
This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

echT PressScience

DOI: 10.32604/cmc.2023.039721

ARTICLE

Explainable Classification Model for Android Malware Analysis Using API
and Permission-Based Features

Nida Aslam1,*, Irfan Ullah Khan2, Salma Abdulrahman Bader2, Aisha Alansari3,
Lama Abdullah Alaqeel2, Razan Mohammed Khormy2, Zahra Abdultawab AlKubaish2 and
Tariq Hussain4,*

1SAUDI ARAMCO Cybersecurity Chair, Department of Computer Science, College of Computer Science and Information
Technology, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441, Saudi Arabia
2Department of Computer Science, College of Computer Science and Information Technology, Imam Abdulrahman Bin Faisal
University, P.O. Box 1982, Dammam, 31441, Saudi Arabia
3Computer Engineering Department, College of Computer Science and Information Technology, Imam Abdulrahman Bin Faisal
University, P.O. Box 1982, Dammam, 31441, Saudi Arabia
4School of Computer Science and Technology, Zhejiang Gongshang University, Hangzhou, China

*Corresponding Authors: Nida Aslam. Email: naslam@iau.edu.sa; Tariq Hussain. Email: uom.tariq@gmail.com

Received: 13 February 2023 Accepted: 07 June 2023 Published: 08 October 2023

ABSTRACT

One of the most widely used smartphone operating systems, Android, is vulnerable to cutting-edge malware
that employs sophisticated logic. Such malware attacks could lead to the execution of unauthorized acts on
the victims’ devices, stealing personal information and causing hardware damage. In previous studies, machine
learning (ML) has shown its efficacy in detecting malware events and classifying their types. However, attackers
are continuously developing more sophisticated methods to bypass detection. Therefore, up-to-date datasets must
be utilized to implement proactive models for detecting malware events in Android mobile devices. Therefore,
this study employed ML algorithms to classify Android applications into malware or goodware using permission
and application programming interface (API)-based features from a recent dataset. To overcome the dataset
imbalance issue, RandomOverSampler, synthetic minority oversampling with tomek links (SMOTETomek), and
RandomUnderSampler were applied to the Dataset in different experiments. The results indicated that the extra
tree (ET) classifier achieved the highest accuracy of 99.53% within an elapsed time of 0.0198 s in the experiment that
utilized the RandomOverSampler technique. Furthermore, the explainable Artificial Intelligence (EAI) technique
has been applied to add transparency to the high-performance ET classifier. The global explanation using the
Shapely values indicated that the top three features contributing to the goodware class are: Ljava/net/URL;-
>openConnection, Landroid/location/LocationManager;->getLastKgoodwarewnLocation, and Vibrate. On the
other hand, the top three features contributing to the malware class are Receive_Boot_Completed, Get_Tasks, and
Kill_Background_Processes. It is believed that the proposed model can contribute to proactively detecting malware
events in Android devices to reduce the number of victims and increase users’ trust.

KEYWORDS
Android malware; machine learning; malware detection; explainable artificial intelligence; cyber security

https://www.techscience.com/journal/CMC
https://www.techscience.com/
http://dx.doi.org/10.32604/cmc.2023.039721
https://www.techscience.com/doi/10.32604/cmc.2023.039721
mailto:naslam@iau.edu.sa
mailto:uom.tariq@gmail.com

3168 CMC, 2023, vol.76, no.3

1 Introduction

A mobile phone is a potent communication tool that Motorola initially introduced in 1973 and
made commercially accessible in 1984 [1]. In today’s world, mobile devices play an essential role in every
aspect of our lives. There is much more to smartphones than just making phone calls, where a personal
information management system, a payment system, and more are now integrated into it [2]. As a
result, over a billion people own smartphones, and most use them for day-to-day functions. Moreover,
it is estimated that there will be 7.49 billion mobile phone users worldwide by 2025 [3]. With the advent
of the Android platform, the smartphone industry has increased and now holds more than 80% market
share, being one of the most popular operating systems in 2019, according to research by International
Data Corporation [4] and Gartner [5]. Android has changed radically in the previous five years, with
more attractive features and critical functions related to health, finance, entertainment, banking, and
wallet, and many more being introduced. The number of Android devices sold has exceeded 1 billion,
with the Google Play store reporting 65 billion app downloads [6]. As a result of the popularity of
the Android platform, more sophisticated malware that employs complicated logic and anti-analysis
measures was developed [7]. Approximately 2.5 million new Android malware samples are detected
every year, according to a McAfee report [8]. In addition to this store, many unofficial third-party app
developers also started offering Android apps. Consequently, the security and privacy vulnerabilities
caused by malware have risen [9,10].

Jon von Neumann was the first to propose the concept of malware in his study: “Theory of
Self-Reproducing Automata” [11]. Malware is key to all network invasions and security breaches,
including trojans, worms, rootkits, scareware, spyware, viruses, and any program that disturbs user
data, systems, or networks. It is mainly used to obtain unauthorized access to several inter-connected
devices and network assets to sneak sensitive data and files and disrupt regular operations. Most
malware is designed solely for entertainment and experimentation, where tactics constantly evolve,
attacking with increasing stealth and frequency [12]. The three most prevalent obstacles in malware
detection are: identifying obfuscated malware, classifying it, and identifying the crucial attributes
used in application obfuscation. This inquiry necessitates a thorough examination of applications.
The procedures for detecting Android malware events can be categorized into three categories: Static,
dynamic, and hybrid. In the static analysis, anomaly behaviour is monitored by extracting the features
from the Android application without running them into a device or Android emulator. This technique
can achieve significant feature coverage while being computationally less costly, yet, it can be easily
foiled by obfuscation strategies [13]. The dynamic analysis overcomes the static analysis’s limitation
by running the analysis into a device or Android emulator [14]. Nevertheless, it necessitates higher
technical skills and is computationally costly. In contrast, hybrid analysis combines static and dynamic
analysis, improving the detecting process’s effectiveness and efficiency.

To protect Android users from being attacked by viruses and other malicious applications,
Google has developed a machine learning-based (ML-based) ecosystem called “Play Protect” [15]. The
ecosystem intends to identify malware before and after uploading programs to Google Play. However,
fraudsters continue targeting Android phones and infecting their users [9,16]. Thus, introducing a
reliable malware detection application is crucial to reduce malware victims and encourage end-user
trust. Cyber security can be revolutionized by combining ML with threat intelligence-based solutions
to counter attacks against networks [17–19]. For instance, using an ensemble technique, in [20]
established a high malware detection accuracy for Windows portable executables (PE). Furthermore,
authors in [21] used an ML algorithm to detect ransomware, achieving promising results. Additionally,
several studies have implemented ML-based models to detect malware in Android devices. However,
their effort is adversely affected by the lack of a clear understanding of the latest Android malware

CMC, 2023, vol.76, no.3 3169

landscape. Furthermore, up-to-date datasets capturing the latest Android malware environment are
vital for developing successful malware analysis techniques and evaluating new detection systems.

Similarly, most previous studies focused on using black-box complex ML models. The complex
ML models are usually opaque and cannot extract how the reasoning has been made. Explainable
AI (EAI) or ML (EML) adds interpretability to the black-box ML models. EAI has already been
successfully implemented in various domains like health, education, cyber security, etc. [22]. However,
EAI has not been used for detecting Android malware. Accordingly, researchers are trying to develop
new and effective approaches to Android malware detection. Although earlier research has yielded
encouraging results, a further contribution can be made to produce better outcomes by utilizing
updated datasets.

