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ABSTRACT

Mobile-edge computing (MEC) is a promising technology for the fifth-generation (5G) and sixth-generation (6G)
architectures, which provides resourceful computing capabilities for Internet of Things (IoT) devices, such as virtual
reality, mobile devices, and smart cities. In general, these IoT applications always bring higher energy consumption
than traditional applications, which are usually energy-constrained. To provide persistent energy, many references
have studied the offloading problem to save energy consumption. However, the dynamic environment dramatically
increases the optimization difficulty of the offloading decision. In this paper, we aim to minimize the energy
consumption of the entire MEC system under the latency constraint by fully considering the dynamic environment.
Under Markov games, we propose a multi-agent deep reinforcement learning approach based on the bi-level actor-
critic learning structure to jointly optimize the offloading decision and resource allocation, which can solve the
combinatorial optimization problem using an asymmetric method and compute the Stackelberg equilibrium as
a better convergence point than Nash equilibrium in terms of Pareto superiority. Our method can better adapt
to a dynamic environment during the data transmission than the single-agent strategy and can effectively tackle
the coordination problem in the multi-agent environment. The simulation results show that the proposed method
could decrease the total computational overhead by 17.8% compared to the actor-critic-based method and reduce
the total computational overhead by 31.3%, 36.5%, and 44.7% compared with random offloading, all local execution,
and all offloading execution, respectively.
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1 Introduction

With the development of emerging fifth-generation (5G) networks and sixth-generation (6G)
networks, a wide variety of Internet of Things (IoT) devices for computation-intensive applications is
increasing year by year. These devices form a vast network consisting of various information-sensing
devices and networks. The flourishing IoT devices always need to provide a high level of Quality of
Service (QoS) to get a better range of services. However, the current user devices (UDs) are limited
by computing capabilities and energy power, which cannot provide sufficient resources for the user
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with intense service requirements [1,2]. Mobile edge computing (MEC) has emerged as a promising
technology to address the aforementioned problems at the edges of networks [3–5]. MEC is extremely
effective in dealing with computing-intensive applications and is considered a crucial technology in
5G networks [6,7]. It allocates computing and storage resources to assist mobile devices in speeding
up task processing [8,9]. MEC offloads the computing task of mobile devices to the nearby edge server
by utilizing base stations or access points (APs) according to given rules (e.g., proximity principle) to
complete the task calculations.

Although MEC has better performance in terms of bearing capacity and latency, with the increase
of devices in the access MEC network, the channel interference between devices and MEC servers
brings computational pressure that will seriously affect the quality of service. Moreover, in a dynamic
environment, the strategy of the MEC system is hard to adjust correspondingly according to the
change in the current operating environment. Therefore, it is important to formulate corresponding
offloading decisions and resource allocation strategies to overcome the MEC performance bottleneck
and improve the effectiveness of resource utilization. However, MEC also encounters many challenges.
The dynamic nature of wireless communication and computation technologies has led to increasingly
complex offloading decision and resource allocation problems. Traditional methods require complex
iterative computations and the collection of statistical information about the known environment,
which is difficult to obtain in real MEC systems. Traditional methods generate high costs but only
provide approximate optimal solutions.

Machine Learning (ML) is a popular technology for searching for asymptotically optimal
solutions, which can learn future directions from data. Specifically, Reinforcement Learning (RL) [10]
is an optimization method based on interaction with the environment without labeled data. Deep
reinforcement learning (DRL) [11,12] combines reinforcement learning and deep learning, which
can capture the hidden dynamics of the current environment without prior knowledge, and neural
networks in deep learning methods have a powerful perceptual capacity. The complex offloading
decision and resource allocation problems can be solved more effectively by combining the decision-
making capability of reinforcement learning with the perceptual capacity of neural networks in deep
learning [13,14]. However, in our proposed system, we consider the scenarios of multiple UDs under
a MEC network, which is a multi-agent environment. The traditional single-agent reinforcement
learning method mentioned above cannot be applied in this scenario due to the instability of the
multi-agent environment [15]. Thus, we further introduce multi-agent deep reinforcement learning
(MADRL), which determines more optimized action strategies than the single-agent one, and it can
effectively adapt to the dynamic changes in the multi-agent environment [16]. Moreover, it can learn
the cooperation policy with each agent to realize the best long-term goal in the entire MEC system.

In this work, the key research topic is coordinated optimizing the offloading decision and
resource allocation for latency-aware and energy-efficient offloading applications by a multi-agent
deep reinforcement learning method to adapt to the dynamic changes of the MEC system. We aim to
minimize the energy consumption with the maximum tolerated latency constraint. To this end, we first
formulate this problem as a Markov game to find the Stackelberg equilibrium (SE). This is because
Stackelberg equilibrium is a potentially better convergence point than Nash equilibrium, especially in
cooperative environments [16]. Secondly, we propose a bi-level actor-critic (Bi-AC)-based method to
address the above-mentioned problem. We consider a scenario with n UDs and one AP and allocate
one agent for each UD. The agent takes action by observing the current state and the actions of the
other agent, and it can effectively reduce the occurrence of the resource preemption problem. The main
contributions of this paper are as follows:
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(1) We jointly optimize the offloading decision and resource allocation in a dynamic time-varying
system and consider minimizing long-term energy consumption with the maximum tolerated
latency constraint in the entire offloading process.

