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ABSTRACT

As a new bionic algorithm, Spider Monkey Optimization (SMO) has been widely used in various complex
optimization problems in recent years. However, the new space exploration power of SMO is limited and the
diversity of the population in SMO is not abundant. Thus, this paper focuses on how to reconstruct SMO to
improve its performance, and a novel spider monkey optimization algorithm with opposition-based learning and
orthogonal experimental design (SMO3) is developed. A position updating method based on the historical optimal
domain and particle swarm for Local Leader Phase (LLP) and Global Leader Phase (GLP) is presented to improve
the diversity of the population of SMO. Moreover, an opposition-based learning strategy based on self-extremum
is proposed to avoid suffering from premature convergence and getting stuck at locally optimal values. Also, a
local worst individual elimination method based on orthogonal experimental design is used for helping the SMO
algorithm eliminate the poor individuals in time. Furthermore, an extended SMO3 named CSMO3 is investigated
to deal with constrained optimization problems. The proposed algorithm is applied to both unconstrained and
constrained functions which include the CEC2006 benchmark set and three engineering problems. Experimental
results show that the performance of the proposed algorithm is better than three well-known SMO algorithms and
other evolutionary algorithms in unconstrained and constrained problems.
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1 Introduction

The real-world optimization problems are to select a group of parameters and make the design
target reach the optimal value under a series of given constraints. It is well known that many
optimization problems are comparatively hard to solve [1–4]. Nature-inspired optimization algorithms
are part of the computer intelligence disciplines, which have become increasingly popular over the
past decades [5]. A lot of optimization algorithms, such as Evolutionary Algorithm (EAs) [6], Particle
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Swarm Optimization (PSO) [7], Ant Colony Optimization (ACO) [8], Artificial Bee Colony (ABC) [9],
Pigeon-Inspired Optimization Algorithm (PIO) [10], Slime Mould Algorithm (SMA) [11] and Crow
Search Algorithm (CSA) [12] have been developed to deal with difficult optimization problems. These
intelligent biological systems have similar characteristics in which the single individual behavior is
simple and random, but the biological groups consisting of these individuals can cooperate to complete
a series of complex tasks. Research shows that bionic algorithms can effectively handle numerous kinds
of optimization problems.

Inspired by the food-searching behavior of spider monkeys, Bansal et al. developed a new bionic
algorithm, called Spider Monkey Optimization (SMO) [13]. Since the SMO algorithm was proposed,
this algorithm has been widely used in various complex optimization problems. It has been shown
that it is superior concerning reliability, effectiveness, and accuracy to the regular ABC, Distribution
Estimation Algorithm (DEA), PSO, and other intelligent algorithms. However, the SMO algorithm
has some shortcomings. Typically, the new space exploration power of the original SMO is limited, i.e.,
it cannot eliminate the poor individuals in time and the diversity of the population is not abundant.
These shortcomings seriously affect the performance of the SMO algorithm.

In this paper, we focus on how to reconstruct the SMO algorithm to improve its performance.
We propose a spider monkey algorithm combining opposition-based Learning (OBL) and orthogonal
experimental design (OED) to cope with unconstrained and constrained optimization problems. The
main contributions of our work include: (1) A position update method based on historical optimal
domains and particle swarm for Local Leader Phase (LLP) and Global Leader Phase (GLP) is
developed. We introduce a novel position update method that combines the particle swarm and
traditional update method so that the diversity of the population can be improved. In addition, the
position update is performed in the dynamic domain composed by the optimal historical individual
with a certain probability to make full use of historical search experience. (2) A population regeneration
method based on Opposition-Based Learning (OBL) is presented. Different from other modified SMO
algorithms, our approach does not directly enter the Local Leader Learning Phase (LLLP) stage after
the LLP and GLP. Instead, it first uses the OBL strategy to avoid suffering from premature convergence
and getting stuck at locally optimal values. (3) A method to eliminate the worst individuals in each
group of the SMO algorithm based on the orthogonal experimental design is developed. This method
performs the horizontal dividing and factor determination of the worst individuals in each group and
the global optimal individuals to generate new individuals by orthogonal experimental design. The
individuals obtained from this hybrid method retain the historical search experience of the best and
the worst spider monkey, thereby enhancing the search performance.