To overcome the previous work limitations, this study aimed to develop an ML-based model for
detecting malware in Android devices using a newly published dataset [12]. Three ML algorithms
were trained, including support vector machine (SVM), random forest (RF), and extra trees (ET), in
four different experiments. The ML algorithms were trained using the original imbalanced Dataset in
the first experiment. The second, third, and fourth experiments utilized the RandomOverSampler,
synthetic minority oversampling with tomek links (SMOTETomek), and RandomUnderSampler,
respectively. The results indicated that the ET-RandomOverSampler model achieved the highest
accuracy of 99.53% with the lowest elapsed time of 0.0198 s. Additionally, EAI techniques were used to
understand the effect of each feature on the proposed model. The main contribution of the presented
research is expressed as follows:

• Develop an accurate model for detecting malware events in Android devices using an updated
dataset.

• Compare the performance of the base classifier (SVM) with the ensemble classifiers (RF and
ET) in detecting malware in Android devices.

• Overcome the TUANDROMD dataset imbalance using three different dataset sampling
methods.

• Compare the results of the proposed models in four different sets of experiments (i.e., original
data, random-oversampled, oversampled using SMOTETomek, random-undersampled).

• Analyze the most contributing features to classifying malware using EAI techniques.
• Achieve the highest results compared to benchmark studies.

Additionally, the main research questions the study aims to answer are stated as follows:

• Which features contribute mostly to detecting Android malware?
• How can different sampling techniques affect the performance of the ML algorithms?
• How might the proposed ML model aid in accurately and rapidly identifying Android malware?

The division and arrangement of the paper are as follows: The review of related literature is covered
in Section 2 of the article. The materials and methods utilized are reported in Section 3 of the article.
The empirical design and findings of this study are presented in Section 4, along with a discussion. An
explanation of the best model’s prediction is detailed in Section 5, whereas the conclusion and future
work recommendation is presented in Section 6.

3170 CMC, 2023, vol.76, no.3

2 Related Work

Research has been done to develop models to improve malware detection in the Android operating
system. The sections below contain some studies that used ML and deep learning (DL) algorithms
ordered chronologically from oldest to most recent.

2.1 Android Detection Based on Machine Learning

Milosevic et al. [23] compared emulator and device-based detection to extract features for
supervised learning from both environments. They utilized 1222 malware samples from 2444 Android
apps. SVM, naive Bayes (NB), simple logistic regression (SLR), multilayer perceptron (MLP), partial
decision trees (PART), RF, and J48 decision tree (DT) algorithms were utilized. The results indicated
that the phone-based environment outperformed the emulator-based one, where the RF classifier
achieved a 92.6% F1–score, a 93.1% true positive rate (TPR), and a 92% false positive rate (FPR) using
the top 100 features. The authors concluded that developing more efficient device-based ML detection
methods is essential as an incentive to minimize the impact of malware anti-emulation and emulator
environmental flaws that limit analysis performance. Similarly, Gosiewska et al. [24] carried out a study
on malware detection attacking Android devices. Two ML models were developed, one based on source
code assessment using a set of words and the other based on permissions. The Dataset included 387
instances for the permission-based approach and 400 applications for the source code-based method.
The C4.5 DT, logistic regression (LR), JRip, Bayes networks, and SVM with minimal sequential
optimization (SMO) classifiers were used. The results indicated that SVM attained the highest results
using the source code-based approach, attaining an F1-score of 95.1%. Some improvements can be
explored by examining how the suggested permission and source code analysis interact to produce
different results. Another enhancement could be done by integrating the static and dynamic application
analysis, using multiple classifiers to assess source code and dynamic application properties in
real-time.

On the other hand, Suarez-Tangil et al. [25] introduced DroidSieve, a malware classification system
whose characteristics are generated from a rapid and scalable static analysis of Android applications.
DroidSieve determines if an app is dangerous; if so, it labels it as part of a malware family. The authors
used a dataset with over 100k malicious and benign applications. Their model used a binary class label
for malware detection and a multi-class label for family classification. ET was used for classification in
their study, and the mean decrease in impurity (MDI) technique was utilized for feature selection. They
achieved a detection accuracy of 99.82% with zero false positives and a malicious family identification
accuracy of 99.26%. According to their findings, static analysis for Android can work even when
faced with obfuscation techniques like reflection, dynamically loaded native code, and encryption.
Nevertheless, their approaches are susceptible to mimic attacks since the features they extract can be
fabricated. As malware grows more complex, the classifier’s performance may organically deteriorate
over time. This occurrence is described as concept drift.

In another study, Martín et al. [26] analyzed indirect characteristics and their ability to detect
malware using ML. Around 118K Android apps were acquired from the Google Play Store, where
malware was declared in 69K apps, and the others were considered goodware. Feature selection was
applied by some algorithms, including Pearson’s chi-squared test, entropy-based methods, and RF
feature importance. The classifiers used were LR, SVM, and RF, where RF yielded the highest results
with an 89% F1 score. Their analysis showed that metadata could be utilized as a basic static malware
predictor, making it ideal for simultaneously analyzing vast numbers of Android apps. It is also

CMC, 2023, vol.76, no.3 3171

feasible to create an in-device system that warns users about the style of programs and the risk of
installing them.

In addition, Fang et al. [27] presented a unique technique in which frequent subgraphs (fre-graphs)
are formed to describe the common behaviours of malware samples of the same family. Furthermore,
they have developed FalDroid, a unique method that automatically classifies Android malware and
selects typical malware samples based on free graphs. They used a dataset of 8407 samples to train
four different classifiers: SVM with linear kernel, k-nearest neighbour (K-NN), RF, and DT. SVM
achieved the highest result compared to the other classifiers, with an accuracy of 95.3%. Furthermore,
FalDroid attained 94.2% accuracy. Due to the difficulties of gathering Android malware samples
with precise labels, the Dataset contained only 8,407 malware samples from 36 families, with labels
based on VirusTotal findings. As a result, the authors concluded that VirusTotal’s results might not be
entirely accurate. Martín et al. [28] found that most malware incidents are related to misusing adware
or hazardous apps, while others are unknown. The authors aimed to categorize unknown software
into either adware or harmful risks using a dataset of 82,866 harmful samples, representing 51.5% of
the dataset samples. The classification algorithms used were LR and RF, where RF outperformed LR
with an F1-score of 84%. It has been noticed that adware and harmful programs are often autonomous,
but the unknown category gives no more indication of the threat.

In another study by Mehtab et al. [29], the authors employed AdDroid. This ensemble-based ML
approach merges adaptive boosting (Adaboost) with standard classifiers to build a model that detects
fraudulent apps. After employing feature selection on a dataset of 1420 Android applications, of which
910 are malicious and 510 are benign, DT integrated with Adaboost achieved an accuracy of 99.11%.
As the suggested approach has very low computational complexity, it can be used to examine real-
world applications. Their work can be improved by using a larger dataset of harmful and trustworthy
applications, considering the order in which the rule appears, and combining dynamic analysis with
the suggested method to analyze disguised malware.

