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ABSTRACT

In the speech recognition system, the acoustic model is an important underlying model, and its accuracy directly
affects the performance of the entire system. This paper introduces the construction and training process of the
acoustic model in detail and studies the Connectionist temporal classification (CTC) algorithm, which plays an
important role in the end-to-end framework, established a convolutional neural network (CNN) combined with an
acoustic model of Connectionist temporal classification to improve the accuracy of speech recognition. This study
uses a sound sensor, ReSpeaker Mic Array v2.0.1, to convert the collected speech signals into text or corresponding
speech signals to improve communication and reduce noise and hardware interference. The baseline acoustic model
in this study faces challenges such as long training time, high error rate, and a certain degree of overfitting. The
model is trained through continuous design and improvement of the relevant parameters of the acoustic model, and
finally the performance is selected according to the evaluation index. Excellent model, which reduces the error rate
to about 18%, thus improving the accuracy rate. Finally, comparative verification was carried out from the selection
of acoustic feature parameters, the selection of modeling units, and the speaker’s speech rate, which further verified
the excellent performance of the CTCCNN_5 + BN + Residual model structure. In terms of experiments, to train
and verify the CTC-CNN baseline acoustic model, this study uses THCHS-30 and ST-CMDS speech data sets as
training data sets, and after 54 epochs of training, the word error rate of the acoustic model training set is 31%, the
word error rate of the test set is stable at about 43%. This experiment also considers the surrounding environmental
noise. Under the noise level of 80∼90 dB, the accuracy rate is 88.18%, which is the worst performance among all
levels. In contrast, at 40–60 dB, the accuracy was as high as 97.33% due to less noise pollution.
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1 Introduction

Speech is a linguistic term coined by the Swiss linguist Saussure; it is a concept that is opposite
to language. Speech activity is mainly controlled by the individual’s free will; it has characteristics
of personal pronunciation, word use, expression and emotion, etc. In contrast, language is a social
part of speech activity, not dominated by individual will, but shared by members of society, and
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arises as a social psychological phenomenon. Speech activity, as defined by the linguist Saussure, is
used to collectively describe the phenomenon of human speech. Human language is a natural and
effective means of communication, and it is required at most levels of life to communicate with and
be understood by others. Verbal communication is taken for granted by most people. In contrast, if
an individual’s pronunciation or expression makes it difficult for others to even understand what they
are saying, it is highly inconvenient and frustrating.

Millions of people worldwide are unable to pronounce correctly and fluently due to disorders, such
as strokes, amyotrophic lateral sclerosis (ALS), cerebral palsy, traumatic brain injury, or Parkinson’s
disease. In response to this problem, we propose an end-to-end neural network architecture, as the
connectionist temporal classification-convolutional neural network (CTC-CNN) to help these people
communicate normally. Deep learning is mainly used in visual recognition, speech recognition, natural
language processing, biomedicine and other fields, and has achieved good results. This research
will use deep learning technology to develop a deep intelligent speech processing system, effectively
integrating signal processing, acoustic processing, language processing and deep learning. We will
research and develop intelligent multi-channel speech processing and speech separation, optimize
speech recognition, speech translation, speech emotion recognition and innovation. In the front-
end processing, we propose a multi-channel speech enhancement algorithm based on deep learning,
and this algorithm integrates beamforming technology and deep neural network. In terms of speech
separation, we propose a single-channel speech separation (SCSS) model based on GP regression.
The source of the estimate is measured by the predicted mean of the Gaussian Process (GP) regression
model, and the hyper-parameter learning process is performed by using a nonlinear conjugate gradient
algorithm. We propose Hierarchical Extreme Learning Machine (HELM) for audiovisual speech
enhancement as an alternative model for speech enhancement tasks. To enhance speech recognition,
the use of a novel graph regularization-based method is proposed to enhance speech features by
preserving the intrinsic diversity structure of the amplitude modulation spectrum and excluding
irrelevant ones. In machine translation, bidirectional translation between English and Chinese is
provided. The speech emotion recognition system uses a multi-feature extraction network based on
deep learning and a self-developed recurrent neural network. To understand the semantics of dialogue,
language understanding techniques for dialogue systems are developed. This study is developed with
the deep learning speech recognition system of this study. Through intelligent speech recognition
technology, the speech learning robot allows users to practice pronunciation and pronunciation in a
speech environment. Robustness technology mitigates the adverse effects of environmental distortions
to maintain acceptable performance levels for automatic speech recognition systems. Deep learning is
widely used today because of its powerful learning ability, it can be trained through large-scale data
sets, and autonomously extract and learn complex features and models from it. Deep learning uses
a multi-layer neural network model that allows the exclusion of layers. Extract an abstract feature
representation of the data. Through the combination of multiple hidden layers, the model can learn
higher-level and abstract special performance, thereby improving the performance of the model, and at
the same time, it can handle large data statistics and efficiently use these large model data to learn more
from it. Accurate and generalized models, and can be learned and trained in an end-to-end manner,
that is, from the initial input data, the final result is directly output, without the need to manually
design complex special processes. This simplifies the development process of the machine learning
system and improves the efficiency and accuracy of the model.

However, in the field of speech recognition, the performance of the acoustic model directly affects
the accuracy and stability of the final speech recognition system, requiring detailed consideration of
its establishment, optimization and efficiency [1]. The experiments in this study adopt CTC-CNN
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to train the acoustic model, and CTC-CNN shows better performance than the Gaussian Mixture
Model-Hidden Markov Model (GMM-HMM) acoustic model commonly used earlier. We use state-
of-the-art techniques to validate our method. Experimental results show that the effect is remarkable.
Fig. 1 illustrates the historical evolution of automatic speech recognition (ASR).