(2) We approximate the optimization problem as a Markov game, which finds the Stackelberg
equilibrium to address the problem of energy consumption minimization.

(3) To tackle the combinatorial optimization problem, we propose a Bi-AC-based method, which
learns the cooperative policy of multi-agent and can significantly reduce the occurrence of
the resource preemption problem by fully considering the other agents’ actions. The proposed
method can effectively adapt to dynamic environments compared to single-agent methods and
capture the distribution of resource allocation.

(4) Simulation results demonstrate that the proposed method consumes less energy than the
various baseline approaches under the different scenarios.

The remainder of this paper is organized as follows. Section 2 introduces the related work.
Section 3 describes the system model. Section 4 presents the problem formulation for task offloading.
In Section 5, we formulate the problem as a Markov game problem and describe the Bi-AC-based
model. The simulation results analysis and performance evaluation are discussed in Section 6. Finally,
we conclude this work in Section 6.

2 Related Work

The research of computation offloading in the MEC system has been widely studied. Cur-
rently, most studies consider the following essential metrics: energy, latency, and both. For instance,
Mao et al. [17] focused on joint computation offloading and utilize a downloading strategy to
minimize long-term energy consumption throughout the offloading process. Similarly, Tran et al. [18]
coordinately optimized the offloading decision and resource allocation to maximize the users’ task
offloading gains using convex and quasi-convex optimization techniques and a novel heuristic
algorithm. Unlike the research mentioned above, Ning et al. [19] comprehensively considered the
cooperation of cloud computing and mobile edge computing in IoT and allow partial computation
offloading that can effectively reduce latency. Some of the computation tasks can be executed on the
local terminal, while the remaining computation tasks are offloaded to the edge servers to complete
the calculation. However, the above research rarely considers time-varying environment conditions,
which can cause performance degradation during computation offloading.

Some research has utilized ML-based methods to address the above issues in the MEC system.
The ML-based methods can effectively predict the current environment state to help address the
above issues, which can be divided into three categories: supervised learning-based, reinforcement
learning-based, and unsupervised learning-based. The supervised learning-based methods map the
original input to the classification output [20–22]. Chen et al. [20] designed an offloading mechanism,
DNNOff, to extract the structure and parameters of the DNN model and then use a random forest
regression model to predict the execution cost of each layer for offloading automatically and dynam-
ically in the MEC environment. Mohammed et al. [21] proposed a technique to divide a DNN into
multiple partitions, which can be processed locally by a mobile device or offloaded to one or multiple
powerful nodes to complete the calculation. This method can efficiently exploit extra computing power
and reduce latency. The reinforcement learning-based methods are a trial-and-error learning method
that modifies the agent’s policy through rewards and penalties [23–25]. Zhang et al. [24] applied
a deep Q-Learning algorithm aimed at minimizing task offloading time as well as computational
offloading and proposed a processing time minimization problem. Li et al. [25] designed a multilayer
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data hierarchical offloading strategy to optimize the performance of IoT devices, using offline and
online algorithms to optimize the serviceability of edge computing models and identify the final
output by a classifier. The unsupervised learning-based method is used to detect hidden structures
in unlabeled data [26–28]. Jia et al. [27] used a decentralized coordination model in MEC networks
when solving the multiplayer coordination problem and built an iterative algorithm to reduce the game
frame durations between players. Table 1 classifies machine learning-based computational offloading
decisions according to learning paradigms and expresses the advantages and disadvantages of each
approach.

Table 1: A side-by-side comparison of different ML-based computational offloading decisions

Type Reference Performance
metrics

Advantages Weakness

Supervised
learning

[20] • Latency • An automatic
offloading
mechanism

• High extra
overhead
• Low convergence

[21] • Latency • Minimizing the
communication
overhead
• Addressing the
distributed learning

• High complexity
• High state space

[22] • QoS
• Confidentiality

• Confidentiality of
delivery of service

• High complexity
• Low convergence
for real-time apps

Reinforcement
learning

[23] • Latency
• Energy

• Simplicity of
implementation

• Low convergence

[24] • Latency • Minimizing latency
problems in
vehicular networks

• Overloading RSUs
• High complexity

[25] • QoS • Low complexity • Not powerful
enough with real
massive input

Unsupervised
learning

[26] • Latency
• QoE
• Energy

• Multi-user
multi-server

• High complexity

[27] • Latency • Minimizing the
game frame duration

• High complexity

[28] • Latency
• Energy

• Reasonable
complexity for the
presented model

• Weak organization
• Weak technical
presentation

According to the above research, the primary research on computation offloading focuses
on the following two aspects: one is the offloading decision of each UD, and the other is the
resources allocated on demand. Especially, resources allocated have become an essential factor for
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task offloading gains in the MEC system. In the multi-agent environment, however, the above studies
do not fully consider the resource conflict problem, and resource conflict is one of the important
factors that directly affect performance. Moreover, the optimized resource allocation requires a
clear understanding of time-varying environmental conditions. Thus, we propose a multi-agent deep
reinforcement learning method combined with the Markov game to find the Stackelberg equilibrium
(SE) for designing the scheme of offloading decisions and resources allocated in the MEC system.
This allows the MEC system to dynamically assign the resources, and it can effectively reduce the
resource conflict problem among UDs by fully considering the actions of other agents in the multi-
agent environment.

