. Any other value is indicating a noisy state (p = 1),
which is still probable even for smaller values of probability μpdf and bigger values of distances μFou and
μrt. But noisy states require a low value for autocorrelation μau to be probable (on the contrary, the
CPS may be under a cyberattack). Because of this sensitivity, exponential and power laws are the most
adequate ones to represent the probability of the unperturbed state γ0 [k] (63), while linear evolutions
and slower exponential laws fit the more tolerant behavior of the probability law γ1 [k] of the noisy
state (64).

γ0 [k] =
(

1 − (
μpdf − 1

)2τ1
0
)

· exp
(

−μFou

τ 2
0

)
· exp

(
−μrt

τ 3
0

)
(67)

γ1 [k] = μpdf · exp
(

−μFou

τ 2
1

)
· exp

(
−μrt

τ 3
1

)
· exp

(
−μau

τ 4
1

)
(68)

Being τ 1
0 a positive integer number and τ 2

0 , τ 3
0 , τ 2

1 , τ 3
1 and τ 4

1 positive real numbers (weights). They
are used to control the sensitivity of the stochastic process.

On the other hand, SSA-attacked state (p = 2) is characterized by very a low probability μpdf but
very high distances μFou and μrt. As well as a relevant non-null value in the aggregated autocorrelation
μau and the aggregated first order forward differences μdiff . On the contrary, DoS-attacked states
(p = 3) are usually associated to moderate values for the probability μpdf (states are delayed but not
manipulated) while still very high distances μFou and μrt (as they are delayed, states are not coherent
with the historical series). The aggregated autocorrelation μau and the aggregated first order forward
differences μdiff tend also to be quite reduced. Following a similar philosophy to employed before, we
can define the evolution laws for the probabilities γ2 [k] (65) and γ3 [k] (66).

γ2 [k] =
(

1 − (
μpdf

)2τ1
2
)

·
(

1 − exp
(

−μFou

τ 2
2

))
·
(

1 − exp
(

−μrt

τ 3
2

))
·
(

1 − exp
(

−μau

τ 4
2

))
(69)

·
(

1 − exp

(
−
(
μdiff

)2

τ 5
2

))

γ3 [k] = μpdf ·
(

1 − exp
(

−μFou

τ 2
3

))
·
(

1 − exp
(

−μrt

τ 3
3

))
· exp

(
−μau

τ 4
3

)
· exp

(
−
(
μdiff

)2

τ 5
3

)
(70)

Being τ 1
2 a positive integer number and τ 2

2 , τ 3
2 , τ 4

2 , τ 5
2 , τ 2

3 , τ 3
3 , τ 4

3 and τ 5
3 positive real numbers

(weights).
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In an equivalent manner we may calculate the probability distribution for all stochastic subpro-
cesses Bj [p, k] (67)

γ
j

0 [k] =
(

1 − (
μ

j
pdf − 1

)2τ1
0
)

· exp
(

−μ
j
Fou

τ 2
0

)
· exp

(
−μj

rt

τ 3
0

)
γ

j
1 [k] = μ

j
pdf · exp

(
−μ

j
Fou

τ 2
1

)
· exp

(
−μj

rt

τ 3
1

)
· exp

(
−μj

au

τ 4
1

)
γ

j
2 [k] =

(
1 − (

μ
j
pdf

)2τ1
2
)

·
(

1 − exp
(

−μ
j
Fou

τ 2
2

))
·
(

1 − exp
(

−μj
rt

τ 3
2

))
·
(

1 − exp
(

−μj
au

τ 4
2

))
·
(

1 − exp

(
−
(
μ

j
diff

)2

τ 5
2

))

γ
j

3 [k] = μ
j
pdf ·

(
1 − exp

(
−μ

j
Fou

τ 2
3

))
·
(

1 − exp
(

−μj
rt

τ 3
3

))
· exp

(
−μj

au

τ 4
3

)
· exp

(
−
(
μ

j
diff

)2

τ 5
3

)
(71)

Based on this stochastic process B [p, k], and all subprocesses Bj [p, k], we propose a decision
function with different thresholds to identify and trigger the proper protection and/or reconstruction
mechanism at every time instant k. At this point we are also considering the series Ŷ j

Run of predicted
states (68), according to the proposed model (see Section 3.1). Time instants are exactly the same to
the ones observed in series Ỹ j

Run of unreconstructed states. For the calculation of this series of estimated
states, probabilities ρa, ρb and ρc are obtained probabilities γ2 and γ3 (69).