Yang et al. [30] developed a model to improve the accuracy of Android malware detection. The
model uses DT and SVM to classify applications as malicious or benign. The study used the University
of Gottingen’s Drebin project dataset, which contains 5560 malware samples collected from August
2010 to October 2012. The Dataset was divided into three sections in the ratio 6:2:2, representing the
training set, the pseudo test set, and the test set. Moreover, the 3-gram technique was used for feature
selection. The model achieved an accuracy of 96%.

In another study, McLaughlin et al. [31] presented a methodology that improves accuracy in three
scenarios: malware binary detection, malware family classification, and malware categorization. The
model used over 5000 samples that were divided into two categories: malicious and non-malicious.
Furthermore, they classified malware into four categories: adware, ransomware, scareware, and short
message service (SMS). They used three classifiers, namely RF, DT, and ET. Moreover, three feature
selection techniques were used: Recursive feature elimination (RFE), light gradient boosting model
(LGBM), and RF. The findings demonstrate that ET achieved the highest weighted accuracy of all
other classifiers. The accuracy of malware detection, malware categorization, and malware family
classification was 87.75%, 79.97%, and 66.71%, respectively. The proposed model could be improved
by adding a static element. Moreover, feature extraction must be implemented, which converts
most network characteristics into CSV files to detect malware at the multilayer level (packet, flow,
conversation, and connection). In addition, the existing model needs to be implemented by considering
more criteria when identifying Android malware.

3172 CMC, 2023, vol.76, no.3

2.2 Android Detection Based on Deep Learning

Hussain et al. [32] introduced a new system based on phantom routing technique to detect
adversary malware. The system detects malware by processing the bytecode, which is treated as text
and then analyzed. The system was based on three different sets of data. The first Dataset was obtained
from the Android malware genome project, containing 2,123 applications, of which 863 are benign, and
1,260 are malicious applications that classify 49 types of malware. The second Dataset was obtained
from the McAfee labs, consisting of 2,475 malicious programs and 3,627 benign applications. The
third Dataset is also from the McAfee labs, comprising information for approximately 18,000 Android
applications. The results showed that the system could classify over 3000 applications per second.
Furthermore, the system’s accuracy reached 98% when using the first, 80% when using the second,
and 87% with the third.

Stiawan et al. [33] developed Android malware detection with autonomous representation learning
in another study. The sample set for the examination consisted of 91,000 applications. With 40
samples per family, in the detection task, the highest F1-score achieved was 99%. MalDozer provides
automated feature engineering for new malware variants during the training phase. It employs
minimum processing, making it suitable for deployment on tiny devices. With comparable speed,
MalDozer can trace malware and classify it to the correct malware family. On the other hand, like any
static analysis-based detection system, MalDozer is vulnerable to dynamic code loading and reflection
obfuscation, where the app gets the malicious script and runs it at runtime. Additionally, MalDozer
does not honour natives.

With similar objectives and API calls, Lee et al. [34] used deep neural networks (DNN) to
detect Android malware and categorize it as benign or malware. The study used gradient descent for
optimization. The model extracts feature from each application’s Android manifest file and other Java
files. The contribution of this work consists of using a dataset containing types of malware collected
from 2013 to 2017, as well as using features not explored in previous investigations, such as API calls,
intent filters, and permission combinations. The number of applications collected is 1,200, of which
600 are benign, and 600 are malicious. The accuracy of the model reached 95.31%.

Furthermore, Feng et al. [35] proposed an artificial neural network (ANN) based model to classify
malware types. They built a dataset that includes 20,000 Android malware with 200 features. The
Dataset was constructed using virus information service (VIS) reports, and they added new features
such as opcodes. This study has classified more than 1,000 types based on their characteristics.
However, some types have been repeated for small numbers and expressed as “others.” Thus, the total
number of malware was 223. The results showed that the accuracy of the proposed model reached
85.76%. Feng et al. [35] aimed to improve Android malware detection using 16479 apps containing
benign and malware samples. They implemented a two-tier model, where the first tier uses permission,
intent, and component information-based static malware detection model. Through the combination
of static features and fully connected neural networks, it was able to detect the malware and test its
efficacy with 95.22%. In the second tire, they used a combination of CNN and AutoEncoder. In the
second tier, a binary classification accuracy of 99.3%, a multi-class classification accuracy of 98.2% for
malware category detection, and a multi-class classification accuracy of 71.48% for malicious family
categorization were yielded.

More recently, Alzaylaee et al. [36] explored the performance of DL-Droid via a series of
experiments that aimed to increase the accuracy of zero-day Android malware detection using a dataset
consisting of 31125 samples. The authors concluded that adding static feature permissions enhances
the accuracy of DL-detection droids, reaching 98.5%. This model can potentially improve self-
adaptation to the performance of DL-based malware detection systems. The findings also emphasize

CMC, 2023, vol.76, no.3 3173

improving input generation for dynamic analysis systems that use machine learning to detect Android
malware. Furthermore, Kim et al. [37] proposed a malware analysis system that can be deployed in
mobile devices with low computation. The proposed system uses CNN to detect shared features among
malware API call graphs. It also uses a lightweight learner that computes the similarity between API
call graphs utilized in malicious operations and API call graphs of apps to be categorized. The results
demonstrated the effectiveness of the proposed system, achieving an accuracy of 91.27%. Additionally,
the system can classify the applications 145.8% faster, with a memory consumption of 10 times less
than previous models.

Albakri et al. [38] combined DL with rock hyrax swarm optimization (RHSO) for detecting
Android malware attacks. The RHSO was mainly used to select the most contributing features to the
target class. The DL model used for classification is the attention recurrent autoencoder optimized
using the Adamax optimizer. The proposed model achieved an accuracy of 99.05%.

Lately, Xie et al. [39] utilized two open-source datasets: CIC-AndMal2017 and CICMal-
Droid2020, to build a classification model for detecting Android malware. The authors used InfoGain
and Chi-square test for feature selection. After that, they optimized five classifiers using a genetic
algorithm and combined them in a stacking ensemble. The proposed stacking model achieved an
accuracy of 98.43% using the first Dataset and 98.66% using the second Dataset.

According to the literature, some studies have been undertaken for Android malware detection
to determine whether an application is malware or benign [40]. Some other studies classified malware
applications based on their families. Although most previous studies performed well, updated malware
has some limitations. The limitations can be resolved by using an updated dataset considering the
sequence in which the rules come and observing how different approaches interact to produce a better
result, such as integrating static and dynamic application analysis. Furthermore, as malware becomes
more complex and the classifier’s performance may gradually reduce, it is recommended to keep the
Dataset up to date to train the model with more evolved malware and extract the most relevant features
to attain more accurate results. Accordingly, this study aimed to utilize a study not investigated in
previous studies. ML classifiers were trained using the selected Dataset with a hypothesis to avoid
previous studies’ drawbacks and yield an outstanding result. Furthermore, most reviewed studies have
been found to use black-box models such as RF, DNN, SVM, ET, and ANN. Therefore, in the current
study, we have used post hoc EAI to add transparency to the ET classifier. Table 1 below summarizes
all studies mentioned in this section.

Table 1: Summary of the discussed studies

Study Dataset Number of samples Number of features Technique Result

Martín et al. [26] 118K 69K malware and 49K
goodware

14 intrinsic features,
seven social-related
features, and two
entity-related features

RF 89% F1-core.