3 System Model

In this section, we introduce the system model of our scheme. Firstly, we introduce the network
architecture with an AP and n UDs. Then, we analyze the details of the communication model,
computation model, and energy consumption model, respectively.

3.1 Network Model

In this work, we propose a network model with n user devices and an AP and denote the ith UD
by ui. Meanwhile, we assume that the task execution time can be divided into multiple time slots, and
the set of time slots is denoted by T = <0, 1, . . . , t, . . .>. In each time slot, each UD can generate
multiple computation-intensive tasks and allow partial computation offloading. If UD offloads the
tasks to the edge server to complete the calculation, we can offload some of the tasks or offload
all the tasks according to the current offloading strategy. It is noteworthy that each task cannot be
divided into smaller segments, which means a task is either executed locally or offloaded to the edge
server for calculation. Then we consider the importance of each computation task by using a queue
to store the task priorities to limit the sequence of task calculation. Under the dynamic changes of
the MEC system, we are responsible for allocating the channel resources and computation resources
when multiple tasks need to be offloaded to the edge server to complete the calculation according
to the current task status and the rest of the available resources. The purpose is to effectively reduce
latency and energy consumption generated during the task calculations through optimized resource
allocation.

As mentioned earlier, we assume that each UD can generate more than one computation task in
each time slot, and the number of tasks between UDs is always identical. Thus, we describe the task
queue of each UD as Bt

i = <bt
i1, bt

i2, . . . , bt
ij, . . .>, where Bt

i represents all tasks generated by the ith

UD ui in time slot t. We build all the following models focused on the time slot t. Thus, we omit the
symbol t during the modeling process to simplify our description. For example, Bt

i can be expressed as
Bi = <bi1, bi2, . . . , bij, . . ., bim>. Here, sij and zij stand for the data size of the computation task bij and
the requested CPU cycles for processing the task bij. Thus, the total data size of Bi can be expressed
as si =

∑
sij, and the total requested CPU cycles for processing the task queue Bi can be expressed as

zi =
∑

zij. � stands for the maximum tolerable latency of the task queue Bi and is designed to confine
the task execution time, which means that the task queue Bi is successfully executed when the total
running time is less than its maximum tolerable latency.

In this work, we aim to minimize the total energy consumption and latency in the entire offloading
process, and we only consider the computation tasks executed locally or offloaded to the edge server
without the cloud server. We assume that each UD can generate more than one task in each time slot.
Thus, we define the offloading decision of the ui as ϕ i = {ϕ i1, ϕ i2, . . . , ϕ ij, . . . , ϕ im }, where ϕ ij ∈ {0, 1}
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and ϕ ij corresponds to task bij. ϕ ij = 0 denotes that computation task bij is executed locally, and ϕ ij =
1 denotes that computation task bij is offloaded to the edge server to complete the calculation. Thus,
for the computation offloading problem, we allow the tasks of each UD to be partially offloaded
according to the current strategy in time slot t. We denote the offloading decision of all the UDs as
�(t) = {ϕ1, ϕ2, . . ., ϕ i, . . ., ϕn}.

3.2 Communication Model

In this section, we introduce the communication model in detail. The MEC system needs a better
communication environment to reduce latency when the computation task is offloaded to the edge
server. The mobile device communicates with the MEC server through the wireless AP, and we do
not consider the communication cost between the MEC server and the AP. Similarly, the interference
among APs is not considered because we assume that there is only one AP in the network architecture.
We assume that the wireless channel remains constant in each same time slot but varies among different
time slots.

C (t) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

c11 c12 . . . c1p . . . c1q

c21 c22 . . . c2p . . . c2q

...
...

...
...

ci1 ci2 . . . cip . . . ciq

...
...

...
...

cn1 cn2 . . . cnp . . . cnq

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(1)

It is noteworthy that we divide the spectrum into q channels and denote the set of channels by
C = {c1, c2, . . . , cp , . . . , cq}. In each time slot, each channel has two states. If the channel state is equal
to 0, the channel is idle. If the channel state is equal to 1, the channel changes from the status of idle
to busy. We denote the channel state and channel allocation of all the UDs as matrix C(t).

In (1), the row vectors of C(t) correspond to the state of each channel cp, and the column vectors
of C(t) correspond to the set of UDs. Here, ∀p ∈ [1, q]

∑n

i=1 cip ≤ 1 and ∀i ∈ [1, n]
∑q

p=1 cip ≤ 1 stand for
each ui occupying the channel cp, which means each channel can be selected by only one UD, and each
UD can occupy only one channel at the same time.

∑n

i=1 cip = 0 denotes that the state of channel cp is
idle.

∑q

p=1 cip = 0 denotes that task queue Bi generated by ui is to be executed locally, and the channel
resources will not be used. cip = 1 denotes that ui selects the channel cp to communicate with the edge
server. When the mobile device offloads the tasks to the edge server to complete the calculation, the
uplink transmission rate of ui is denoted by ξ i and calculated by Eq. (2) [29].