Ŷ j
Run

= {
ŷj [k − r] r = 1, . . . , Run

}
(72)

ρa = ρc = γ2

ρb = γ3
(73)

Fig. 4 shows the proposed decision algorithm. This is an original contribution firstly presented in
this work. In the first step it is evaluated if any global probability γi is θinit units higher than any other
probability (70). If that is the case, the situation represented by that probability γi is considered to be
the actual situation of the last received unreconstructed states Ỹ j

Run∀j. If γ0 is the highest probability,
states are unperturbed, and they are added with no modification to the series of reconstructed secure
states (71). If γ1 is the highest probability, states are noisy. The reconstruction action depends on how
noisy the unreconstructed states are (72). If the Mean Square Error (MSE) between series Ỹ j

Run and
Ŷ j

Run (73) is lower than threshold θ low
noise, noise is negligible and unreconstructed states Ỹ j

Run are added
with no modification to the series of reconstructed secure states. On the contrary, if the MSE is
higher than threshold θ

high
noise, noise is considered too invasive and next Run reconstructed secure states are

taken from the predicted series Ŷ j
Run . In any other situation, noise is relevant but not dominant, and

reconstructed states are calculated as the average between unreconstructed Ỹ j
Run and predicted Ŷ j

Run

series. For MSE calculation, predicted values Ŷ j
Run are obtained considering all possible perturbation

sources (for examples, parameters a, b and c takes the most probable value). Finally, if probability
γ2 or probability γ3 is the highest, the CPS is under an attack (SSA or DoS respectively). In both
circumstances, unreconstructed states are not secure and next Run reconstructed secure states are taken
from the predicted series Ŷ j

Run(74). In this last situation, predicted values are obtained in absent of
attacks of any kind (i.e., a, b and c are null).

γi > γj + θinit ∀ j = i j, i ∈ [1, 3] (74)
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yj [k − r] = ỹj [k − r] ∀ r ∈ [1, Run] ∀ j ∈ [1, M] (75)

yj [k − r] =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ỹj [k − r] if MSE < θ low

noise

ŷj [k − r] if MSE > θ
high
noise ∀r ∈ [1, Run] ∀ j ∈ [1, M]

1
2

(
ỹj [k − r] + ŷj [k − r]

)
otherwise

(76)

MSE = 1
Run · M

M∑
j=1

Run∑
r=1

(
ỹj [k − r] − ŷj [k − r]

)2
(77)

yj [k − r] = ŷj [k − r] ∀ r ∈ [1, Run] ∀ j ∈ [1, M] (78)

Figure 4: Reconstruction and protection algorithm



CMC, 2023, vol.76, no.3 3209

If no global probability γi is θinit units higher than any other probability, the same algorithm
described above is applied to every j−th state variable. If any probability γ

j
i is θ

j
init units higher than any

other, this is considered to be the actual situation in the CPS for this state variable (75). The next steps
in the algorithm are equivalent to the description above, just using specific thresholds θ

j,low
noise and θ

j,high
noise

for the situation when γ
j

2 is the dominant probability (76). The objective, in this case, is to reconstruct
the CPS state, variable by variable. This approach is slower and computationally more costly, so it is
only triggered when the global analysis is not conclusive.

γ j
i > γ j

r + θ j
init ∀ r = i r, i ∈ [1, 3] (79)

yj [k − r] =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ỹj [k − r] if MSEj < θ

j,low
noise

ŷj [k − r] if MSEj > θ
j,high
noise ∀ r ∈ [1, Run]

1
2

(
ỹj [k − r] + ŷj [k − r]

)
otherwise

being

MSEj = 1
Run

Run∑
r=1

(
ỹj [k − r] − ŷj [k − r]

)2

(80)

If no probability γ
j

i is θ
j
init units higher than any other for any j − th state variable, the stochastic

process B [p, k] is not precise enough. Then, all the algorithm and calculations are repeated for larger
values of Rr and Run sizes. Then, results may be more precise when operating with more samples. But,
if the proper reconstruction actions could not be selected before the maximum values for Rr and Run

sizes are reached, the global algorithm is run one last time. In this last case, the situation represented
by the highest probability γi (with no restriction) determines the reconstruction action, according to
the algorithm described before. In any case, Rr and Run sizes are always returned to the initial values.