The rest of this paper is organized as follows. Section 2 introduces the related work on the spider
monkey optimization algorithm. A spider monkey algorithm named SMO3 that combines opposition-
based learning and orthogonal experimental design for unconstrained optimization problems is
presented in Section 3. Section 4 proposes a spider monkey algorithm for the constrained optimization
problem based on SMO3. The experimental results of unconstrained functions, CEC2006 benchmark
sets, and a few engineering optimization problems are presented in Section 5. Section 6 concludes this
paper and points out future research work.

2 Related Work

In recent years, many variants of SMO have been studied to improve the performances of the
original algorithms. Kumar et al. [14] introduced the golden section search method for the position
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update at the local leader and global leader phases. In [15], a new position update strategy in
SMO is presented. The moving distance of a spider monkey at the LLP, the GLP, and the LLDP
stages is determined by the individual fitness value. Sharma et al. [16] proposed a position update
method based on the age of the spider monkey, which can improve the convergence speed of the
SMO algorithm. Hazrati et al. [17] evaluated the size of the position update step according to the
fitness value, allowing individuals with small fitness values to quickly approach the globally optimal
individual. Gupta et al. [18] developed an improved SMO named constrained SMO (CSMO) for
solving constrained continuous optimization problems. Results show that CSMO can obtain better
results than DE, PSO, and ABC algorithms. In [19], the position of the worst individual is updated
by the fitness of the leader of LLP and GLP and thus the local searchability of SMO is enhanced.
Sharam et al. [20] proposed a new method to enhance the searchability of the SMO algorithm, which
can find the promising search area around the best candidate solution by iteratively reducing step size.
Xia et al. [21] developed a discrete spider monkey optimization (DSMO), which gives different update
position methods for the discrete coding in LLP, GLP, and LLDP. However, how to further improve
the effectiveness of the SMO algorithm still requires in-depth investigation.

Since the SMO algorithm was proposed, it has been widely applied to various complex optimiza-
tion problems [22]. Mittal et al. [23] proposed an SMO-based optimization algorithm to improve the
network lifetime for clustering protocols. Singh et al. [24] developed an improved SMO named MSMO
algorithm to synthesize the linear antenna array (LAA). Results show that the proposed algorithm is an
effective way to solve complex antenna optimization problems. Bhargava et al. [25] applied the SMO
algorithm to optimize the parameters of the PIDA controller to achieve the optimal control of the
induction motor. Cheruku et al. [26] presented an SMO-based rule miner for diabetes classification,
and the experiment results show that the classification accuracy of the presented algorithm is better
than ID3, CART, and C4.5. Priya et al. [27] proposed an improved SMO algorithm called BW-SMO,
which is used for optimizing the query selection of the database. It was found that the proposed method
can effectively improve data security. Darapureddy et al. [28] developed a new content-based image
retrieval system based on the optimal weighted hybrid pattern. A modified optimization algorithm
called improved local leader-based SMO was proposed to optimize the weight that maximizes the
precision and recall of the retrieved images. Sivagar et al. [29] developed an improved SMO based on
elite opposition and applied it to optimize cell selection with minimal network load. Rizvi et al. [30]
presented a Hybrid Spider Monkey Optimization (HSMO) algorithm to optimize the makespan and
cost while satisfying the budget and deadline constraints for QoS, and the results obtained show that
the effectiveness of HSMO is better than that of the ABC, Bi-Criteria PSO, and BDSD algorithms.
Mageswari et al. [31] developed an enhanced SMO-based energy-aware clustering scheme to prolong
the network lifetime for wireless multimedia sensor networks.