ξi = B log2

(
1 + pigi,cp

σ 2

)
(2)

where B denotes the channel bandwidth and pi is the transmission power of UD ui. Here, σ 2 is the
additive white Gaussian noise power spectral density. gi,cp represents the channel gain of UD ui with
channel cp.

3.3 Computing Model

In our network architecture, the task can be executed locally on the mobile device or offloaded to
the edge server via the AP. Here, we introduce the local computing model and Mobile Edge Execution
Model in detail.

In practice, different sorts of UDs may have distinct configurations. Here, we denote f loc
i as the

computing capability of UD ui (CPU-cycles/second), and zij reflects the requested CPU cycles for
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processing the task bij. Thus, when the mobile device processes the computing task locally, we denote
the local execution time of UD ui as

lloc
i =

m∑
j=1

(
1 − ϕij

q∑
p=1

cip

)
zij

f loc
i

(3)

here,
∑q

p=1 cip is used to represent whether or not the channel selection is successful. When ϕ ij = 1
and

∑q

p=1 cip = 1, it means that ui can be assigned an idle channel, and the task bij will complete the
calculation on the remote server. When ϕ ij = 1 and

∑q

p=1 cip = 0, the channel selection of ui is failed,
which means that the selected channel is busy. Next, when the computation task is executed locally,
the energy consumption of UD ui is calculated as

eloc
i =

m∑
j=1

(
1 − ϕij

q∑
p=1

cip

)
zijk

(
f loc

i

)2
(4)

where k(f loc
i )2 is the model of energy consumption per computing cycle [30]. Here, k is an energy

coefficient, and it is directly affected by the hardware architecture.

Next, when the mobile device offloads the computing task to the nearby edge server to complete
the calculation, we only consider the overhead of both uploading transmission and remote computing.
In most instances, the size of the task computation results is small, and the speed of data transmission
between the edge server and mobile devices is fast because of the higher downlink rate. Thus, we
neglect energy consumption and latency during the process of returning the result. The total processing
overhead of the task queue Bi includes two parts: one is the cost of sending the data from the mobile
device to the edge server via the AP, and the other is the cost of the task execution time on the edge
server.

In each time slot, we denote the percentage of computation resources assigned for the edge
server to process the task queue Bi by β(t) = <γ1, γ2, . . . , γi,. . . , γn>, where γi ∈ [0,1] and∑n

i=1 γi ≤ 1. According to the above description, the total latency of the mobile edge execution model
is calculated as

lMEC
i = ltra

i + lap
i (5)

where ltra
i stands for the transmission latency of task queue Bi and lap

i is the computing time of the edge
server. We furthermore denote the ltra

i and lap
i as

ltra
i =

m∑
j=1

ϕij

q∑
p=1

cipsi

ξi

and lap
i =

m∑
j=1

ϕij

q∑
p=1

cipzi

γi f MEC
(6)

where we denote f MEC as the computing capability of the edge server (CPU-cycles/second). In each
time slot, the corresponding overall energy consumption for UD ui to offload the task to the edge
server can be expressed as

eMEC
i = etra

i + eap
i (7)
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Similarly, he total energy consumption includes the energy consumption for transmission and
computation. etra

i denotes the energy consumption for transmission and eap
i is the energy consumption

for computation. We furthermore denote the etra
i and eap

i as

etra
i =

m∑
j=1

ϕij

q∑
p=1

cipsi

ξi

pi and eap
i =

m∑
j=1

ϕij

q∑
p=1

cipzik
(
γif MEC

)2
(8)

where the energy coefficient k = 10−27, we adopt the measurement result of reference [30].

3.4 Energy Consumption

Through the above analysis, when multiple tasks are generated by the UD ui, each computation
task can be offloaded to the edge server or executed locally to complete the calculation. We can
calculate the latency of the task queue Bi through the offloading decision, and the latency can be
described as

li = max
(
lloc
i , lMEC

i

) = max

⎛
⎜⎜⎝

m∑
j=1

(
1 − ϕij

q∑
p=1

cip

)
zij

f loc
i

,
m∑

j=1

ϕij

q∑
p=1

cipsi

ξi

+
m∑

j=1

ϕij

q∑
p=1

cipzi

γi f MEC

⎞
⎟⎟⎠ (9)

where li is equal to the higher value among lloc
i and lMEC

i . The task queue Bi can simultaneously offload
to the edge server and execute locally to complete the calculation. Thus, the latency equals the time
value for completing all tasks. In each time slot, we can denote the total latency in the entire MEC
system as

l =
n∑

i=1

li =
n∑

i=1

max
(
lloc
i , lMEC

i

)
(10)

Then, the corresponding energy consumption for completing the task queue Bi is given by

ei = eloc
i + eMEC

i =
m∑

j=1

(
1 − ϕij

q∑
p=1

cip

)
zijk

(
f loc

i

)2 +
m∑

j=1

ϕij

q∑
p=1

cipsi

ξi

pi +
m∑

j=1

ϕij

q∑
p=1

cipzik
(
γif MEC

)2
(11)