Figure 1: Historical development of automatic speech recognition

In the traditional speech recognition system, the mismatch between the model training environ-
ment and the test environment (mismatch) is the primary problem that causes the recognition rate to
decline. On this issue, many solutions have been proposed in the past literature, such as introducing
model parameters at the speech model end. Robust CTC-CNN Model prediction classification rules
established by uncertainty, or adjustment methods to adjust the model to the test environment,
such as maximum posterior probability (MAP) adjustment and linear regression adjustment, and
even further consider the discrimination of speech models the minimum classification error linear
regression (MCELR) adaptation and other methods. Among them, the CTC-CNN Model prediction
classification method is to properly introduce the uncertainty of the model parameters into the
decision-making rule to achieve the robustness of the decision-making method, and the parameter
uncertainty reflects the variability of the noise environment and acoustics. It can be represented
by the prior probability, and the traditional CTC-CNN Model learning provides a mechanism for
estimating and updating parameter prior information. In order to take into account the robustness and
discriminability of the decision rule, this study proposes the discriminative training and updating of the
acoustic model and its prior probability model under the CTC-CNN Model predictive classification
framework. We use the discriminative criterion of minimum classification error (MCE) to Estimate the
hyper-parameter of the model parameters, and propose two update methods, one is to directly update
the pre-statistics for the hidden Markov model mean vector parameters; the other is to consider the
linear regression adjustment, for the regression matrix. The prior information is updated under the
minimum classification error criterion. In the evaluation experiment based on the environmental noise
speech database, it is found that using the updated prior probability can improve the discrimination of
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the CTC-CNN Model prediction classification, and achieve the purpose of improving the performance
of robust speech recognition.

In this field of research, many scholars have proposed different methods to solve the problem of
mismatch, which we roughly divide into three categories: signal space, feature parameter space, and
model parameter space. In the first method, the method of speech enhancement is mainly used. The
idea is to reduce the noise part of the signal affected by the environment through signal processing to
obtain an approximately clean signal; the second method. The first method is similar to the processing
concept of the signal space. It is hoped to restore the characteristics of the characteristic parameters in
the original environment and perform compensation of the characteristic parameters; the last method
is to process the model parameters that have been trained. It is subdivided into two types: one is to use
a small amount of corpus obtained from the new environment to adapt the original model parameters
to a method close to the new environment; the other is to consider its uncertainty in the model
parameters to reduce The impact caused by model variation, and then achieve the mechanism of robust
decision-making. In addition, during model training, parameters or distributions between different
models often face confusion, resulting in increased classification errors. Therefore, the consideration
of discriminability has also been proposed by scholars to be introduced into the training process of
the model in order to achieve a clearer result.

In this study, based on considering the uncertainty of the parameters, it is hoped that the
uncertainty of its parameters can be updated under the consideration of the discriminative classifi-
cation method, to further achieve robust decision-making with discriminative prior probability law.
In this study, the prior probability learning that considers uncertainty and is discriminative is also
implemented in the adjustment of model parameters, which is divided into the direct adjustment of
model parameters and indirect adjustment of model parameters. In the continuous digital corpus
dominated by environmental noise, the improvement of recognition performance can be achieved.
This study uses Google’s public training data set—Speech Commands Dataset for analysis and deep
learning model training, which contains 30 different word audio files, and each word, has about
2300∼2400 original wav audio files. Based on this data set, data preprocessing (including analysis and
conversion of sound waves, cutting of training and test data, etc.) will be performed, and Keras and
various packages will be used in the Python environment to construct a convolutional neural network
model and Long-term short-term memory model for image recognition training on converted data.

2 Literature Survey

In this era of technological progress, speech recognition technology has been applied in numerous
fields, most of which are mainly based on intelligent electronics and driving navigation products. In
addition to helping people troubled by language barriers and unable to communicate normally due
to disease or various disorders, this research has the potential to bring more convenience to their
lives. In the experimental architecture, this model considers linguistics, speech recognition applications,
and deep learning techniques. This approach provides assists to individuals with speech recognition
and language impairments, it is necessary to understand the basic linguistic theory. Because language
belongs to human spontaneous speech, it contains numerous irregular variables, such as personal
pronunciation, words, expressions, and various factors that lead to a certain degree of complexity
in establishing the acoustic model to ensure that it meets the requirements as much as possible. Deep
learning serves to improve the efficiency and accuracy of the acoustic model performance.

In view of the fact that the application of artificial intelligence in various fields has increased
significantly in recent years, understanding the basic concepts of deep learning and the implementation
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of programs has become an important learning goal. According to the obtained original data, we
can further analyze and understand the characteristics of the data, and then it is an important
issue to select and use various neural networks to construct models. Among the application fields
of deep learning, the most important ones are image recognition and natural language processing.
Therefore, this research intends to carry out a simple program implementation for the latter field,
using Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM) to implement
a simple speech recognition model, hoping to recognize simple words, and also through parameter
tuning design and experiments, in order to develop a high-accuracy identification model.

Speech recognition is a technology in which a computer converts the speaker’s pronunciation
into text by comparing the acoustic features. In the 1980s, research in this field was initiated by
the laboratory of the Massachusetts Institute of Technology, but due to the low recognition rate,
it has not been able to be applied to commercial purposes. It was not until 2012 that scientists
replaced the traditional Gaussian distribution calculation with the calculation method of DNN,
which greatly improved the recognition rate, that it gradually attracted the attention and attention
of large international companies. The main process of using a deep network to realize automatic
speech recognition is: to input speech fragments (Spectrogram, MFCCs, . . . , etc.), convert the original
language into acoustic features, and then pass through the judgment and probability distribution of
the neural network, and finally output the corresponding text content.