Compared with some classical SMO algorithms, the proposed method in this paper can obtain the
optimal solution more times by running multiple times on unconstrained functions, and the optimal
solution has higher accuracy. Also, the algorithm in this paper successfully obtains a higher proportion
of feasible and optimal solutions on constrained functions. It is shown that the proposed algorithm is
easy to jump out of the local optima and higher solving accuracy.

3 Spider Monkey Algorithm for Unconstrained Optimization

Real-world optimization problems usually can be described as mathematical models of uncon-
strained functions or constrained functions [32–34]. In this section, we first propose a spider monkey
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algorithm named SMO3 that combines opposition-based learning (OBL) and orthogonal experimental
design (OED) for unconstrained optimization problems.

3.1 Local Leader Phase Based on Historical Optimal Domain and Particle Swarm

The local Leader Phase (LLP) is an important stage in the SMO algorithm. In this phase, the
position of a spider monkey will be updated according to the local optimum. Different from the
position update method of other spider monkey algorithms in LLP, the SMO3 algorithm has two
new position update methods in LLP: one is based on the historical optimal domain, and another is
based on particle swarms. It compares the pros and cons of the positions obtained by both update
methods. The better new position will be compared with the old position, and the position with the
better fitness value will be adopted as the current position for a spider monkey.

Definition 1. Let G1 = (g11, g12, . . . , g1M), G2 = (g21, g22, . . . , g2M), . . . , Gn = (gn1, gn2, . . . ,gnM) be n
historically optimal individuals, and the historical optimal domain is defined as follows:

ldj = min
i

(
gij

)
(1)

and

udj = max
i

(
gij

)
(2)

where [ldj, udj] is the j-th component of the historical optimal domain, 1 ≤ i ≤ n.

The position update method based on the historical optimal domain not only retains the update
method of the traditional SMO algorithm in the LLP stage but also adds a random generation of spider
monkey positions in the historical optimal domain. This method allows the individual component
values to be limited in the historical optimal domain with a higher probability. Thus, the search
experience of the better individual could be used to find new solutions. The mathematical model of
the update method in the SMO3 algorithm is as follows:

If U (0,1) ≥ pr, then

SMnew
ij = SMij + U (0, 1) × (

LLkj − SMij

) + U (−1, 1) × (
SMrj − SMij

)
(3)

If U (0,1) < pr, then

SMnew
ij =

{
ldj + U (0, 1) × (

udj − ldj

)
U (0, 1) > cr

SMij else
(4)

where SMij is the position of the j-th component of the i-th spider monkey, U (0,1) is a random number
in [0,1], pr is the perturbation rate of the SMO algorithm, LLkj is the j-th component of the local leader
of the k-th group, while udj and ldj are the upper and lower bounds of the historical optimal domain,
cr ∈ (0,1) and r �= i.

Algorithm 1: LLP based on historical optimal domain and particle swarm
Step 1 Implement the update method based on the historical optimal domain for each component j of
the i-th individual SMi to obtain the position new_pos1, and the update method is as follows:

Step 1.1 If U (0,1) ≥ pr, calculate new_pos1j according to Eq. (3), otherwise go to Step 1.2.
(Continued)
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Algorithm 1 (continued)
Step 1.2 If U (0,1) ≥ cr, then

new_pos1j = ldj + U(0, 1) × (udj − ldj)

else
new_pos1j = SMij

Step 2 Implement the update method based on particle swarm for each component j of the i-th
individual SMi to calculate the position new_pos2. The update method is as follows:

Step 2.1 Update the speed vij according to Eq. (5).
Step 2.2 If vij > msj, then vij = msj. If vij < −msj, then vij = −msj.
Step 2.3 new_pos2j = SMij + vij.
Step 2.4 If new_pos2j is out of its domain, new_pos2j is randomly generated in [Lj,Uj] with a certain

probability, otherwise, new_pos2j is randomly generated in the historical optimal domain.
Step 3 Compare the pros and cons of new_pos1, new_pos2, and SMi, and update SMi with the best

value.