In each time slot, we can denote the sum of energy consumption in the entire MEC system as

e =
n∑

i=1

ei =
n∑

i=1

(
eloc

i + eMEC
i

)
(12)

3.5 Problem Formulation

In this work, we aim to maximize the energy efficiency of the entire MEC system under
the latency constraint by investigating the joint optimization problem of offloading decisions and
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resource allocation in time-varying environmental conditions. We can describe the joint optimization
problem as

min
C(t),�(t),β(t)

n∑
i=1

[(1 − α) li + αei]

s.t. γi ∈ [0, 1]
li ≤ �

ϕij ∈ {0, 1}
(13)

We focus on the coordinated optimization problem for latency-aware and energy-efficient offload-
ing applications. In (13), α denotes the weight parameters for latency and energy consumption, and
α ∈ [0,1], which can be adjusted by the demand of the application. We assume that the multiple tasks
generated by a UD can select the local or edge server to execute the computation task. Thus, given an
offloading decision, the computation tasks can be divided into several subtasks for parallel execution
with the mobile device or edge server. li ≤ � is designed to confine the task execution time. li is equal
to the higher value between lloc

i and lMEC
i , and it is no more than the maximum tolerable latency. �(t)

denotes the offloading decision of all the UDs. ϕ ij = 0 denotes that the computation task bij is executed
locally, and ϕ ij = 1 denotes that the computation task bij is offloaded to the edge server.

We aim to minimize long-term energy consumption within the maximum tolerated latency
constraint in the entire offloading process. As we all know, the above problem is essentially an NP-
hard problem, and it requires exponential time complexity to find the optimal solution. The existing
research provides efficient methods to address the NP-hard optimization problem, such as heuristic
and meta-heuristic algorithms [31]. However, these methods are prone to finding local optimal results
or require too many parameters. In contrast, deep reinforcement learning can be an effective solution
to solve this problem, as it combines the advantages of reinforcement learning and deep learning. It can
capture the hidden dynamics of the current environment and leverage the efficiency of self-learning
and self-adaptation capabilities. In this paper, we further propose a multi-agent deep reinforcement
learning method to tackle the combinatorial optimization problem, which can effectively adapt to a
dynamic environment during data transmission compared to the single-agent approach.

4 MADRL Approach

In this section, we approximate the optimization problem as a Markov game, and our objective
is to minimize the long-term energy consumption within the maximum tolerated latency constraint
in a dynamic MEC system. We propose a bi-level actor-critic (Bi-AC)-based method to solve the
combinatorial optimization problem. The Bi-AC optimization method [16] is based on the actor-
critic learning structure, which allows agents to have different knowledge bases, and it can effectively
optimize the energy consumption of the entire MEC system by reducing the resource preemption
problem significantly. First, we describe the details of the Markov game problem. Second, we further
propose a multi-agent deep reinforcement learning algorithm for our problem.

4.1 RL Problem Formulation

In the multi-agent environment, agents can learn cooperation policies with other agents to better
solve resource allocation and task offload problems. At each time slot, the agent selects an action
and interacts with the environment by observing the current environment and other agents’ actions.
We formulate the optimization problem as an n-player Markov game, which is described as a tuple
<Si, Ai, p, Ri, λ> for agent i, where S denotes the set of finite state space, Ai denotes the set of finite
action space, and p denotes the transition function, which represents the transition probability from
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the current state to the next state. Ri and λ stand for the reward function for agent ui and the discount
factor, respectively. Here, λ ∈ [0,1]. λ represents the importance of future rewards. The agent ui aims to
maximize the cumulative discounted reward value Gt = ∑∞

t=0 λtRt+1
i . Next, we define the state space,

action space, and reward functions as S(t), A(t), and R(t), respectively.

4.1.1 State Space

The state space of the network environment includes the state of channel resources and computa-
tion offloading tasks. Thus, the state space Si(t) at each time slot can be formulated as

Si (t) =
{

1 −
∑n

i=1
γi, C (t) , si, zi, pr

}
(14)

where 1−∑n

i=1 γi stands for the percentage of spare computation resources, where γi ∈ [0,1] is the
percentage of computation resources assigned to the edge server to process the task queue Bi. C(t)
represents the current channel state under the MEC system. pr is the priority of the task to match
the practical situations, and pr ∈ {1, 2, 3} stands for the importance of the task. The maximum value
represents the highest priority.

4.1.2 Action Space

The agent aims to determine optimized action strategies to realize the best long-term goal by
interacting with the environment. In our proposed method, the action space for the MEC system
is composed of the task offloading decision �(t), the channel selection C(t), and the computation
resources allocation policy β(t). Therefore, the action space at for agent i can be given as follows:

Ai (t) = {ϕi, γi} (15)

here, if
∑m

j=1 ϕij = 0, we do not allocate the channel resource to ui. If
∑m

j=1 ϕij > 0, we traverse the matrix
C(t) to allocate a channel. For example, when

∑m

j=1 ϕij > 0, we allocate the channel resource to ui by
traversing C(t) of each column in sequence. Once we find the expression

∑n

i=1 cip = 0, we allocate the
idle channel cp to ui. If all the result of

∑n

i=1 cip is equal to 1, the channel allocation will fail, which
means the task queue Bi are executed locally.