The two neural networks used in this study are the LSTM of the CNN and the Recurrent Neural
Networks (RNN). CNN is a convolutional neural network consisting of a convolutional layer, a fully
connected layer, and a pooling layer. With the operation of the backpropagation algorithm, it can use
the two-dimensional structure of the input data to extract features and properly converge and learn.
Speech recognition has excellent performance. RNN is a neural network with active data memory
called LSTM, which can be used for a series of data to guess what will happen next. Its output is
not only consistent with the current input and network it is related to the weight of the road, and also
related to the input of the previous network. It is often used to process time series data. Now it has been
widely used in natural language understanding (such as speech-to-text, translation, and hand-written
text generation), image and video recognition, and other fields.

2.1 Speech Recognition

In recent years, the use of speech recognition has been spreading widely across various fields, and
it is no longer limited to intelligent electronics products, but gradually expanding to the healthcare
industry and even to product sales and customer services. A good speech recognition system must allow
organizations to customize and adapt the technology to their specific needs, ranging from nuances in
language to speech to everything else. For example:

1. Language weighting: A discriminative weighted language model is proposed to better distin-
guish similar languages. Similar utterances or words are weighed to improve the accuracy [2].

2. Speaker markers: Speaker selection, taking turns, elaboration, and digression. After providing
definitions of discourse markers, turns, floor control types/turn segments, topic units, and actions, a
list of verbal and non-verbal discourse markers is specified and grouped into subcategories according
to their semantic relationship [3].

3. Acoustic training: Building acoustic models from large databases has been shown to benefit the
accuracy of speech recognition systems. Deep learning is employed to train these systems to adapt to
various acoustic environments, such as speaker pronunciation, speech rate, pitch, etc., to cope with a
variety of different situations.
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4. Indecent content filtering: Filters are used to identify profanity words or nonsense particles,
etc., and eliminate this type of speech [4].

2.1.1 Pattern Recognition

Current mainstream large-vocabulary speech recognition systems mostly use statistical pattern
recognition technology. A typical speech recognition system based on the statistical pattern recognition
method consists of the following basic modules:

1. Signal processing and feature extraction modules: The main work of this module is to extract
sound features from the input signal and provide them with an acoustic model for processing. It
also includes signal processing techniques to minimize the influence of environmental noise, channel,
speaker, and other factors on the characteristics.

2. Acoustic model: Typical systems are mostly modeled based on first-order hidden Markov
models.

3. Pronunciation dictionary: The pronunciation dictionary contains the vocabulary and pronunci-
ations that can be handled by the system. The pronunciation dictionary provides the mapping between
the acoustic model modeling unit and the language model modeling unit.

4. Language model: A statistical language model represents a probability distribution over a
sequence of words, and a language model mainly provides the context to distinguish two words and
phrases that have similar pronunciations but different meanings, as shown in the example in Fig. 2. This
model is often used in numerous natural languages processing applications, such as speech recognition,
machine translation, and part-of-speech tagging, etc. Because words and sentences are of any length
in any combination, strings that have not appeared in the training process will appear. This further
makes it difficult to estimate the probability of strings in the database.

5. Decoder: The decoder is one of the core aspects of the speech recognition system. It mainly uses
the input signal to find the word string that outputs the signal with the greatest probability according
to acoustics, language models, and dictionaries.

Figure 2: Two homonymous English strings

Fig. 2 illustrates two homonymous English strings. In the language model, in addition to the
pronunciation that affects the accuracy of speech recognition, punctuation is likewise an important
reason that affects the recognition of the system. Therefore, we discuss several considerations when
constructing a post-processing system: (1) Restoring the original requires a high-accuracy model of
text punctuation and capitalization. The model must make quick inferences about interim results and
catch up on instant captions. (2) Using several resources: Speech recognition is an AND operation-
intensive technology, such that punctuation patterns do not need to be so computationally intensive.
(3) Ability to handle text not listed in the vocabulary: sometimes, the system must add punctuation or
capitalization to text that the model has not seen before.
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2.1.2 Speech Recognition Algorithms

Speech recognition is considered one of the most complex fields in modern technology, as it
involves linguistics, mathematics, and statistics. At present, the common speech recognition system
is mainly composed of several technologies, such as: speech signal input, feature extraction, acoustic
model establishment, feature vector, decoder, and result output. Speech recognition technology is
evaluated based on its accuracy, word error rate (WER), and speed. A variety of factors affect the
misspelling rate.

Here are some of the various algorithms and techniques that are currently most commonly used
to recognize speech and convert it to text:

1. Natural Language Processing (NLP) belongs to the field of artificial intelligence, which focuses
on language interaction between humans and machines through speech and text. Numerous mobile
devices currently incorporate speech recognition into their systems to provide more assistance.

2. Hidden Markov Model (HMM) is used as a sequence model in speech recognition, assigning
labels to each unit in the sequence, i.e., words, syllables, sentences, etc. These labels map between them
and the input provided, such that it can determine the most appropriate sequence of labels.

3. N-grams is the simplest type of language model (LM) that assigns probabilities to sentences or
phrases. An N-gram is a sequence of N words. For example: “How are you” is a ternary, and “I’m fine
thank you” is a quaternary. Grammar and specific word sequence probabilities are used to enhance
recognition and accuracy.

4. Neural networks are mainly used in deep learning algorithms. They learn the mapping function
through supervised learning and adjust it according to the loss function during gradient descent.

5. Speaker Discrimination (SD) algorithms identify and separate utterances by speaker identity.
This helps the system make better distinctions between individuals in a conversation [5].