Sizes for parameters Run and Rr are actually very important and sensible. Large values for those
sizes avoid most spurious numerical and transitory effects, but they reduce the precision and sensitivity
of the protection and reconstruction algorithm to detect short-term attacks and high-frequency noises.
While reduced values for parameters Run and Rr behave exactly the opposite. The balance cannot be
generalized and therefore must be found for every specific application.

4 Experimental Validation

To validate the proposed mechanisms for the protection of Cyber-Physical Systems against Sparse
Sensor and Denial of Service attacks, an experimental validation was conducted. Section 4.1 describes
the experimental methodology, while Section 4.2 presents the obtained results.

4.1 Experimental Methodology and Environment

The experiments were based on an emulated industrial scenario with real hardware devices
(microcontrollers). The experimental works were divided into two different phases. First, we focused
on analyzing the precision and attack detection capacity of the proposed technology. The second phase
focused on studying the performance and scalability of the proposed model and the reconstruction and
protection mechanism.

For all the experiments, the proposed CPS was supported by a collection of ESP-32 microcon-
trollers. Its number is variable depending on the experiment. ESP-32 microcontrollers are low-cost
System-on-Chip provided with Wireless Fidelity (WiFi) and Bluetooth capabilities. It is based on a
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Tensilica Xtensa LX6 processor, and it includes several peripheral interfaces (Universal Asynchronous
Receiver-Transmitter-UART-, Pulse Width Modulation-PWM-, Serial Peripheral Interface-SPI-, etc.),
so it can handle a large catalog of different sensors. In our experiments, each ESP-32 node was
provided with two sensors, monitoring four physical variables in total. The first sensor was a CCS811
sensor to monitor air quality. It can provide two different variables: carbon dioxide equivalent (eCO2)
and organic volatile compounds concentration (TVOC). The second sensor is a DTH-11 device,
which generates measurements for the environmental humidity and temperature. The measurement
periodicity is variable and depends on the experiment.

All these sensors employed a WiFi connection to send all the collected information to a cloud
server, located within the same building. Hypertext Transfer Protocol (HTTP) messages and Represen-
tational State Transfer (REST) interfaces were employed to support these communications. The server
was a Linux-based machine (Ubuntu 18.04 LTS) with the following hardware characteristics: Dell
R540 Rack 2U, 96 GB RAM, two processors Intel Xeon Silver 4114 2.2G, HD 2 TB SATA 7,2K rpm.
In this server, both the proposed model and the reconstruction and protection algorithm were hosted
and executed. A Node.js server was deployed to collect all data from the sensor nodes and send them to
the computational process executing our proposal. A supervisory process was continuously evaluating
the evolution and performance of the proposed algorithms and model. The acquired information
was employed to carry out a statistical analysis using the MATLAB 2022a software, to validate our
hypotheses. All experiments were repeated twelve times to remove possible spurious effects. The results
for every measurement are obtained as the average of all these individual twelve realizations.

In the first phase, we performed two different experiments. The first experiment was aimed at
analyzing the precision of the proposed model (Section 3.1) by comparing (using the Mean Square
Error metric) the information received by the computational processes in the real CPS deployment
and the samples predicted by the proposed model. Data were collected for 24 h, and the relative
(percentage) Mean Square Error was calculated for all the acquired samples. The experiment was
repeated for different values of parameters RP , RT , and RF , which control the complexity of the
proposed model. In this experimental phase, these three parameters are considered to have the same
value.

The second experiment in this first phase was aimed at analyzing the probability of the proposed
reconstruction and protection algorithm to successfully detect the real situation that occurs in the
CPS. Some additional ESP32 nodes were deployed to increment the electrical noise in the environment
and/or perform Sparse Sensor and Denial of Service attacks. Different situations were generated, with
a duration of ten minutes. It was monitored if the proposed algorithm was able to identify them
properly. The second experiment had a duration of 24 h too. Results were processed to generate a
confusion matrix representing the algorithm’s behavior. The experiment was repeated for different
values of Run, and Rr parameters. During these experiments, both parameters had the same value.