4.1.3 Reward Function

In general, the performance of the MEC system mainly depends on energy consumption and
latency, and the total reward is the sum of the reward of all UDs. We utilize these two crucial metrics
to formulate the reward function Ri(t) as follows:

Ri (t) =
n∑

i=1

(
pr

i
(
(1 − α) Rl

i (t) + αRe
i (t)

))
(16)

where Rl
i(t) is the reward of the latency and Re

i (t) is the reward of the energy consumption. α denotes
the weight factors of the latency reward and the energy consumption reward for the task queue Bi in
each time slot. In addition, pr stands for the task priority to indicate the importance of the task. In the
following, we furthermore denote the reward of the latency Rl

i(t) in detail.

Rl
i (t) = −lt

i (17)
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In (20), it should be noted that the total task executing time is less than the maximum tolerable
latency �. If the execution time exceeds the �, we set the reward as a punitive negative. Next, we
describe the reward of latency Re

i (t)

Re
i (t) = −et

i = − (
eloc,t

i + eMEC,t
i

)
(18)

In this combinatorial optimization problem, we aim to minimize the energy consumption within
the maximum tolerated latency constraint in the entire MEC system. However, the goal of reinforce-
ment learning is to maximize cumulative discounted rewards. Therefore, we use the negative ratio of
the energy consumption function as the reward function. Through the above analysis, our objective
can convert to maximize long-term reward expectations by achieving a series of strategies, which can
be expressed as

π ∗ = arg max
π

Eπ

[ ∞∑
t=0

λtRt+1

]
(19)

where π = {π1, π2, . . . , πi, . . ., πn} is the action strategy of all UD, and πi denotes the policy of UD ui,
which is composed of task offloading decision, channel selection policy, and computation resources
allocation policy.

4.2 Bi-AC-Based Solution

In this section, we introduce the bi-level actor-critic algorithm [16], which is based on the actor-
critic learning structure and can perform well in the combinatorial optimization problem. The Bi-AC
algorithm consists of two components: upper-level optimizer and lower-level optimizer. The upper-
level optimizer is the critic network that outputs the approximate Q-value and takes actions by
observing the current environment. The lower-level optimizer consists of the actor and critic networks,
which take action by observing the current environment and the actions of the upper-level optimizer.
To adapt to the MEC system, we assign one agent for each UD. Thus, we extend the bi-level actor-
critic algorithm to the multi-level actor-critic algorithm, where each level includes one agent, and the
lower-level agents take action by observing the actions of all the upper-level agents. In this way, we
can effectively reduce the problem of resource preemption by observing the actions of each other,
such as channel and computing resources. It is noteworthy that the convention of multi-agent deep
reinforcement learning methods is to address the Markov game by finding a Nash equilibrium (NE).
However, our method treats agents unequally, and the object is to find the Stackelberg equilibrium
(SE) because SE can yield a better payoff compared to the average NE in cooperative environments
[16].

Fig. 1 shows the network structure of the Bi-AC-based method and more specific detail. ui first
obtains the initial state by observing the initial MEC system, which includes channel conditions,
computation resources, and the attribute of the corresponding tasks, and then inputs the current state
into the actor network. The actor network will output the action Ai with the initial parameters. Next,
the agent executes the action Ai to interact with the current environment to get the reward Ri, and then
the current state is updated to the next state. Thus, we can get the experience tuple (St

i , At
i, Rt

i, St+1
i ),

which will be stored in the local experience replay buffer of UD ui at each time step t.

Then, we use the local experience replay buffer to train the critic network using the TD error
method [10]. The critic network is an approximate value function that can output the Q-value of the
current action of ui by inputting Si and Ai. It is noteworthy that the agent i require to consider the
actions of all the upper-level agents to make a decision. This operation can effectively reduce resource
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competition, such as channel and computing resources. Thus, the state Si includes the current state and
all the upper-level agents’ actions taken. For example, the three-level agent will take the action of the
one-level agent and two-level agent as its input in addition to the current state, and it can be denoted
by St

i = St
i • A1, . . . ,i−1 as Fig. 1 shows, where “•” represents merging operation, which merge these two

vectors into one. Next, we can update the weights of the actor network to minimize the overall losses
using the sampled gradient method. In the training phase, all the networks are updated accordingly
from the upper-level to the lower-level. In the execution phase, as Fig. 2 shows, we assign one agent
to each UD, and each agent has all the trained n actor networks. Then, all the agents independently
perform Stackelberg equilibrium.