2.2 Convolutional Neural Networks Applied in This Study

2.2.1 CTC-CNN Acoustic Model

In the speech recognition system, the acoustic model is an important underlying model, and
its accuracy directly affects the performance of the entire system. When acoustic features remain
unchanged, the performance of the speech recognition system is mainly improved by optimizing the
acoustic model. Early speech recognition systems mainly employ the GMM-HMM acoustic model,
which is a shallow model. Thus, it is difficult to accurately describe the state space distribution of
features. Furthermore, the frame-by-frame training mode requires mandatory alignment of the train-
ing speech, which increases the difficulty of model training. With the development of deep learning,
speech recognition systems began to use deep learning-based acoustic models and achieved remarkable
results. The latest end-to-end speech recognition framework abandons the more restrictive model
of HMM, and directly optimizes the likelihood of input and output sequences, which significantly
simplifies the training process. Deep neural networks, loop neural networks, and convolutional neural
networks achieved great results in the field of speech recognition with their advantages [6].

In this study, the convolutional neural network was mainly used to build the acoustic model
combined with the connection sequence classification algorithm, which significantly improves the
accuracy and performance of the speech recognition system. Based on the establishment of the baseline
acoustic model, this research significantly reduces the error rate of the speech-to-pinyin sequence
by continuously optimizing the acoustic model. As the output of the acoustic model, the choice of
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the modeling unit is also one of the factors affecting the performance of the acoustic model. When
selecting a modeling unit, it is necessary to consider: (1) whether the modeling unit fully represents the
context information, i.e., the accuracy of the modeling unit; (2) whether it can describe the acoustic
features for generalizability; (3) whether there is sufficient language material that can satisfy the
modeling unit for model training and trainability. When building the speech recognition system in this
study, a non-complete end-to-end speech recognition framework is employed, i.e., the acoustic model
uses the end-to-end recognition framework to convert speech into pinyin sequences, and then uses the
language model to convert the pinyin sequences into text. In this study, a convolutional neural network
is used to build the acoustic model, which is combined with the connectionist temporal classification
(CTC) algorithm to realize the conversion of phonetic to pinyin sequences. Traditional classification
methods face problems, such as unequal input and output lengths, and frame-by-frame training is
required. CTC can directly map the input speech sequence into a string of text sequences, such that
it can optimize the likelihood of the input and output sequences, which significantly simplifies the
training process. The essence of the acoustic model based on CTC remains a sequence classification
problem, meaning that the output of each node in the output layer of the neural network selects a
generation path with the highest probability. Therefore, the input and output of CTC are often in a
many-to-one relationship [7]. When the CTC-based acoustic model recognizes speech, the acoustic
feature parameters are further extracted through the convolutional neural network, and then the
posterior probability matrix is output through the fully connected network and the SoftMax layer. The
maximum probability label of each node is thus used as the output sequence. Finally, the optimized
output label sequence of the CTC decoding algorithm marks the recognition result. The schematic
diagram of the CTC-CNN acoustic model is shown in Fig. 3 [8].

Figure 3: Schematic chart of CTC-CNN acoustic model

2.2.2 Core Idea of CTC

The core ideas of CTC mainly include the following parts:

(1) Expanding the output layer of CNN, adding a many-to-one spatial mapping between the
output sequence and the recognition result (label sequence), and defining the CTC loss function on
this basis.
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(2) Drawing on the idea of the forward algorithm of HMM, the dynamic programming algorithm
is used to effectively calculate the CTC loss function and its derivative, thus solving the problem of
end-to-end training of CNN [9].

(3) Combined with the CTC decoding algorithm, the end-to-end prediction of sequence data is
effectively realized [10].

Assuming that the speech signal is x, and the label sequence is l, the neural network obtains
the probability distribution of the label sequence (l|x) during the training process. Therefore, after
inputting the speech, the output sequence is selected with the highest probability, and after CTC
decoding optimization, the final recognition result O(x) can be output, where the operation formula
is shown in Eq. (1).

O (x) = argmaxP (l|x) (1)

Given a CNN acoustic model for CTC derivation training, we first assume that S is the training
data set, X is the input space, Z is the target space (the set of labeled sequences), and L is defined as
the sum of all output labels (modeling units). Set, CTC extends L to L′ = L ∪ Blank. Under given
conditions, the probability of outputting a label k at a time t can be expressed as Eq. (2).

yt
k = P (Ot = k|x1, x2, . . . , xt) (2)

Assuming that under the condition of a given input sequence x, the output label probability is
independent at the time t, and L′T is defined as the set of output sequences of length T composed of
L′, then the conditional probability formula of a path π ∈ L′T is given by Eq. (3).

P (π |x) =
∏T

t=1
yt

πt
(3)

We define the mapping relationship B: L′T → L≤T from the path π to the label sequence l. Using
this mapping relationship will keep only one consecutive and identical label in the output sequence
contained in the path π , and remove the Blank label. Then, to calculate the probability of label
sequence l ∈ L≤T , it is necessary to accumulate all path probabilities belonging to l, and the calculation
formula is shown in Eq. (4).

P (l|x) =
∑

π∈B−1(l)
P (π |x) (4)

The mapping of the path π to label sequence l is shown in Fig. 4.

Figure 4: Mapping output to label sequence

Fig. 4 shows that the probability of label sequence label_7 is equal to the total probability of its
entire path, that is, P (label_7) = P (path_1) + P (path_2) + P (path_3) + P (path_4). It is impractical



3842 CMC, 2023, vol.76, no.3

to directly violently calculate (l|x), which will increase the training time of the model and occupy
computing power. Borrowing the forward and backward algorithm in HMM effectively solves (l|x),
and it is assumed that under the condition of a given input sequence x, the output label probability at
the time t is independent, such the transition probability between states does not need to be considered.
The derivation diagram of the forward and backward algorithm is shown in Fig. 5 [11].