In the second experimental phase, we evaluated the performance and scalability. We measured the
computational time needed for the proposed model and the reconstruction and protection algorithm
to obtain a final and stable output. The first experiment focused on the mathematical model. The
calculation time was analyzed for different values of parameters RP , RT , and RF (all three had the
same value) and different quantities of state variables (M). To allow this experiment, the number of
sensor nodes in the CPS was increased with each realization. Each configuration was operating for
24 h. The result was obtained as the average of all measurements collected.

Finally, the second experiment in this second phase evaluated the computational time required
by the reconstruction and protection algorithm. The experiment was repeated for different values of
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Run, and Rr parameters. During these experiments, both parameters had the same value. Different
quantities of state variables (M) were also considered. Each configuration was operating for 24 h. The
result was obtained as the average of all collected measurements.

4.2 Results

To evaluate the behavior of the proposed technology, first, we analyze the precision of our model
(Section 3.1), comparing the predicted future CPS states and the actual state finally achieved. Fig. 5
shows the results. As can be seen, the evolution is exponential, as expected from the error in the Taylor
series, as the number of terms increases. In general, all configurations show good behavior, although
models with only two terms introduce an error of 12% (which may be too high for some applications).
The minimum error (2%) may be achieved for models with more than 12 terms. This error is caused
by the truncation of the Taylor series, so they can be numerically computed. But, as a counterpart,
the resulting finite series does not perfectly represent the original function and we are introducing a
numerical error.

Figure 5: Precision of the proposed model

Other limitations in the proposed model (such as the numerical precision of the underlying
hardware platform) are also affecting, so, only by increasing the number of terms in Taylor’s series
cannot reduce the global error as much as desired. But for a very large catalog of applications, an error
of 2% is acceptable and can be tolerated. Even, for those scenarios where computationally lightweight
solutions are preferred, schemes with four or five terms generate an error of around 6%, which is a
standard error for mass non-critical applications. In common applications, errors below 10% can be
handled. From these results, we can conclude that the proposed model represents with good precision
the physical processes in CPS.

Similarly, we need to analyze the capacity of the proposed reconstruction algorithm to successfully
detect the real situation that is happening in the CPS. Fig. 6 shows the results of this experiment.
For all possible situations, three regions are identified. First, for low values of Run and Rr parameters
(below 20), transitory effects are dominant, indicators do not capture properly the CPS behavior, and
sensitivity (rate of situation correctly classified) decreases. Random natural variations may be relevant
when very short periods are analyzed. To focus on global tendencies, larger collections of data samples
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are needed. In that way, later, in the central region, Run and Rr parameters present good enough values
(between 20 and 60), and the proposed algorithm works with a very satisfactory behavior (sensitivity
is between 91% and 98%). In this region, short-time transitory effects are not dominant because larger
time series are employed in the reconstruction mechanism, and global tendencies are easily detected.
But when the values for Run and Rr parameters increase beyond a certain limit (60 samples in this
case), real fluctuations effects and high-frequency perturbations are ignored when they are aggregated
in a large operation. Then, sensitivity decreases. In this region, even natural fluctuations and changes
are not significant compared to long-term tendencies. Relevant changes are ignored, because we are
integrating too many samples in the same series, and calculation algorithms do not have enough
sensitivity.

Figure 6: Precision of the proposed reconstruction and protection

In conclusion, Run and Rr parameters must be balanced: small values cause instabilities, while too
big values generate a loss of sensitivity. Values between 20 and 60 are the most appropriate region, as
shown above (Fig. 5).

On the other hand, the proposed algorithm does not show the same sensitivity when detecting
the different situations in a CPS. In general, situations whose probability is calculated using functions
with a higher growth rate (such as the exponential) are more sensitive to the quality of indicators
representing the CPS (first return maps, STFT, etc.) and then more sensible to the value of Run and
Rr parameters. This is because small changes in the exponents may generate big variations in the final
function. Values must be selected very carefully and according to previous observations. For example,
the probability for the SSA-attacked situation is only supported by an exponential function, so it is
the one with the most relevant fluctuations. The noisy situation, which includes a linear term, is much
flatter. That means SSA-attacked situations are much more difficult to detect, and probably a heuristic
calibration process is required in real deployments and scenarios.