In this paper, we introduce a particle swarm-based update method for LLP. This update method
enables the spider monkey algorithm to search the solution space in various ways, thus ensuring the
diversity of individuals and avoiding the algorithm from falling into a local optimum too early. Let vij

be the walking speed of the i-th spider monkey in the direction j, and the mathematical model of its
updated is given by Eq. (5).

vij = gw × vij + c1 × r1 × (
SMrj − SMij

) + c2 × r2 × (
LLkj − SMij

)
(5)

where gw is the inertia weight, c1, and c2 are the learning factors, r1 and r2 are random numbers in [0,1],
and r �= i. The speed value range of a spider monkey in the direction j is [−msj, msj], where msj = (Uj

− Lj) ∗ 0.2, Lj and Uj are the lower and upper bounds of the j-th decision variables respectively. The
walking speed of a spider monkey is calculated by the experience of the local leader and local group
member’s experience, and a spider monkey can be led to a better position. According to the walking
speed of spider monkey vij, the position SMij of the i-th spider monkey in the direction j is updated by
Eq. (6).

SMnew
ij = SMij + vij (6)

The LLP algorithm based on the historical optimal domain and particle swarm is given in
Algorithm 1. Let N be the population size and D be the dimension size, Algorithm 1 requires
updating all components of each individual, and running the SMO algorithm once requires updating
N individuals. Thus, the time complexity of Algorithm 1 is O(n2).

3.2 Global Leader Phase Based on Historical Optimal Domain and Particle Swarm

In the global leader phase, each spider monkey updates its position using the position of global
leader as well as the local group individual’s experience. The traditional position update equation for
this phase is given by Eq. (7).

SMnew
ij = SMij + U (0, 1) × (

GLj − SMij

) + U (−1, 1) × (
SMrj − SMij

)
(7)

In addition to the traditional position update method, we present a position update method based
on particle swarm in GLP. The position obtained by the particle swarm method is compared with the
position obtained by Eq. (7), and the better one is adopted as a candidate position.
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Algorithm 2: GLP Based on Historical Optimal Domain and Particle Swarm
Step 1 If U(0, 1) < prob, then go to Step 2 to update SMi.
Step 2 Randomly select j ∈ {1, 2, . . . , D}.
Step 3 Implement the traditional update method on the component j of SMi according to Eq. (7) to
calculate the position new_pos1.
Step 4 Randomly select j ∈ {1, 2, . . . , D}.
Step 5 Implement the particle swarm method on the component j of SMi to obtain the position
new_pos2 as follows:

Step 5.1 Calculate the spider monkey walking speed vij according to Eq. (8).
Step 5.2 If vij is out of its range, then correct vij.
Step 5.3 new_pos2j = SMij + vij

Step 5.4 If new_pos2j is out of its domain, new_pos2 is randomly generated in [Lj,Uj] with a certain
probability, otherwise, new_pos2 is randomly generated in the historical optimal domain.
Step 6 Find the best position among new_pos1, new_pos2, and SMi, then update SMi with the best
position.

Let vij be the walking speed of the i-th spider monkey in the direction j, and the updated method
of vij is given by Eq. (8).

vij = gw × vij + c1 × r1 × (
SMrj − SMij

) + c2 × r2 × (
GLj − SMij

)
(8)

The walking speed of a spider monkey is determined by the experience of the global leader as well
as the local group individua’s experience by Eq. (8), and a spider monkey has a chance to move to a
better position.

According to the spider monkey’s walking speed, the position of the i-th spider monkey in the
direction j is updated in the same way by Eq. (6). The GLP algorithm based on the historical optimal
domain and particle swarm is shown in Algorithm 2. Let N be the population size and D be the
dimension size, Algorithm 2 requires updating one component of each individual, and running the
SMO algorithm once requires updating N individuals. Thus, the time complexity of Algorithm 2 is
O(n).