Fan et al. [27] 8407 – – SVM 94.2% accuracy

Martín et al. [28] 82866 Harmful samples represent
51.5%
whereas Adware 48.5%

– RF 84% F1-score

(Continued)

3174 CMC, 2023, vol.76, no.3

Table 1 (continued)

Study Dataset Number of samples Number of features Technique Result

Mehtab et al. [29] 1420 910 malicious and 510
benign

– DT 99.11% accuracy

Yang et al. [30] 2444 1222 malware 100 RF 92.6% F1-score

McLaughlin
et al. [31]

M0Droid 400 200 malicious and 200
benign

100 SVM 95.1% F1-score

Hussain et al. [32] Over 100K 100K goodware and over
17k malware

320 for family
identification

ET 99.82% accuracy

Stiawan et al. [33] 9974 5560 malware and 4414
benign

– A decision
tree with
SVM

Accuracy is 96%

Lee et al. [34] 5000 – 9 ET For malware detection,
malware categorization,
and malware family
classification, the
accuracies were 87.75%,
79.97%, and 66.71%,
respectively

Feng et al. [35] Three different
datasets:
1. 2123 applications
2. 6102 applications
3. 18000 Android
programs

The first Dataset contains
863 benign and 1260
malware. The second one
contains 3627 benign and
2475 malware. The last
Dataset contains 9268
benign and 9902 malware

– DNN Accuracy is:
98% for the small
Dataset, 80% for the
large Dataset
87% for the v.large
dataset

Alzaylaee et al. [36] 91k 40 samples per malware
family

49 DNN F1-score between 96%
and 99%

Kim et al. [37] 1200 applications Six hundred benign apps
and 600 malicious apps

– DNN 95.31% accuracy

Albakri et al. [38] 20000 19750 malware 235 ANN 85.76% accuracy

Batista et al. [41] 9419 5065 benign and 4354
malware

5692 CNN 99.19% accuracy

Khan et al. [42] 31125 19,620 benign 11,505
malware

420 RF 98.5% accuracy

Lemaître et al. [43] 43692 33692 malware and 10000
benign

4312 Lightweight
classifier

91.72% accuracy

Geurts et al. [44] 22000 9000 benign samples and
13,000 malware samples

104 attention
recurrent
autoencoder

99.05% accuracy

Boulesteix et al. [45] 17426 in the first
dataset and 17243 in
the second dataset

426 malicious and 1700
benign in the first dataset
and 13204 malicious and
4039 benign in the second
dataset

GA-Stacking 98.43% accuracy (First
Dataset)
98.66% accuracy
(Second Dataset)

CMC, 2023, vol.76, no.3 3175

3 Materials and Methods

This study aimed to implement an ML-based model for detecting Android malware that provides
timely prediction. The proposed methodology is illustrated in Fig. 1, where a new dataset, TUAN-
DROMD, was utilized, consisting of 4465 different apps classified into malware and goodware [46].
Three ML classifiers: Extra tree (ET), random forest (RF), and support vector machine (SVM) was
trained and compared in terms of six measures: accuracy, precision, sensitivity, F1-score, Cohen’s
Kappa, and elapsed time.

Figure 1: Block diagram of proposed study methodology

3.1 Description of the Dataset

The TUANDROMD dataset is used in this study, comprising 178 permission-based and 186 API-
based features relevant for differentiating between malware and benign Android apps. The Dataset
contains 4465 applications divided into 135 categories and 71 malware families, with around 900
applications classified as goodware. There are 242 binary attributes in the Dataset, with 71 labels
related to the malware family. The Dataset comprises 3565 malware records and 899 goodware
records, as shown in Fig. 2. It was observed that the data is highly imbalanced. Therefore, three
sampling techniques were performed to balance the Dataset: RandomOversampler SMOTETomek,
and RandomUndersampler. Fig. 2 demonstrates the number of samples per category before and after
applying the sampling techniques. Furthermore, since the Dataset had already been pre-processed
before publication, no pre-processing steps were applied in this study.

3.2 Data Balancing Techniques

According to Borah et al. [12], the Dataset they collected is not balanced but can be balanced
by collecting more samples or using sampling techniques. Therefore, the effect of applying three
sampling techniques, namely, RandomOversampler, RandomUnderSampler, and SMOTETomek,
were investigated by measuring the proposed models’ performances.

3176 CMC, 2023, vol.76, no.3

Figure 2: Number of samples per category before and after applying the data balancing techniques

3.2.1 RandomOverSampler

RandomOverSampler is a non-heuristic method that replicates minority class instances at random
to balance class distribution. Consequently, RandomOverSampler added 2,666 positive samples to the
Dataset with 899 positives and 3,565 negative cases. However, since RandomOverSampler produces
the exact copies of minority class examples, it can increase the likelihood of overfitting [47].

3.2.2 RandomUnderSampler

RandomUnderSampler is a non-heuristic method that reduces most class instances at random
to balance the classes’ distribution. Consequently, RandomUnderSasmpler eliminated 2,666 negative
samples from the utilized Dataset, resulting in 899 malware and 899 goodware instances. Undersam-
pling contributes to reducing the computational burden of analyzing massive datasets. However, it
may cause the loss of potentially relevant data [48].

3.2.3 Synthetic Minority Oversampling with Tomek Links (SMOTETomek)

SMOTE performs by generating artificial samples using k-nearest neighbours and sampling with
replacement to add instances to the minority class. Tomek links is an undersampling technique that
eliminates samples belonging to the majority class that is too close to those belonging to the minority
class [48]. Accordingly, combining SMOTE with Tomek links is considered an over-under-sampling
technique. After applying SMOTETomek, the positive class comprised 3,565 samples, and the negative
class comprised 3,565.

3.3 Description of the Classifiers

Three classification techniques, ET, RF, and SVM, were trained and compared to find the best-
performing model for classifying malware in Android devices. The following section discusses the
classifiers theoretically.

CMC, 2023, vol.76, no.3 3177

3.3.1 Extra Tree Classifier

ET, also called Extremely Randomized Trees, is a form of ensemble learning that outputs a
classification result by combining the outcomes of several de-correlated decision trees gathered in a
“forest.” It is similar to RF but enhances the variation using a different approach to building trees.
Each decision stump is constructed using a specific criterion: as follows. First, use all available data
to build the stump. Second, take the square root of the feature number to create a subset of randomly
selected features of equal size that can be used to select the best split, and that can be used to build
the root node or any node. Third, one is the maximum depth of the decision stump. Considering this
approach, the randomized selection of the features and tree creation is the power of this classifier,
making it computationally inexpensive compared to the RF classifier. The information gain is used as
a decision criterion that first calculates the entropy using the following formula in Eq. (1):

Entropy (x) =
∑n

c=1
− pclog2 (pc) (1)

where c is the output label, n is the number of unique class labels, and pc is the proportion of rows with
c. After that, entropy is used to calculate the information gain for each feature Y, which is mentioned
in Eq. (2)

IG (X , Y) = Entropy (X) −
∑

vε Values(Y)

|Xv|
X

Entropy (Xv) (2)

Finally, using the information to gain maximum value results, the ET forest is the most important
variable to determine the output label [49,50].