Anyway, the sensitivity of the proposed algorithm (in balanced values of Run and Rr parameters)
is very satisfactory. Noisy situations are detected on 98% of the occasions, while unperturbed and
SSA-attacked situations are correctly identified on 92% of the times. The DoS-attacked situation is
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the one with the worst behavior, but its sensitivity is just slightly lower: 91%. With these results, we can
conclude that the proposed algorithm can reconstruct and protect Cyber-Physical Systems against
attacks and perturbations.

To go deeper into the analysis of these data, we present the complete confusion matrix (Table 2)
for the configuration Run = Rr = 40.

Table 2: Confusion matrix for the configuration Run = Rr = 40

Detected situation Real situation

Unperturbed Noisy SSA-attacked DoS-attacked

Unperturbed 92.89 2.43 0.84 1.43
Noisy 3.31 96.66 3.98 5.85
SSA-attacked 1.44 0.43 92.96 0.80
DoS-attacked 2.36 0.48 2.22 91.92

As can be seen, most errors when identifying the situation in the CPS are false detections of the
noisy situation. Probably, that is caused by the linear term in its probability function, which does not
reduce its value as much as the exponential function. If this sensitivity needs to be improved, that linear
term should be enriched with new indicators and functions.

It is also important to evaluate the performance and scalability of the proposed solution to identify
its limitations. Fig. 7 shows the computational time required for the proposed model to operate.

Figure 7: Computational delay and scalability (mathematical model)

As can be seen, the evolution of the computational delay is linear. This is because our model
consists of additions and multiplications, without loops or recursive problems. Besides, each new state
variable is independent of the others, so the increase is linear. This facilitates the employment of this
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protection and reconstruction solution in future dense and pervasive scenarios, where up to ten million
sensors per square kilometer could be deployed.

Moreover, the delay is always in the range of milliseconds. Additions and multiplications are
performed very efficiently on modern computers, and they require a short time to perform millions
of operations. In this case, even for a CPS that includes 100 devices (i.e., 400 state variables) and
very complex models (with almost 20 terms in the Taylor series), the computational time required
to operate the model is below 100 milliseconds (70 milliseconds, to be precise). Considering the most
usual Cyber-Physical Systems capture information from the environment every few seconds, this delay
is satisfactory.

Finally, the same scalability and performance analysis must be applied to the reconstruction and
protection algorithm. Fig. 8 shows the results. Here, again, the evolution is almost linear, because all
the proposed computational procedures do not require any loop or recursive processing. In this case,
for the largest deployment (one hundred devices) and a typical value for Run and Rr parameters, the
delay is above one second. This may be slightly above the acceptable maximum for certain critical real-
time applications. For smaller deployments and the same configuration, the delay is below one second
(between 100 and 600 milliseconds). But even delays above one second are acceptable in mass non-
critical applications, where data are acquired every few seconds. Due to linear evolution, scalability is
guaranteed (even in future scenarios) as consumed resources grow at the same rate as the number of
sensor nodes in the physical platform.

Figure 8: Computational delay and scalability (reconstruction and protection algorithm)

In conclusion, considering the limitations that may arise in critical real-time applications, the
performance of the proposed reconstruction and protection mechanism is satisfactory.

5 Conclusions and Future Works

This paper presents a new stochastic model to represent the behavior of Cyber-Physical Sys-
tems precisely. This model includes unknown multivariate discrete and continuous-time functions
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and different multiplicative noises to represent the evolution of physical processes and random
effects in the physical and computational worlds. As a novelty, in this model, engineered processes
such as the digitalization stage are represented too. Additionally, and contrary to the commonly
employed deterministic attackers, in this new model attackers are described through a stochastic
process. Standard error sources are estimated through different indicators and non-linear techniques
(such as the Fourier transform, first-return maps, or the probability density function). Finally, the
reconstruction mechanism consists of a weighted stochastic model combining all error sources. The
actual reconstructed value is generated as the output from a decision algorithm.

Experimental results show that the precision of the proposed model is above 90%, with a residual
error between 6% and 2% for the most common configurations. Additionally, the sensitivity of the
proposed reconstruction and protection algorithm is up to 92%. Considering all this, the proposed
solution is a valid security scheme for CPS.

Future works will analyze new indicators and probability functions to improve the sensitivity,
especially in noisy situation. In addition, the solution will be deployed in real industrial scenarios with
legacy systems, to study the impact of second-order effects such as reduced connectivity or human
accidents and manipulations.
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