3.3 OBL Strategy Based on Extreme Value

The main idea of Opposition-Based Learning (OBL) is to evaluate the feasible solution and its
reverse solution, and the better solution is adopted by the individuals of the next generation. Since
opposition-based learning was developed, OBL has been applied to various optimization algorithms,
which is capable of improving the performance of these optimization algorithms to search for the
problem solution [35]. To make better use of the search experience of each spider monkey, we propose
an OBL strategy based on its extreme value and apply it to the SMO3 algorithm.

Definition 2. Let the number of spider monkeys in population G be NP, and the position of the
i-th spider monkey is denoted as X i = (xi1, xi2, . . . , xiD), 1 ≤ i ≤ NP, and besti

t = (bi1, bi2, . . . , biD) is
the optimal position of the i-th spider monkey when the algorithm is iterated to the t-th generation,
we define the optimal domain based on the individual’s extreme value as follows:

lzj = min
j

(
bij

)
(9)
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and

uzj = max
j

(
bij

)
(10)

where 1 ≤ i ≤ NP, 1 ≤ j ≤ D.

Definition 3. Let besti
t = (bi1, bi2, . . . , biD) be the best position of the i-th spider monkey when the

algorithm is iterated to the t-th generation, then its j-th component is updated by the OBL strategy
with a certain probability, and its updating method is given by Eq. (11).

bestnew
ij = U (0, 1) × (

uzj + lzj

) − bestij (11)

If bestij
new is out of its dynamic domain, we recalculate it according to Eq. (12).

bestnew
ij =

{
lzj + U (0, 1) × (

uzj − lzj

)
U (0, 1) < 0.5

Lj + U (0, 1) × (
Uj − Lj

)
else

(12)

where U (0,1) is a random number in [0,1].

In this paper, we first construct the lower and upper bounds of decision variables based on their
extreme values. Furthermore, opposition-based learning is applied to calculate the best position of
a spider monkey with the upper and lower bounds. If the position obtained by OBL is better than
the current position, it is used to replace the current position. The OBL based on its extreme value is
shown in Algorithm 3, where NP is the number of spider monkeys, and X i = (xi1, xi2, . . . , xiD) is the
position of spider monkey i, 1 ≤ i ≤ NP. It is not difficult to see that Algorithm 3 is composed of two
nested loops, thus the time complexity of Algorithm 1 is O(n2).

Algorithm 3: OBL Based on Extreme Value
Step 1 Construct its extreme value optimal domain according to Eqs. (9) and (10).
Step 2 Implement the OBL as follows:

Step 2.1 i = 1
Step 2.2 If i <= NP then go to Step 2.3, else return results
Step 2.3 temp = besti, j = 1
Step 2.4 If j <= D then go to Step 2.5, else go to Step 2.8
Step 2.5 If U (0,1) < 0.2 then temp[j] = U (0,1) × ( uzj + lzj) − besti,j

Step 2.6 If temp[j] not in [Lj, Uj], then recalculate according to Eq. (12)
Step 2.7 j = j + 1, go to Step 2.4
Step 2.8 If temp is better than X i then X i = temp
Step 2.9 i = i + 1, go to Step 2.2

3.4 Worst Individual Elimination Mechanism Based on Orthogonal Experimental Design

Orthogonal experimental design (OED) is an important branch of statistical mathematics, based
on probability theory, mathematical statistics, and the standardized orthogonal table to arrange the
test plan [36]. It is another design method to study multiple factors and multiple levels. It selects some
representative points from the comprehensive test according to the orthogonality. These representative
points have the characteristics of uniform dispersion and comparability. OED is an efficient, fast,
and economical method of experiment design. Using an orthogonal experiment design to incorporate
heuristic algorithms is an effective way to improve the efficiency of heuristic algorithms [37,38].

Let the worst individual of the i-th group be worst = (w1, w2, . . . , wD), and the global leader is gbest
= (g1, g2, . . . , gD). We first use the method presented in [37] to calculate the level of each component of



3304 CMC, 2023, vol.76, no.3

the worst individual and the global leader. Let Li,k be the value of the k-th level of the i-th component,
and S is the number of levels, and the calculation method of Li,k is given in Eq. (13).