3.3.2 Random Forest Classifier

RF is one of the most effective ML algorithms that use many decision trees. It is an ensemble of
trees built from a training set and verified to classify the target class. It reduces the model sensitivity to
the original data by bootstrapping and decreases variance using random feature selection. RF comes
in various forms, but the basic one works as follows. First, it generates many datasets from the original,
each containing random rows with the same number of records as the original Dataset. This step is
called bootstrapping. Each decision tree is then trained separately by selecting random features from
each bootstrapping Dataset. The next step is to build the trees using information gain criteria to choose
the splitting features as explained in the previous classifier. Finally, all predictions must be combined
using the majority vote as the final result, known as aggregation [50].

3.3.3 Support Vector Machine

SVM is an ML algorithm based on Vapnik’s statistical learning theory that seeks to improve the
model’s ability in the generalization process. The most important feature of this method is its ability to
overcome local minimum limits and the curse of dimensionality. Based on the training set, the SVM
tries to find a line that separates two labels, known as the “hyperplane line,” and support vectors are
the points closest to the hyperplane. There can be multiple lines between category labels, but the one
with the widest margin between the two labels is chosen. Thus, when the classifier is applied to the test
set, SVM compares each record to the hyperplane line and classifies it with either the first or second
class. The formula for SVM is mentioned in Eq. (3)

f (input) = weight · input + bias (3)

3178 CMC, 2023, vol.76, no.3

where each input has weight, then calculate the corresponding output value based on the weight and
bias/intercept. Moreover, the formula of each label lying above the hyperplane is weight·input + bias ≥
1 while the label below the hyperplane is weight · input + bias ≤ −1.

3.4 Hyper-Parameter Tuning

Each ML model has two types of parameters: hyper-parameters and model parameters. Hyper-
parameters are the values the programmer configures using trial-and-error that contribute to increas-
ing the algorithm’s learning performance. On the other hand, a model’s parameters alter independently
based on the optimal hyper-parameter found. One of the most popular hyper-parameters tuning
techniques is GridSearchCV, which tries all possible combinations of values defined in a grid to find
the best using cross-validation. This study, 10-fold cross-validation was applied to the training set to
find the optimal hyper-parameters for each algorithm in all experiments. Table 2 outlines the optimal
hyper-parameter values for each algorithm in the different sets of experiments.

Table 2: The optimal hyper-parameters produced by the GridSearchCV technique in each experiment

Experiment Classifier Hyperparameter Training
accuracy

Original dataset
SVM C = 7, gamma = 0.1, kernel = RBF 99.33%
RF max_features = log2, n_estimators = 120,

max_depth = None, criterion = gini
99.46%

ET max_features = log2, n_estimators = 100,
max_depth = None, criterion = entropy

99.52%

RandomOverSampler
SVM C = 10, gamma = 0.1, kernel = RBF 99.64%
RF max_features = sqrt, n_estimators = 30,

max_depth = None, criterion = gini
99.62%

ET max_features = sqrt, n_estimators = 60,
max_depth = None, criterion = gini

99.58%

SMOTETomek
SVM C = 15, gamma = 0.1, kernel=RBF 99.36%
RF max_features = log2, n_estimators = 140,

max_depth = None, criterion = gini
99.44%

ET max_features = sqrt, n_estimators = 140,
max_depth = None, criterion = gini

99.46%

RandomUnderSampler
SVM C = 2, gamma = 0.1, kernel = RBF 98.89%
RF max_features = log2, n_estimators = 30,

max_depth = None, criterion = gini
98.65%

ET max_features = sqrt, n_estimators = 40,
max_depth = None, criterion = entropy

99.21%

3.5 Performance Measures

This study utilized six performance measures to compare the performance of the proposed ML
models: accuracy, precision, recall, F1-score, Cohen’s kappa, and elapsed time. Accuracy refers to the
percentage of cases correctly classified. However, it can be misleading in the case of highly imbalanced

CMC, 2023, vol.76, no.3 3179

datasets. Precision refers to how well a model produces positive outcomes, whereas recall refers to how
well a model categorizes positive samples. In an imbalanced dataset, F1-score gives a better indicator
than accuracy, combining the results of the precision and recall scores in a single score. The agreement
between predicted and real labels is measured by Cohen’s kappa score, which p0 indicates the accuracy
of the models and pe signifies the agreement between predicted and actual labels. Besides, the elapsed
time is an essential metric in real-time applications since it calculates how long it takes for a model to
produce a prediction.

Accuracy = Correctly classified samples
Total number of samples

(4)

Precision = Correctly classified malware samples
Total number of positive predictions

(5)

Recall = Correctly classified malware samples
Total number of positive samples

(6)

F1 − score = 2 × precision × recall
precision + recall

(7)

Cohen′s kappa = p0 − pe

1 − pe

(8)

4 Experimental Setup and Result

The experiment was implemented using the Python version 3.8.5, Sklearn version 1.0.2, and
imbalanced-learn version 0.8.0, with a fixed seed value of 42. Four experiments were conducted:
Using original data, over-sampled data using RandomOverSampler, over-under-sampled data using
SMOTETomek, and under-sampled data using RandomUnderSampler. All experiments’ data were
split into 70% for training and 30% for testing. GridSearchCV with 10-fold cross-validation was
utilized to tune the algorithms’ hyper-parameters. The three models in each experiment were evaluated
using six performance measures. Table 3 Represents the proposed classifiers’ performance without
applying data sampling techniques to the Dataset, Table 4 Represents the proposed classifiers’
performance with RandomOverSampler, and Table 5 Shows the classifiers’ performance after the
SMOTETomek over-undersampling technique, and Table 6 Represents the performance of the classi-
fiers using RandomUnderSampler.

Table 3: Performance evaluation of the three classifiers with data imbalance

Classifier Class Accuracy Precision Recall F1-score Cohen’s
Kappa

Elapsed
time

SVM Malware 0.9933 0.9972 0.9945 0.9958 0.9784 0.0877 s

Goodware 0.9768 0.9883 0.9825
RF Malware 0.9933 0.9972 0.9945 0.9958 0.9784 0.0240 s

Goodware 0.9768 0.9883 0.9825
ET Malware 0.9933 0.9972 0.9945 0.9958 0.9784 0.0240 s

Goodware 0.9768 0.9883 0.9825

3180 CMC, 2023, vol.76, no.3

Table 4: Performance evaluation of the three classifiers with RandomOverSampler

Classifier Class Accuracy Precision Recall F1-score Cohen’s
Kappa

Elapsed
time

SVM Malware 0.9953 0.9982 0.9927 0.9954 0.9869 0.0997 s

Goodware 0.9924 0.9981 0.9952
RF Malware 0.9935 0.9945 0.9927 0.9936 0.9878 0.0160 s

Goodware 0.9924 0.9943 0.9933
ET Malware 0.9953 0.9982 0.9927 0.9954 0.9897 0.0198 s

Goodware 0.9924 0.9981 0.9952

Table 5: Performance evaluation of the three classifiers with SMOTETomek data undersampling

Classifier Class Accuracy Precision Recall F1-score Cohen’s
Kappa

Elapsed
time

SVM Malware 0.9939 0.9991 0.9890 0.9940 0.9878 0.0977 s

Goodware 0.9886 0.9990 0.9938
RF Malware 0.9949 1.000 0.9899 0.9949 0.9897 0.0400 s