Figure 1: Network structure applied to task offloading

Figure 2: The execution phase of the Bi-AC-based method

The output of the actor network is the action value, and the critic network can output the Q-
value to evaluate the action produced by the actor network. For each ui, the output of actor network
consists of two parts, which contain ϕ i and γi. ϕ i is the one-dimensional vector with m elements. γi ∈
[0,1] represents the computation resources assigned to the edge server for task queue Bi. Next, we will
describe the detail of the actor network and the critic network.
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The actor network consists of a two-layer fully connected network with the ReLU activation
function and an output layer with m + 1 node. The first m nodes denote the offloading decision
for task queue Bi. The m + 1th node stands for the computation resources assigned. The output
layer goes through the sigmoid activation function. This results in a series of probability values. If
the probability values of the first m + 1 rows are greater than 0.5, we set the task ϕ ij to 1, indicating
that task ϕ ij is executed on the remote server. If ∃ ϕ ij = 1, we will allocate the channel resource to
ui. Additionally, it is important to consider the randomness of the actor network to generate more
diverse data. Therefore, we combine the output probability with the ε-greedy approach to choose the
output action and determine whether to offload the task. The critic network also consists of a two-
layer fully connected network with the ReLU activation layer and an output layer with one node. The
critic network can output the Q-value of the current action of ui by inputting the state Si and action
Ai, and the Q-value Qπ (St, At) can be described as

Qπ (St, At)=R (St, At)+λ
∑
St+1

p (St+1|St, At) V∗ (St+1)=R (St, At)+λ
∑
St+1

p (St+1|St, At) max
At+1

Qπ (St+1, At+1)

(20)

At the beginning of the training phase, each UD will randomly select a minibatch of W samples
from the local experience replay buffer to train the network. We denote the policy model as follows:

Ai = πi (Si, A1..i−1; θi) (21)

where θi stands for the policy parameter. For the environments with discrete action space, we utilize
the sampled gradient method to update the actor network, which is denoted as

∇θi J = 1
W

∑
∇θi log πi (Si, A1..i−1) × Qi

π
(Si, A1..n) (22)

Next, the critic network updates the weight using the TD error method. The TD error is
represented as follows:

δi = Ri + λQi
π ′

(
Si, A′

1..n

) − Qi
π
(Si, A1..n) (23)

At each iteration, we achieve the target value by minimizing the loss function Loss(θ i), which can
be expressed as follow:

Loss (θi) = 1
W

∑(
Ri + λQi

π ′
(
Si, A′

1..n

) − Qi
π
(Si, A1..n)

)2
(24)

In this paper, we extend the bi-level actor-critic algorithm to the multi-level actor-critic algorithm
to adapt to the MEC system. The Bi-AC-based method can effectively reduce the occurrence of the
resource preemption problem by observing the actions of the upper-level agents, and it can reduce
energy consumption while satisfying the maximum tolerated latency constraint.

5 Simulation Results

In this section, we illustrate the performance of the proposed method through the simulations in
dynamic cooperative environments and use Python as the programming language and compare the
performance of various methods through TensorFlow. We premeditate a scenario with n UDs and
one AP.
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5.1 Experiment Settings

Here, we set the computation capabilities of the MEC server fMEC to be randomly distributed
between 10 and 20 GHz, and the computation capabilities of each UD are uniformly distributed
between 0.5 and 1.5 GHz. We set the channel bandwidth B = 10 MHz. Similar to the relevant paper
[32], the path loss is modeled as 128.1 + 37.6log(l), where l is the distance from MEC to UD. The
data size of computation tasks for a UD is randomly distributed between 1000 and 2000 KB, and the
number of subtasks for a task queue Bi is randomly distributed between 5 and 10. The corresponding
number of CPU cycles required for the UD’s tasks are randomly distributed between 0.5 and 3 GHz,
and we set the transmission power of each UD to 20 dBm. The capacity of the global experience replay
buffer is equal to 1000, and the selected minibatch sample is equal to 32. For the reinforcement learning
algorithm, the learning rate parameter is set to 0.01, and the discount factor is set to 0.9.

In addition, we provide the following four representative benchmark methods to compare the
performance of our method, and the details are as follows:

(1) Actor–critic: Actor–critic is a policy gradient algorithm, and it is different from our method.
In the training phase, the actor–critic algorithm only utilizes local information, which means
the UD cannot communicate with each other.

(2) Random offloading: The UDs randomly select whether the computation tasks offload to the
edge server to complete the calculation or can be executed locally.

(3) All local execution: All the computation tasks of UDs are executed locally under the maximum
tolerant latency, or else UDs will offload the computation tasks to the edge server.

(4) All offloading execution: All the computation tasks of UDs are offloaded to the edge server
to complete the calculation. When the resource of the edge server is occupied entirely, the new
tasks will be waiting.

(5) Exhaustion: The exhaustion method can obtain the approximate optimal solution by brute-
force search, but it is difficult to be used in practical situations because of the substantial
overhead.

In each time slot, we assume that the wireless channel remains constant, but the resource require-
ments of computation tasks are different. Thus, it is important to capture the current environment’s
hidden dynamics to make a policy.

5.2 Numerical Results

We utilize the multi-agent deep reinforcement learning method to effectively adapt to the dynamic
changes, which can learn the cooperation policy and allocate resources dynamically compared with
the baseline methods. Next, we illustrate the convergence performance of the proposed method and
compare the performance of the proposed method with the baseline methods.