Lik = min (wi, gi) + (max (wi, gi) − min (wi, gi)) × k − 1
D − 1

(13)

where i = 1, 2, . . . , D, k = 1, 2, . . . , S.

Let the number of factors in the orthogonal experiment be F . In the process of constructing S
horizontal orthogonal tables, if the number of components is small, each component can be directly
used as a factor. In this case, the number of factors F = D. In case the value of D is large, if D is
directly used as D factors, the number of orthogonal experiments will be too large, which can increase
the complexity of the algorithm and the algorithm may run too slowly. For this reason, D components
are divided into F groups to satisfy Eq. (14):

D = F × h + n (14)

where h = int(D/F), and n = D%F . The components contained in each group are as follows:

Di = (
w(i−1)×h+1, . . . , wi×h

)
1 ≤ i ≤ F (15)

D1,j = (
L1, . . . , Lh,j

)
1 ≤ j ≤ S (16)

After various level values of each factor are determined, the best level combination method is
chosen according to the orthogonal experimental design method to obtain a new individual. If the
new individual is better than the worst individual in the group, the worst individual will be replaced
by the new individual. Otherwise, the new individual will not be adopted into the population.

Finally, an example is presented to show how to use OED to generate new individuals based on
the worst individual and the best individual. Let worst = (1,3,0,8,7,4,2,6,3) be the worst individual and
gbest = (5,4,6,1,6,0,9,3,2) be the best individual in 9 dimensions space. The number of levels is 3, and
the number of groups is 4. According to Eqs. (14) and (15), we have D1 = (x1,x2), D2 = (x3,x4), D3 =
(x5,x6), and D4 = (x7,x8,x9). By Eq. (16), we can obtain 3 levels in each group as follows: D1,1 = (1,3),
D1,2 = (3,3.5), D1,3 = (5,4), D2,1 = (0,1), D2,2 = (3,4.5), D2,3 = (6,8), D1,1 = (1,3), D1,2 = (3,3.5), D1,3 =
(5,4), D3,1 = (6,0), D3,2 = (6.5,2), D3,3 = (7,4), D4,1 = (2,3,2), D4,2 = (5.5,4.5,2.5), and D4,3 = (9,6,3).
Based on these data, we can apply orthogonal experimental design to generate new individuals. All
individuals are given in Table 1.

Table 1 New individual generated by OED

N1 (1,3,0,1,6,0,2,3,2)
N2 (1,3,3,4.5,6.5,2,5.5,4.5,2.5)
N3 (1,3,6,8,7,4,9,6,3)
N4 (3,3.5,0,1,6.5,2,9,6,3)
N5 (3,3.5,3,4.5,7,4,2,3,2)
N6 (3,3.5,6,8,6,0,5.5,4.5,2.5)
N7 (5,4,0,1,7,4,5.5,4.5,2.5)
N8 (5,4,3,4.5,6,0,9,6,3)
N9 (5,4,6,8,6.5,2,2,3,2)
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3.5 Description of SMO3 Algorithm

The original SMO process consists of six phases: Local Leader Phase (LLP), Global Leader Phase
(GLP), Global Leader Learning Phase (GLLP), Local Leader Learning Phase (LLLP), Local Leader
Decision Phase (LLDP), and Global Leader Decision Phase (GLDP). The differences between the
original SMO algorithm and the SMO3 algorithm that integration of OBL and orthogonal experiment
design include: (1) In addition to the six phases of traditional SMO, it adds OBL and orthogonal
experiment design stages. The implementation of these two stages is after LLP and GLP but before
GLLP and LLLP. The addition of these two stages allows the group to generate new individuals in
a variety of ways, thereby ensuring the diversity of the group. (2) The LLP and GLP stages of the
algorithm in this paper are different from the traditional SMO algorithm. It adopts the local leader and
global leader algorithms based on the historically optimal domains and particle swarms proposed in
Sections 3.1 and 3.2. The flowchart of the SMO3 algorithm based on the fusion of OBL and orthogonal
experimental design is shown in Fig. 1. The time complexity of the SMO3 algorithm is O ((n3 + n2 +
n) Ngen + n2), where Ngen is the number of generations of the algorithm.