Figure 5: Derivation of forward and backward algorithm

The calculation of the forward-backward algorithm is as follows: For the input sequence x and
the label sequence l with the time sequence length T, the extended label sequence is l′, and the length of
the extended label sequence is |l′| = 2|l| + 1, defining the first t. The forward probability of outputting
the extended label at the sth position at the moment is α(t,s), and the posterior probability calculation
formula of the label sequence is shown in Eq. (5) [12].

P (l|x) = α (T , |l′|) + α (t, |l′| − 1) (5)

Before calculating the forward probability, the parameters must be initialized first, and the Blank
label is abbreviated as b, such that the calculation formula is Eq. (6).

α (1, 1) = y1
b; α (1, 2) = y1

l
′
2
; α (1, s) = 0 (∀s > 2) (6)

The recursive calculation formula of forward probability obtained by recursion is shown in Eq. (7).

α (t, s) =
{

(α (t − 1, s) + α (t − 1, s − 1)) yt

l
′
s

if l′
s = b or l′

s−2 = l′
s

(α (t − 1, s) + α (t − 1, s − 1) + α (t − 1, s − 2)) yt

l
′
s

others
(7)

The backward algorithm is similar to the forward algorithm. The backward probability of
outputting the extended label at the sth position at the time t is defined as (t,), and the posterior
probability calculation formula of the label sequence is shown in Eq. (8).

P (l|x) = β (1, 1) + β (1, 2) (8)

Before calculating the backward probability (t,), we initialize the parameters, as shown in Eq. (9).

β (T , |l′|) = yT
B , β (T , |l′| − 1) = yT

l
′|l′|−1

, β (T , s) = 0 (∀s < |l′| − 1) (9)
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The recursive calculation formula of the backward probability obtained by recursion is shown in
Eq. (10).

β (t, s) =
{

(β (t + 1, s) + β (t + 1, s + 1)) yt

l
′
s

if l′
s = b or l′

s+2 = l′
s

(β (t + 1, s) + β (t + 1, s + 1) + β (t + 1, s + 2)) yt

l
′
s

others
(10)

For any moment t, the posterior probability of the label sequence is calculated using the forward
and backward probabilities, and the calculation formula is shown in Eq. (11).

P (l|x) =
∑|l′|

s=1

α (t, s) β (t, s)
yt

l
′
s

(11)

With the posterior probability calculation formula (l|x) of the label sequence, the training target
can be optimized, and the parameters can be updated. The loss function of CTC is defined as the
negative log probability of the label sequence on the training set S. Then, the loss function (x) output
of each sample is given by Eq. (12).

L (x, l) = −lnP (l|x) (12)

The loss function LS of the entire training set is given by Eq. (13).

LS = −
∑

(x,l)∈S
lnP (l|x) (13)

The loss function L takes the derivative of the network output parameter yt
k, and its operation

formula is shown in Eq. (14).

∂L
∂yt

k

= − ∂

∂yt
k

ln P (l|x) = − 1
ln P (l|x)

∂

∂yt
k

ln P (l|x) (14)

The chain rule yields the partial derivative of the loss function to the network output ut
k without

the SoftMax layer. Because a character k may appear multiple times in a label sequence, a set is defined
to represent the position where k appears: (l) = {s:ls = k}. It is obtained as Eq. (15).

− ∂ ln P (l|x)

∂ut
k

= yt
k − 1

P (l|x) yt
k

∑
s∈lab(l,k)

α (t, s) β (t, s) (15)

The parameters of the neural network part are updated layer by layer and frame by frame
according to the back-propagation algorithm. When CTC decodes the output, the output sequence
must be optimized to obtain the final label sequence. This study adopts the best path decoding
algorithm, assuming that the probability maximum path π and the probability maximum label l∗ have a
one-to-one correspondence, meaning that the many-to-one mapping B has degenerated into a one-to-
one mapping relationship, and the algorithm accepts each frame. The label sequence corresponding to
the output sequence generated by the maximum probability label is used as the final recognition result.
First, we must calculate the maximum probability path π ∗ output by the network, and the operation
formula is shown in Eq. (16) [13].

π ∗ = argmax P (π |x) (16)

Then, we calculate the label sequence output by the network, and define l∗ = (π ∗). The formula l∗

is given by Eq. (17).

l∗ = B (argmaxπ P (π |x)) (17)
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The recognition result of the final acoustic model is given by Eq. (17). In essence, the acoustic
model of CTC can be directly output to Chinese characters end-to-end. Due to the limitation of the
training corpus and the complexity of the model, the output of the acoustic model in this study is
Pinyin; the final result of speech recognition is obtained by inputting the pinyin sequence into the
language model [14–16].

2.2.3 Construction and Training of Baseline Acoustic Model

In the convolutional neural network, the structure of the convolutional and pooling layers
indicate that the input features with slight deformation and displacement are accurately recognized.
This translation invariance characteristic is beneficial to the recognition of spectrogram features.
The training mode of parallel computing of the convolutional neural network effectively shortens
the training time and utilizes the powerful parallel processing capability of Graphics Processing
Unit (GPU). CTC illustrates the optimization of the loss function of the neural network and the
optimization of the output sequence. Therefore, this study proposes a CTC-CNN acoustic model based
on CNN combined with the CTC algorithm. The overall structure of the CTC-CNN acoustic model
is shown in Fig. 6 [17,18].

Figure 6: Configuration of CTC-CNN acoustic model

3 System Architecture
3.1 System Design

Fig. 7 portrays the architectural diagram of the hardware employed in this experiment. It
comprises the ReSpeaker Mic Array v2.0.1 and display screen. The ReSpeaker Mic Array v2.0.1 is
used to record voice data, and the recorded voice signals are compared with the voice database. The
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algorithm is processed, and calculated results are displayed on the display screen to display the words,
sentences, or phrases after the speech is converted into text.