Fig. 3 shows the convergence performance of the proposed Bi-AC-based method and actor-critic-
based method, which illustrates the changing trend of average system reward with the increase of
training episodes. This is the two-level Bi-AC-based method with two agents. Leader and follower
are expressed as the upper-level agent and the lower-level agent, respectively. The leader is converged
before the follower because of the difference in learning rate. From the figure, we can see that Bi-AC
can obtain better performance and greater stability than the actor-critic method. In a single-agent
environment, the actor-critic algorithm can provide clear performance benefits, but its performance
will continually decline due to the rising number of agents. The actor-critic algorithm can only utilize
the local information of a single agent to train the model, which cannot learn the cooperative policy
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with each other. In contrast, the proposed Bi-AC-based method can effectively reduce the occurrence
of the resource preemption problem by observing the action of other agents, and it can utilize the
global information to learn the cooperative policy to maximize the global reward in the multi-agent
environment.

Fig. 4 describes the total computational overhead of the six methods with the difference in the
number of UDs. We fix the corresponding number of CPU cycles required for the UD’s tasks to 0.5
Megacycles, and the total MEC computing resource is 10 GHz. The total computational overhead
o =

∑n

i=1[(1 − α) li + αei] includes energy consumption and computation latency, which is mentioned
in Eq. (13). From the figure, we can find that the exhaustion method can achieve less computational
overhead than other methods throughout the process. This is because the exhaustion method adopts
the optimal action by filtering all the action space of the agent, but the brute-force search cannot be
implemented in the practical situation due to the more time-consuming. The computational overhead
of our method is closer to the exhaustion method than other methods, which has better performance
for the offloading decision and resource allocation.

Figure 3: System reward with training episodes

Figure 4: Total computational overhead with different numbers of UDs

When the number of UDs is 6, the total computational overhead of all offloading execution
exceeds all local execution. This is because all offloading execution are not fully considered resource
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allocation. With the increase of UDs, a larger number of tasks will offload to the edge server to
complete the calculation. The resource will be fewer for each UD, and the computational overhead
of transmission and computation will increase significantly. When the number of UDs is 10, the
proposed Bi-AC-based method can reduce 17.8%, 36.5%, 31.3%, and 44.7% total computational
overhead compared with the actor-critic-based method, all local execution, random offloading, and all
offloading execution, respectively. In addition, the computational overhead of our method increases
slowly compared with the baseline methods. This is because the baseline methods cannot allocate the
communication and computation resources intelligently. As the number of UDs increases, the available
resources of computing services become more and more inadequate to process the task in real-time,
and the problem of resource preemption becomes more significant. At this point, the advantage of the
optimized resource allocation will emerge, and our method can excel in solving this problem.

In this experiment, we fix the number of UDs to 6, and the total MEC computing resource is
10 GHz. Fig. 5 compares the total computational overhead of the six methods with the number of
CPU cycles required by the task in Fig. 5. It is not difficult to see that with the gradual increase in the
number of CPU cycles required by the task, the total computational overhead of the six methods also
grows, and it can be seen from the Eqs. (10) and (12). Except for the Exhaustion method, the proposed
Bi-AC-based method remains superior to the performance due to the optimized resource allocation
policy. As can be seen from the figure, the computational overhead of the all-local execution method
exceeds the all-offloading execution method when the CPU cycles required by the task are equal to
2 Megacycles. This is because the local terminal cannot complete all the calculation tasks under the
maximum tolerant latency, and the remaining tasks need to be transported to edge servers to complete
the calculation, which will generate more energy consumption for transmission. Therefore, the all-local
execution method will lead to more computational overhead when the required computation resources
of the task go beyond a certain range.

Figure 5: Total computational overhead with different numbers of required CPU cycles

Finally, Fig. 6 shows the relationship between the total computational overhead and the total
MEC computing resources. For this experiment, we vary the allocated MEC computing resources
from 10 to 20 GHz. We also fixed the number of UDs to 6, and the corresponding number of CPU
cycles required for the UD’s tasks is 0.5 Megacycles. We can see that the performance of the proposed
Bi-AC-based method is also better than the other methods, except for the exhaustion method. The all-
offloading method consumes more computational overhead than other methods at 10 GHz. However,
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with the increase of the allocated MEC computing resources, the computational overhead of the all-
offloading method becomes smaller than that of the all-local method. This is because as the execution
capacity of the edge server increases, the remote computation latency will decrease significantly. In
summary, the Bi-AC-based method outperforms other baseline methods in different scenarios by
learning the cooperation policy with each agent.

Figure 6: Total computational overhead with different total MEC computing resources

6 Conclusion and Future Work

In this paper, we investigate the computation offloading problem, which aims to maximize the
performance in terms of energy consumption and latency of the entire MEC system. In the multi-
agent environment, existing studies do not fully consider the resource conflict problem, and resource
conflict is an important factor that directly affects performance. We propose the Bi-AC-based method
to significantly reduce the resource conflict problem among agents by fully considering the actions of
other agents, which is a multi-level structure optimization design. The proposed method can select
the optimal offloading decision and resource allocation policy to achieve the best long-term goal
using an asymmetric method. The simulation results show that the proposed method could decrease
total computational overhead by 17.8% compared to the actor-critic-based method and reduce the
total computational overhead by 31.3%, 36.5%, and 44.7% compared to random offloading, all local
execution, and all offloading execution, respectively. For future work, we will expand the number of
edge servers and coordinately optimize the offloading decision and resource allocation for latency-
aware and energy-efficient offloading applications in a dynamic environment.
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