Figure 1: Flowchart of SMO3
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4 SMO Algorithm for Constrained Optimization Problem

Different from the unconstrained optimization problem, the solution for the constrained opti-
mization problems may not be the feasible solution, and the SMO3 algorithm cannot be used directly
to solve the constrained optimization problem. For this reason, we extend the SMO3 algorithm to
propose a spider monkey algorithm for dealing with constrained function optimization problems,
namely CSMO3.

4.1 Evaluation of Individual’s Pros and Cons

It is well known that the pros and cons of the two individuals X 1 and X 2 in the search space are
usually evaluated in the algorithm. For unconstrained optimization problems, if f (X 1) < f (X 2) X 1 is
better than X 2. Otherwise, X 2 is better than X 1. In a constrained optimization problem, an individual
in a search space may not be the feasible solution. Therefore, the evaluation of the individual’s pros
and cons must be based on whether the individual is a feasible solution. We use the following rules to
evaluate the individual’s pros and cons.

Rule 1: In case both individuals X 1 and X 2 are feasible solutions, if f (X 1) < f (X 2), then the
individual X 1 is better than X 2, else X 2 is better than X 1.

Rule 2: If the individual X 1 (X 2) is a feasible solution, but X 2 (X 1) is not a feasible solution, the
individual X 1 (X 2) is better than X 2 (X 1).

Rule 3: If both individuals X 1 and X 2 are not feasible solutions, the individual who violates fewer
constraints is better than the individual who violates more constraints.

The judgment rule of Rule 3 is as follows: Let cn1 and cn2 be the numbers of individuals X 1 and X 2

that do not meet the constraints respectively, value(X 1) < value(X 2) be the violation constraint value
of X 1 and X 2. If cn1 < cn2, the individual X 1 is better than X 2. If cn2 < cn1, the individual X 2 is better
than X 1. When cn1 = cn2, if value(X 1) < value(X 2), the individual X 1 is better than X 2. Otherwise, X 2

is better than X 1. Different from the rule in [18] that only evaluates the pros and cons of individuals
based on the violation constraint value, we give priority to individuals with a small number of violation
constraints, and the pros and cons of the individual are determined by the violation constraint value
only when cn1 is equal to cn2.

4.2 OBL Strategy of CSMO3 Algorithm

In the CSMO3 algorithm, the OBL strategy is used to generate the initial population to improve
the quality of the initial population. Firstly, a population is randomly generated, and the OBL strategy
is implemented to each decision variable of every individual by (17) with a certain probability.

xnew
j = Lj + Uj − xj (17)

In addition to the OBL strategy for building the initial population, the population is also updated
by the OBL strategy at each generation of the CSMO3 algorithm.

4.3 Local Leader Phase of CSMO3 Algorithm

In the local leader phase of the CSMO3 algorithm, a temporary new position is generated by the
position update method of traditional LLP first. Next, the new position is updated by the particle
swarm method with a probability of 0.4−cr so that another new position is obtained. Finally, the pros
and cons of these new positions and the original position are compared by the evaluation rules in
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Section 4.1, and the best position is used to update the original position. The main steps of LLP are
given in Algorithm 4.

Let N be the population size and D be the dimension size, Algorithm 4 requires updating all
components of each two times, and running the SMO algorithm once requires updating N individuals.
Thus, the time complexity of Algorithm 4 is O(2n2).

4.4 Global Leader Phase of CSMO3 Algorithm

In the global leader phase of the CSMO3 algorithm, a temporary new position is generated
according to the position update method of traditional GLP. Furthermore, a component of the new
position is randomly selected to be updated according to the particle swarm method and obtain
another new position. Finally, the pros and cons of these new positions and the original position are
compared, and the best position is used to update the original position. The main steps of GLP are
given in Algorithm 5. Let N be the population size and D be the dimension size, Algorithm 5 requires
updating one component of each two times, and running the SMO algorithm once requires updating
N individuals. Thus, the time complexity of Algorithm 5 is O(2n).