Figure 7: Hardware structure diagram

Fig. 8 shows the overall structure and flow chart of the speech recognition assistance system for
language-impaired individuals. ReSpeaker Mic Array v2.0.1 records the speech signals of individuals
with language impairments and extracts the recorded original voice recording files through a Python
algorithm. Then, the algorithms extract voice features from the extracted raw data and yield the
extracted features. The vectors are calculated algorithmically by the speech recognition system, which
includes acoustic comparison and language decoding. The features are repeatedly compared and
decoded in acoustic comparison and language decoding, until the calculated result is very similar or
correct to the original intention of the speaker, i.e., it yields the intended output. The result is presented
in the form of text to be displayed on the vehicle.

Figure 8: System structure diagram

The upper layer of acoustic comparison and language decoding is mainly divided into three parts,
namely the acoustic model, pronunciation dictionary, and language model. Among them, the acoustic
model uses the language corpus to train and adjust the acoustic model, enabling cross-comparison
with the speaker’s pronunciation, words, and expressions to improve the accuracy of identification.
The language model is generated in the same manner as the acoustic model. The language model
is trained and adjusted through the text corpus, to establish common words or sentences, and even
multi-languages.
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3.2 ReSpeaker Mic Array v2.0.1

The radio hardware component used in this experiment is the ReSpeaker Mic Array v2.0.1 by
SeeedStudio. This is an upgrade to the original ReSpeaker microphone array v1.0. The upgraded
version is based on XMOS′ XVF-3000, which is a chip with significantly higher performance than
the previously used XVSM-2000. The comparison of XVF-3000 and XVSM-2000 specifications is
shown in Table 1.

Table 1: Comparison of XVF-3000 and XVSM-2000 specifications

Item XVF-3000 XVSM-2000

Hardware

Number of microphones 4 high-performance digital
microphones

7 high-performance digital
microphones

Voice capture 10 m 10 m

Chip performance

1. Speech algorithms on-chip 1. Supports beamforming
2. 12 programmable RGB LED
Indicators

2. Acoustic source
localization
3. Noise suppression
4. De-reverberation and
acoustic echo cancellation

Sensitivity –26 dB FS (Omnidirectional) –26 dB FS
(Omnidirectional)

Acoustic overload point 120 dB SPL 120 dB SPL

SNR 63 dB 61 dB

The microphones in this version have also been improved, with the number reduced to four
compared to the seven in the first generation, and a significant performance increase. It can be used
on many occasions, such as: smart speakers, smart voice assistant systems, voice conference systems,
car voice assistants, etc. Compared with XVSM-2000, this new chipset adds a speech recognition
algorithm to improve its performance. Added the following algorithms:

1. Pick Up Voices From Far Away
• Far-field voice capture enables you to capture and understand requests from up to 5 m away

2. Focus On The Right Voice
• DoA allows the device to know the direction of a source
• BF allows the device to focus only on sounds that come from the target direction
• Ignore background noise and chatter through NS

3. Improved Voice Audio Quality
• Reduces environmental voice echo with de-reverberation
• Remove current audio output with AEC

The ReSpeaker Mic Array v2.0.1 module has numerous voice algorithms and features, and
the maximum sampling rate is 16 kHz. This small chip has the benefits of numerous functions,
as the module is equipped with XMOS’s XVF-3000 IC, which integrates advanced Digital signal
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processing (DSP) algorithms, including acoustic echo cancellation (AEC), beamforming, demixing,
noise suppression, and gain control. It further supports USB Audio Class 1.0 (UAC 1.0) and has twelve
programmable RGB color model (RGB) LED indicators for user freedom. The detailed specifications
are shown in Table 1. Fig. 9 shows the ReSpeaker Mic Array v2.0.1 system diagram [19].

Figure 9: ReSpeaker Mic Array v2.0.1 system graph

3.3 System Technology Description

The study proposes an end-to-end speech enhancement architecture that (1) models the original
speech waveform time domain signal, bypassing the phase processing operation in the traditional time-
frequency conversion, and avoiding phase pollution, (2) transforms the one-dimensional time-domain
speech signal, mapping it to a two-dimensional representation. More sufficient information is mined
from the high-dimensional representation of the speech signal, and the codec network is subsequently
used to learn the mapping from noisy to clean speech. This represents the dimensionality reduction
and reconstruction into a time-domain waveform signal, (3) by combining the evaluation index with
the loss function, the commonality and difference between different evaluation indexes are used to
improve the perceptual ability of the model and obtain clearer speech.

The end-to-end model framework UNet [20] comprises the main structure of the framework, as
shown in Fig. 10 [21]. The UNet neural network was initially applied for medical image processing
and achieved good results. The main structure of UNet is composed of an encoding stage (left half
of UNet) and a decoding stage (right half of UNet). Between each corresponding encoding stage and
decoding stage, skip connections are used. The skip connections herein are not residual, as it is not the
calculation method of the residual, but the method of splicing.

The structure of the model proposed in this study is shown in Fig. 11. The architecture consists of
three parts, namely, preprocessing of the original audio signal, encoding and decoding module based
on the UNet architecture, and post-processing of enhanced speech synthesis. By directly modeling the
time domain speech signal, we avoid the defects and problems in the time-frequency transformation,
and convert the one-dimensional signal into a two-dimensional signal through the convolution
operation, such that the neural network can mine the speech signal in the high-dimensional space
and deep representation. To reduce the number of parameters and the complexity of the model,
the up-sampling operation in the decoding part of UNet here is not deconvolution, but bilinear
interpolation [22].