Goodware 0.9896 1.0000 00.9948
ET Malware 0.9953 0.9982 0.9927 0.9954 0.9897 0.0467 s

Goodware 0.9924 0.9981 0.9952

Table 6: Performance evaluation of the three classifiers with RandomUnderSampler

Classifier Class Accuracy Precision Recall F1-score Cohen’s
Kappa

Elapsed
time

SVM Malware 0.9889 0.9963 0.9818 0.9890 0.9778 0.0199 s

Goodware 0.9815 0.9962 0.9888
RF Malware 0.9889 0.9963 0.9818 0.9890 0.9697 0.0080 s

Goodware 0.9815 0.9962 0.9888
ET Malware 0.9796 0.9888 0.9708 0.9797 0.9741 0.0080 s

Goodware 0.9705 0.9887 0.9795

Overall, the results indicate that the highest accuracy is achieved in experiments 2 and 3, where
the RandomOverSampler and SMOTEtomek sampling techniques were applied to the Dataset before
training the algorithms. On the other hand, the least performance is recorded when using the
RandomUnderSampler technique. The highest accuracy of 99.53% is obtained using the SVM and
ET models in experiment 2 and the ET model in experiment 3. However, since malware detection is
one of the security issues requiring fast performance, it is concluded that the ET model outperformed
the SVM model with an elapsed time of 0.0198 s. Even though ensemble learners have a higher time
complexity than base learners, SVM recorded a higher elapsed time than the ensemble learners since

CMC, 2023, vol.76, no.3 3181

the data was not normalized in the pre-processing stage. To further compare the results in terms of true
positive, true negative, false positive, and false negative counts, confusion matrices were constructed
and represented in Fig. 3.

Figure 3: Confusion matrix for classifiers in three different cases

3182 CMC, 2023, vol.76, no.3

By comparing the results of the models in each experiment, it is evident that all models performed
equally well in experiment 1. Furthermore, it is marked that all models performed equally in identifying
malware events in experiment 2, whereas ET achieved the lowest false-positive counts. On the other
hand, it is shown that ensemble learners outperformed in experiment 3, whereas SVM achieved the best
results in experiment 4. From Table 3 it was concluded that ET performed the best in experiments 2 and
3. Failure to detect malware events could lead to serious consequences, including critical information
getting compromised, intelligent systems, and slowing down daily business operations. Accordingly,
looking in-depth into the false positive and false negative counts, it is indicated that ET performed
better in experiment 2 since it achieved a lower false negative count.

Based on the literature review results, it is found that the study by Alzaylaee et al. [36] used an RF
classifier and achieved an F-score of 92.6%. Another study by Martín et al. [28] used RF to obtain
an F-score of 89%. Yang et al. [30] and Stiawan et al. [33] conducted a study on malware detection
on Android devices and achieved the highest F-score of 95.1% and 95.3% accuracy, respectively,
utilizing the same classifier. Compared with the TUANDROMD dataset, this study achieved an F-
score of 99.58% for detecting malware events and 98.25% for detecting goodware events using the RF
classifier with an elapsed time of 0.0240 s. Several data sampling techniques were applied to improve the
results since the Dataset utilized was imbalanced. ET outperformed other classifiers after utilizing the
RandomOverSampler technique, achieving an accuracy of 99.53%. Comparing our study to the test
results published in the literature, ours outperforms them all before and after applying the sampling
techniques, with an elapsed time of less than one millisecond. Although McLaughlin et al. [31] achieved
higher accuracy than our study, the Dataset utilized in their study is considered outdated since more
sophisticated Android malware was developed after 2017.

The suggested approach can be useful in detecting Android malware efficiently while identifying
the most contributing features to the given prediction. As a result, it may be quite beneficial to analyze
the nature of malware events and lower their likelihood at high speed. However, some limitations
accompany the model’s performance, including the number of features and its inability to classify the
malware type.

5 Explainable Artificial Intelligence

ML models’ current evolution and rapid advancements proved to be highly effective in cyber
security, including intrusion detection, malware detection, and spam filtering. Despite their impressive
performance, ML models lack explainability, which reduces users’ confidence in the models used to
defend against cyberattacks, particularly in today’s increasingly complex and diverse cyberattacks [28].
To overcome this burden, EAI has been introduced to analyze and understand the decisions made
by ML models. There are two categories of EAI techniques: global and local explanations. Global
explanations provide insight into the model’s behaviour and explain the effect of each feature on the
class label. On the other hand, local explanations justify the model’s explanation for one instance. In
this study, the Shapely additive explanation (SHAP) was utilized for the global explanation, whereas
the local interpretable model-agnostic explanation (LIME) was used for the local explanation.

5.1 SHAP

SHAP is an EAI technique that provides a global explanation by calculating Shapley values
as a game theory concept based on players and rewards. Based on each feature’s Shapley value,

CMC, 2023, vol.76, no.3 3183

it can be estimated how much each feature contributed to the result [17]. The SHAP library was
utilized in this study to form the explanation for the ET-RandomOverSampler model, as illustrated
in Fig. 4, which shows the top 20 features contributing to the model’s performance. It is concluded
that the top three features contributing to the goodware class are: Ljava/net/URL;->openConnection,
Landroid/location/LocationManager;->getLastKgoodwarewnLocation, and Vibrate. On the other
hand, the top three features contributing to the malware class are Receive_Boot_Completed,
Get_Tasks, and Kill_Background_Processes.

Figure 4: The shapely values of the top 20 contributing features using the ET-RandomOverSampler
model

5.2 LIME

LIME is one of the popular EAI techniques that provides a local explanation using Lasso or short
trees. This technique analyzes the model’s behaviour in predicting a single instance [16], as illustrated in
Figs. 5 and 6, which shows the top 10 features contributing to the model’s performance. It is indicated
that all features except Landroid/location/LocationManager;->getLastKgoodwarewnLocation,
Ljava/net/URL;->openConnection, and Sdcard Write contributed to predicting the instance as
goodware. Conversely, all the instances, except for System_Alert_Windows, Receive_SMS, and
Media_Button, contributed to categorizing the instance as malware.

3184 CMC, 2023, vol.76, no.3

Figure 5: LIME results using the ET-RandomOverSampler model for the goodware event

Figure 6: LIME results using the ET-RandomOverSampler model for malware event

CMC, 2023, vol.76, no.3 3185

6 Conclusion and Future Work

Malware has been forming dangerous threats to Android users over the last few years, stealing
their personal information and slowing their devices. ML algorithms showed promising results in the
real-time detection of malware events. Accordingly, this study aimed to classify Android programs into
malware and goodware. The performance of three classifiers, SVM, RF, and ET, were compared and
evaluated in four experiments using the up-to-date TUANDROMD dataset. This research showed
that different sampling techniques had diverse effects on the performance of ML algorithms. Four
experiments were done in this study, where the imbalanced data was used to train the algorithms in
the first experiment. In contrast, RandomOverSampler, SMOTETomek, and RandomUnderSampler
were applied in the second, third, and fourth experiments, respectively. Additionally, the study
proved the ability of ML to accurately and rapidly identify Android malware, where the results
demonstrated the reliability of the ET-RandomOverSampler model in differentiating between malware
and goodware events with an accuracy of 99.53% with an elapsed time of 0.0198 s. Furthermore, EAI
techniques were employed to understand the proposed model’s decisions better. Despite the promising
results, there is room for improvement by incorporating more applications to overcome the imbalance
issue. Additionally, the effect of different feature selection techniques could be investigated to reduce
the time complexity. Besides, the proposed paradigm could be deployed in a web-based application for
real-time applications.