3848 CMC, 2023, vol.76, no.3

Figure 10: End-to-end model framework UNet

Figure 11: End-to-end speech enhancement framework

4 Analyses of Experimental Results
4.1 Basics Experimental Results

Experimental results are presented in Figs. 12a, 12b as screenshots of the web Graphical User
Interface (GUI) interface. Fig. 12a shows the speaker saying “The weather is so nice today”, and
the system successfully displays the speaker’s complete sentence. Fig. 12b shows the speaker saying
“Good morning” twice in a row, but the recognition result is only successful one time; the result of the
second time presents the situation of homophones. First, a voice recording is made on the ReSpeaker
Mic Array v2.0.1. Subsequently, the algorithm rapidly performs voice recognition and displays the
speaker’s incomplete or intermittent sentences on the vehicle, helping the language-impaired person
to communicate smoothly and quickly with others [23].
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Figure 12: Recognizing experiment

4.2 Experimental Data Analysis

To train and verify the CTC-CNN baseline acoustic model, THCHS-30 and ST-CMDS speech
datasets were used as training data sets, and the data sets are divided into training and test sets. The
training results are shown in Figs. 13a and 13b, which show that after 54 epochs of training, the word
error rate of the acoustic model training set is about 31%, and the word error rate of the test set is
stable at about 43%. There is a certain overfitting phenomenon. Namely, the 43%-word error rate is
difficult to put into practical application, such that it is necessary to optimize and adjust the network
structure parameters to further improve the accuracy of the acoustic model.

Figure 13: (a) Loss variation of baseline acoustic model (b) word error rate change of baseline acoustic
model

Table 2 lists the recognition accuracies of several consecutive words. The results are obtained from
100 test datasets. When the speaker only speaks one word, the recognition accuracy is the highest,
and the accuracy rate can reach 98.11%. In contrast, when the speaker utters sentences with more
than five words, the recognition accuracy rate falls to only 93.77%. Sentences with more than five
characters may cause the system to misdiagnose the words due to the speaker’s punctuation or if the
pronunciation of the words is too similar, for example: “recognize speech” and “wreck a nice beach”
have similar pronunciations in English, and “factors” with similar pronunciation in Chinese and
“Sonic”, etc. In addition to the above-mentioned situations that affect the accuracy of identification,
the environmental noise factor may also lead to a decrease in the accuracy of identification. Fig. 14
shows a prediction trend chart of various word count recognition accuracy rates.



3850 CMC, 2023, vol.76, no.3

Table 2: Recognition accuracy of each character number

Word count Accuracy [%]

One 98.13
Two 97.92
Three 97.42
Four 96.85
Five 93.75

Figure 14: Prediction trend graph of various word count recognition accuracy rates

Therefore, this experiment also considers the surrounding ambient noise, and conducts 80 tests at
each level of decibels, as shown in the following Table 3. Taking the noise of 80–90 dB as an example,
at this level of noise, the accuracy rate is 88.18%, which represents the poorest performance among all
levels. In contrast, at 40–60 dB, owing to less noise pollution, the accuracy rate is as high as 97.33%.
Fig. 15 shows the prediction trend of environmental noise impact identification accuracy.

Table 3: Environmental noise affects the recognition accuracy

Noise [dB] Accuracy [%]

40–50 96.51
50–60 94.83
60–70 91.95
70–80 91.48
80–90 89.02

Because of the similarities in Chinese pronunciation, the recognition error rate of the system is
expected to increase significantly. To this end, we designed this experiment based on the characteristics
of Chinese consonants and vowels to verify their time-frequency map. There are 21 consonants and
16 vowels, respectively, in the Chinese phonetic alphabet. The forming of vowels mainly occurs by
the change of mouth shape, while consonants are formed by controlling the flow of air through
certain parts of the oral cavity or nasal cavity. Therefore, the energy of consonants is small, their
frequency is high, and the time is short, and most of them appear before vowels. Conversely, vowels
have higher energy, lower frequency, and longer duration, and usually appear after consonants or



CMC, 2023, vol.76, no.3 3851

independently. The energy and frequency difference of vowels can be verified through time-frequency
graph experiments, and this difference can be used to perform simple vowel identification [24].

Figure 15: Prediction trend of environmental noise impact recognition accuracy

4.3 Tuning and Optimization of Acoustic Models

The models are trained through continuous design and improvement of the relevant parameters
of the acoustic model, and finally, the model with excellent performance is selected according to the
evaluation index. The baseline acoustic model in this study faces challenges such as long training
time, high error rate, and a certain degree of overfitting. Common optimization strategies for neural
networks include dropout, normalization, and residual modules. Dropout was first proposed by
Srivastava et al. in 2018, which can effectively solve the problem of overfitting. Normalization was first
proposed by Segey Loffe and Christian Szegedy in 2020, which can speed up the model convergence
and alleviate the overfitting problem to a certain extent. The residual module was proposed by Kaiming
He et al. in 2022 [25], which solves the problem of gradient disappearance caused by the deepening of
network layers.

The features of the neural network input generally follow the standard normal distribution,
and generally perform well for shallow models. However, as the depth of the network increases, the
nonlinear layer of the network will make the output results interdependent, and no longer meet
a standard normal distribution. The problem of the output center offset will occur, which brings
difficulties to the training of the network model. The training of deep models is particularly difficult.
To solve the problem of model convergence, a normalization operation is added to the middle layer,
i.e., a normalization process is performed on the output of each layer to make it conform to the
standard normal distribution. Through this processing, the network input conforms to the standard
normal distribution, which can be well-trained, thus speeding up the convergence speed. The data
dimension processed by the convolutional neural network is a four-dimensional tensor, such that there
are numerous normalization methods: layer normalization (LN), instance normalization (IN), group
normalization (GN), batch normalization (BN), etc. [26].