Acknowledgement: We would like to thank SAUDI ARAMCO Cybersecurity Chair for funding this
project.

Funding Statement: This work was funded by the SAUDI ARAMCO Cybersecurity Chair at Imam
Abdulrahman Bin Faisal University, Saudi Arabia.

Author Contributions: Conceptualization, N.A. and I.U.K.; methodology, S.A.B.; software, A.A.; vali-
dation, L.A.A., R.M.K.; formal analysis, Z.A.A.; investigation, T.H.; resources, S.S.A.; data curation,
N.A.; writing—original draft preparation, I.U.K.; writing—review and editing, T.H.; visualization,
S.S.A.; supervision, N.A.; project administration, S.S.A.; funding acquisition, I.U.K. All authors have
read and agreed to the published version of the manuscript.

Availability of Data and Materials: The study used an open-source dataset.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
[1] “Interview with mobile phone inventor Marty Cooper—BBC News,” 2022. [Online]. Available: https://

www.bbc.com/news/av/technology-22020666
[2] J. Khan, H. Abbas and J. Al-Muhtadi, “Survey on mobile user’s data privacy threats and defense

mechanisms,” Procedia Computer Science, vol. 56, no. 1, pp. 376–383, 2015.
[3] “Forecast number of mobile users worldwide 2020–2025|Statista,” 2022. [Online]. Available: https://www.

statista.com/statistics/218984/number-of-global-mobile-users-since-2010/
[4] “IDC—Smartphone Market Share—Market Share,” 2022. [Online]. Available: https://www.idc.com/

promo/smartphone-market-share/market-share
[5] “Newsroom, Announcements and Media Contacts|Gartner,” 2022. [Online]. Available: https://www.

gartner.com/en/newsroom

https://www.bbc.com/news/av/technology-22020666
https://www.bbc.com/news/av/technology-22020666
https://www.statista.com/statistics/218984/number-of-global-mobile-users-since-2010/
https://www.statista.com/statistics/218984/number-of-global-mobile-users-since-2010/
https://www.idc.com/promo/smartphone-market-share/market-share
https://www.idc.com/promo/smartphone-market-share/market-share
https://www.gartner.com/en/newsroom
https://www.gartner.com/en/newsroom

3186 CMC, 2023, vol.76, no.3

[6] H. Wang, Z. Liu, J. Liang, N. V. Rodriguez, Y. Guo et al., “Beyond google play: A large-scale comparative
study of Chinese android app markets,” in Proc. of IMC, New York, NY, USA, pp. 293–307, 2018.

[7] F. Wei, Y. Li, S. Roy, X. Ou and W. Zhou, “Deep ground truth analysis of current android malware,” in
Lecture Notes in Computer Science, Cham, Springer, vol. 10327, pp. 252–276, 2017.

[8] D. Dinkar, “McAfee Labs Threats Report: March 2016,” 2016. [Online]. Available: www.mcafee.com/us/
mcafee-labs.aspx

[9] M. Abuthawabeh and K. Mahmoud, “Enhanced android malware detection and family classification, using
conversation-level network traffic features,” The International Arab Journal of Information Technology,
vol. 17, no. 4, pp. 607–614, 2020.

[10] B. Rashidi and C. J. Fung, “A survey of android security threats and defenses,” Journal of Wireless Mobile
Networks, Ubiquitous Computing, and Dependable Applications, vol. 6, no. 3, pp. 3–35, 2015.

[11] K. Iman, M. Kassiri and M. Salleh, “Preventing collusion attack in android,” International Arab Journal
of Information Technology, vol. 12, no. 6, pp. 719–727, 2015.

[12] P. Borah, D. Bhattacharyya and J. Kalita, “Malware dataset generation and evaluation,” in 2020 IEEE 4th
Conf. on Information & Communication Technology (CICT), Chennai, India, pp. 1–6, 2020. https://doi.
org/10.1109/CICT51604.2020.9312053

[13] “Mobile Device Security and Data Protection—Android,” 2022. [Online]. Available: https://www.android.
com/safety/

[14] “Half a million Android users tricked into downloading malware from Google Play|TechCrunch,”
2022. [Online]. Available: https://techcrunch.com/2018/11/20/half-a-million-android-users-tricked-into-
downloading-malware-from-google-play/

[15] D. Dasgupta, Z. Akhtar and S. Sen, “Machine learning in cybersecurity: A comprehensive survey,” The
Journal of Defense Modeling and Simulation, vol. 19, no. 1, pp. 57–106, 2020.

[16] N. Aslam, I. U. Khan, S. Mirza, A. AlOwayed, F. M. Anis et al., “Interpretable machine learning models for
malicious domains detection using explainable artificial intelligence (XAI),” Sustainability, vol. 14, no. 12,
pp. 7375, 2022.

[17] N. Aslam, I. U. Khan, R. F. Aljishi, Z. M. Alnamer, Z. M. Alzawad et al., “Explainable computational
intelligence model for antepartum fetal monitoring to predict the risk of IUGR,” Electronics, vol. 11, no. 4,
pp. 593, 2022.

[18] I. U. Khan, N. Aslam, R. AlShedayed, D. AlFrayan, R. AlEssa et al., “A proactive attack detection for
heating, ventilation, and air conditioning (HVAC) system using explainable extreme gradient boosting
model (XGBoost),” Sensors, vol. 22, no. 23, pp. 9235, 2022.

[19] S. Alwarthan, N. Aslam and I. U. Khan, “An explainable model for identifying at-risk student at higher
education,” IEEE Access, vol. 10, pp. 107649–107668, 2022.

[20] I. U. Khan, “Explainable artificial intelligence (XAI) model for the diagnosis of urinary tract infections
in emergency care patients,” Mathematical Modelling of Engineering Problems, vol. 9, no. 4, pp. 971–978,
2022.

[21] Z. Zhang, H. Al Hamadi, E. Damiani, C. Y. Yeun and F. Taher, “Explainable artificial intelligence
applications in cyber security: State-of-the-art in research,” IEEE Access, vol. 10, pp. 93104–93139, 2022.

[22] M. K. Alzaylaee, S. Y. Yerima and S. Sezer, “Emulator vs real phone: Android malware detection using
machine learning,” in Proc. of the 3rd ACM on Int. Workshop on Security and Privacy Analytics, IWSPA,
New York, NY, USA, pp. 65–72, 2017.

[23] N. Milosevic, A. Dehghantanha and K. K. R. Choo, “Machine learning aided android malware classifica-
tion,” Computers & Electrical Engineering, vol. 61, pp. 266–274, 2017.

[24] A. Gosiewska and P. Biecek, “IBreakDown: Uncertainty of model explanations for non-additive predictive
models,” 2019. https://doi.org/10.48550/arxiv.1903.11420

[25] G. Suarez-Tangil, S. K. Dash, M. Ahmadi, J. Kinder, G. Giacinto et al., “DroidSieve: Fast and accurate
classification of obfuscated android malware,” in Proc. of the Seventh ACM on Conf. on Data and
Application Security and Privacy, New York, USA, pp. 309–320, 2017.

www.mcafee.com/us/mcafee-labs.aspx
www.mcafee.com/us/mcafee-labs.aspx
https://doi.org/10.1109/CICT51604.2020.9312053
https://doi.org/10.1109/CICT51604.2020.9312053
https://www.android.com/safety/
https://www.android.com/safety/
https://techcrunch.com/2018/11/20/half-a-million-android-users-tricked-into-downloading-malware-from-google-play/
https://techcrunch.com/2018/11/20/half-a-million-android-users-tricked-into-downloading-malware-from-google-play/
https://doi.org/10.48550/arxiv.1903.11420

CMC, 2023, vol.76, no.3 3187

[26] I. Martín, J. A. Hernández, A. Muñoz and A. Guzmán, “Android malware characterization using metadata
and machine learning techniques,” Security and Communication Networks, vol. 2018, 5749481, 2018.

[27] M. Fang, J. Liu, X. Luo, K. Chen, Z. Tian et al., “Android malware familial classification and representative
sample selection via frequent subgraph analysis,” IEEE Transactions on Information Forensics and Security,
vol. 13, no. 8, pp. 1890–1905, 2018.

[28] I. Martín, J. A. Hernández and S. de los Santos, “Machine-learning based analysis and classification of
android malware signatures,” Future Generation Computer Systems, vol. 97, pp. 295–305, 2019.

[29] A. Mehtab, W. B. Shahid, T. Yaqoob, M. Amjad, H. Abbas et al., “AdDroid: Rule-based machine learning
framework for android malware analysis,” Mobile Networks and Applications, vol. 25, pp. 180–192, 2020.

[30] M. Yang, X. Chen, Y. Luo and H. Zhang, “An android malware detection model based on DT-SVM,”
Security and Communication Networks, vol. 2020, Article ID 8841233, 2020.

[31] N. McLaughlin, J. M. D. Rincon, B. Kang, S. Yerima, P. Miller et al., “Deep android malware detection,”
in Proc. of the Seventh ACM on Conf. on Data and Application Security and Privacy, NY, USA, pp. 301–308,
2017.

[32] T. Hussain, B. Yang, H. U. Rahman, A. Iqbal, F. Ali et al., “Improving source location privacy in social
Internet of Things using a hybrid phantom routing technique,” Computers & Security, vol. 123, pp. 102917,
2022.

[33] D. Stiawan, S. M. Daely, A. Heryanto, N. Afifah, M. Y. Idris et al., “Ransomware detection based on
opcode behavior using k-nearest neighbors algorithm,” Information Technology and Control, vol. 50, pp.
495–506, 2021.

[34] Y. Lee, Y. Kim, S. Lee, J. Heo and J. Hong, “Machine learning based android malware classification,” in
Proc. of the Conf. on Research in Adaptive and Convergent Systems (RACS ’19), New York, NY, USA,
Association for Computing Machinery, pp. 300–302, 2019.

[35] J. Feng, L. Shen, Z. Chen, Y. Wang and H. Li, “A two-layer deep learning method for android malware
detection using network traffic,” IEEE Access, vol. 8, pp. 125786–125796, 2020.

[36] M. K. Alzaylaee, S. Y. Yerima and S. Sezer, “DL-Droid: Deep learning based android malware detection
using real devices,” Computers & Security, vol. 89, pp. 101663, 2020.

[37] J. Kim, Y. Ban, E. Ko, H. Cho and J. H. Yi, “MAPAS: A practical deep learning-based android malware
detection system,” International Journal of Information Security, vol. 21, no. 4, pp. 725–738, 2022.

[38] A. Albakri, F. Alhayan, N. Alturki, S. Ahamed and S. Shamsudheen, “Metaheuristics with deep learning
model for cybersecurity and android malware detection and classification,” Applied Sciences, vol. 13, no. 4,
pp. 2172, 2023.

[39] N. Xie, Z. Qin and X. Di, “GA-stackingMD: Android malware detection method based on genetic
algorithm optimized stacking,” Applied Sciences, vol. 13, no. 4, pp. 2629, 2023.

[40] “UCI machine Learning Repository: TUANDROMD (Tezpur University Android Malware Dataset) Data
Set,” 2022. [Online]. Available: https://archive.ics.uci.edu/dataset/855/tuandromd+(tezpur+university+
android+malware+dataset)

[41] G. E. A. P. A. Batista, R. Prati and M. C. Monard, “A study of the behavior of several methods for balancing
machine learning training data,” ACM SIGKDD Explorations Newsletter, NY, USA, vol. 6, no. 1, pp. 20–
29, 2004.

[42] H. U. Khan, M. Sohail, F. Ali, S. Nazir, Y. Y. Ghadi et al., “Prioritizing the multi-criterial features based
on comparative approaches for enhancing security of IoT devices,” Physical Communication, vol. 59, pp.
102084, 2023.

[43] G. Lemaître, F. Nogueira and C. K. Aridas, “Imbalanced-learn: A python toolbox to tackle the curse of
imbalanced datasets in machine learning,” Journal of Machine Learning Research 1, vol. 18, no. 17, pp. 1–5,
2017.

[44] P. Geurts, D. Ernst and L. Wehenkel, “Extremely randomized trees,” Machine Learning, vol. 63, pp. 3–42,
2006.

https://archive.ics.uci.edu/dataset/855/tuandromd+(tezpur+university+android+malware+dataset)
https://archive.ics.uci.edu/dataset/855/tuandromd+(tezpur+university+android+malware+dataset)

3188 CMC, 2023, vol.76, no.3

[45] A. L. Boulesteix, S. Janitza, J. Kruppa and I. R. König, “Overview of random forest methodology and
practical guidance with emphasis on computational biology and bioinformatics,” Wiley Interdisciplinary
Reviews: Data Mining and Knowledge Discovery, vol. 2, no. 6, pp. 493–507, 2012.

[46] S. Agarwal, “Data mining: Data mining concepts and techniques,” in Int. Conf. on Machine Intelligence
and Research Advancement, Katra, India, pp. 203–207, 2013.

[47] Y. Nohara, K. Matsumoto, H. Soejima and N. Nakashima, “Explanation of machine learning models using
shapley additive explanation and application for real data in hospital,” Computer Methods and Programs
in Biomedicine, vol. 214, pp. 106584, 2022.

[48] R. Damaševičius, A. Venčkauskas, J. Toldinas and Š. Grigaliūnas, “Ensemble-based classification using
neural networks and machine learning models for windows PE malware detection,” Electronics, vol. 10,
no. 4, pp. 485, 2021.

[49] N. A. Azeez, O. E. Odufuwa, S. Misra, J. Oluranti and R. Damaševičius, “Windows PE malware detection
using ensemble learning,” Informatics, vol. 8, no. 1, pp. 1–10, 2021.

[50] S. Han, M. Gu, B. Yang, J. Lin, H. Hong et al., “A secure trust-based key distribution with self-healing for
internet of things,” IEEE Access, vol. 7, pp. 114060–114076, 2019.

	Explainable Classification Model for Android Malware Analysis Using API and Permission-Based Features
	1 Introduction
	2 Related Work
	3 Materials and Methods
	4 Experimental Setup and Result
	5 Explainable Artificial Intelligence
	6 Conclusion and Future Work
	References