Fig. 16 illustrates schematic diagrams of the normalizations for comparison. Taking a piece of
voice data as an example, as the voice frequency range is roughly 250–3400 Hz, and the high frequency
is 2500–3400 Hz, four intrinsic mode functions (IMF) component frequency diagrams are decomposed
by the normalized comparison method, as shown in Figs. 17a–17d. From the density of the normalized
amplitude value of each IMF component, the high-frequency region of speech is mainly concentrated
in the first IMF component. Figs. 17a–17d indicate that the high-frequency region of the speech signal
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can be effectively extracted by empirical mode decomposition (EMD) decomposition. However, for the
feature parameter extraction method of the high-frequency region, the traditional extraction algorithm
is not suitable, and one must seek the high-frequency feature parameter extraction algorithm [27].

Figure 16: Contrast charts of applied normalization

Figure 17: Contrast chart of normalizations based on IMF

Fig. 18 shows a schematic diagram of the Residual module, which transmits original input
information to the output layer through a new channel opened on the network side. The Residual
module directly transfers the input of the previous layer to a later layer by adding a congruent mapping
layer. The principle of Dropout to suppress overfitting is to temporarily set some neurons to zero
during network training, and ignore these neurons for parameter optimization, such that the network
structure of each repeated operation training is different, to avoid network reliance on a single feature
for classification and prediction. Dropout, a method of training multiple neural networks and then
averaging the results of the entire set, instead of training a single neural network, increases the sparsity
of the network model and improves its generalization.

Figs. 19a and 19b show the training comparison of the baseline acoustic model and improved
acoustic model, respectively [28].

Fig. 19b shows that by increasing the depth of the network model, the improved acoustic model
reduces the WER by 3.5% on the test set compared to the baseline model. Although the error rate
drops, the effect is still unsatisfactory. Fig. 19a shows that the improved acoustic model still faces the
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overfitting problem. Therefore, further optimization of this improved acoustic model is required. In the
improved acoustic model, the number of network layers has reached 25. If the network layer continues
to be deepened, the training time becomes too long, which likewise affects the decoding performance.
To solve the overfitting problem, Dropout, and Batch Normalization (BN) layers are employed in the
network model. The network model structure is shown in Fig. 20 [29].

Figure 18: Schematic graph of residual module

Figure 19: (a) Loss contrast of acoustic model; (b) contrast of WER of the acoustic model

Figs. 21a and 21b show the training comparison diagrams of the Dropout and BN acoustic
models.

Fig. 21a shows that both the Dropout and the BN acoustic models play a role in suppressing
overfitting. However, as indicated in Fig. 21b, the error rate of the acoustic model using Dropout
does not drop but rises instead, revealing the opposite effect. The acoustic model using BN effectively
reduces the error rate, and at the same time accelerates the convergence, such that the training speed of
the model is accelerated. The error rate of the BN acoustic model drops to 23.67%, indicating an 8%
improvement over the baseline acoustic model. Considering the gradient vanishing problem that may
be imposed by the deep convolutional neural network, the residual module is added based on the BN
acoustic model, which is expected to further reduce the error rate. Fig. 22 shows the acoustic model
with the added Residual module.

Fig. 23a shows that the Residual plus BN acoustic model has the fastest convergence speed among
all models, i.e., the Residual module effectively alleviates the problem of gradient disappearance and
speeds up the training speed of the model. As observed in Fig. 23b, the error rate of the model on the
test set is reduced to 12.45%, which is 17% higher than the initial baseline acoustic model. An error
rate of 13.52% is already an excellent result on the current scale of the dataset.
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Figure 20: Contrast of structures between dropout and BN acoustic models

Figure 21: (a) Contrast of loss between dropout and BN acoustic models; (b) contrast of WER between
dropout and BN acoustic models

According to all the above experiments, the experimental results show that each item of data in
the experiment has a very good performance, and through the feedback of the experimental data, the
experimental methods and procedures are continuously revised, and finally audio2text obtains very
good performance.
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Figure 22: Acoustic model of residual plus BN

Figure 23: (a) Training loss graph of residual plus BN acoustic model; (b) WER change of residual
plus BN acoustic model

5 Conclusions and Future Directions

In the speech recognition system, the acoustic model is an important underlying model, whose
accuracy directly affects the performance of the entire system. This chapter introduces the construction
and training process of the acoustic model in detail, and studies the CTC algorithm that plays an
important role in the end-to-end framework. We constructed the CTC-CNN baseline acoustic model,
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and on this basis, carried out the optimization, reducing the error rate to about 18%, hence improving
the accuracy. Finally, the selection of acoustic feature parameters as well as the selection of modeling
units, the speaker’s speech speed, and other aspects was compared and verified, and the excellent
performance of the CTCCNN_5 plus BN plus Residual model structure is further verified.

This study briefly introduces the historical development of deep learning and the most widely
used deep learning models, and presents the development and current situation of these deep learning
models in the field of speech recognition. Deep learning research is still in its developmental stage, and
the main problems are: (1) training usually must solve a highly nonlinear optimization problem, which
easily leads to many local minima in the process of training the network; (2) if the training takes too
long, it will cause overfitting of the results. Thus, the use of deep neural networks to solve the robustness
problem is currently the hottest topic in the field of speech recognition. In practical applications, the
recognition rate of noisy speech is only about 85%, such that there is no stable, efficient, and universal
system that can achieve a recognition rate of more than 95% for noisy speech. For future research on
speech recognition, we believe that the best direction of development is brain-like computing. Only
by continuously conforming to the characteristics of speech recognition of the human brain, can the
recognition rate of speech be improved to a satisfactory level. However, the existing deep learning
technology is far from sufficient to meet this requirement. How to better apply deep learning and
meet the market demand for efficient speech recognition systems is a problem worthy of continued
focus.
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