Algorithm 4: LLP of the CSMO3 Algorithm
Step 1 Update each component of SMi according to the traditional SMO algorithm to obtain the
position new_pos1.
Step 2 Implement the particle swarm-based update strategy for each component of SMi with a
probability of 0.4−cr to obtain another new position new_pos2.
Step 3 According to the evaluation rules in Section 4.1, find the best position in new_pos1, new_pos2,
and SMi to replace SMi.

Algorithm 5: GLP of the CSMO3 Algorithm
Step 1 If U(0, 1) < prob, then go to Step 2 to update SMi.
Step 2 Randomly select j ∈ {1, 2, . . . , D}.
Step 3 Implement the traditional update strategy on component j of SMi to obtain new position
new_pos1 according to Eq. (7).
Step 4 Randomly select j ∈ {1, 2, . . . , D}.
Step 5 Implement the particle swarm method on the component j of SMi to obtain another new
position new_pos2
Step 6 According to the evaluation rules in Section 4.1, find the best position among new_pos1,
new_pos2, and SMi to replace SMi.

4.5 Description of CSMO3 Algorithm

The main steps of the CSMO3 algorithm for handling constrained optimization problems are
similar to the main steps of the SMO3 algorithm in Section 3. The main differences include: (1) the
OBL strategy is used to generate the initial population to improve the quality of the initial population
in the CSMO3 algorithm; (2) the pros and cons of unfeasible solution are considered in the CSMO3

algorithm; (3) the CSMO3 algorithm only combines traditional position update method and particle
swarm update method at LLP and GLP stage. The flowchart of the CSMO3 algorithm is shown in
Fig. 2. The time complexity of the CSMO3 algorithm is O( (n3 + n2 + n) Ngen + n2).
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Figure 2: Flowchart of CSMO3

5 Numerical Experiments

To verify the effectiveness of the spider monkey optimization algorithm proposed in this paper,
the experiment comparison is performed on unconstrained functions, the CEC2006 benchmark set,
and engineering examples. The proposed algorithm is coded in Python 3.2 and the experiments are run
on a PC with Intel(R) Core(TM) i7-10510U, CPU @1.80 GHz 2.30 GHz, and Windows 10 operating
system.

The parameter setting for every SMO algorithm has been adopted as it is mentioned in reference
[15]. The parameter setting of SMO algorithms is as follows: the maximum number of generations
of algorithms MIR = 20000, the population size N = 50, the number of groups MG = 5, Global-
LeaderLimit = 50, LocalLeaderLimit = 1500, the perturbation rate pr ∈ [0.1,0.4] with linear increase
according to the number of iterations and prG+1 = prG + (0.4−0.1)/MIR. These parameters are
currently recognized as the best combination of parameters for the SMO algorithm.



CMC, 2023, vol.76, no.3 3309

5.1 Experiments on Unconstrained Optimization Problems

In this section, the effectiveness of the SMO3 algorithm is investigated. We use the SMO3

algorithm, original SMO algorithm [13], fitness-based position update in spider monkey optimiza-
tion algorithm (FPSMO) [15], and adaptive step-size based spider monkey optimization algorithm
(AsSMO) [17] to cope with unconstrained functions respectively. The results of SMO3 are compared
with that of SMO, FPSMO, and AsSMO for performance demonstration. The classic test functions
used in this section are briefly introduced in Table 2. Among 21 test functions, there are 12 functions
with variable dimensions and 9 functions with fixed dimensions.

Table 2: Unconstrained function

Identifier Function name Dimension Domain Tolerance error

F01 Michalewicz variable [0,p] 1.00E−05
F02 Step function variable [−100,100] 1.00E−05
F03 Levy montalvo 1 variable [−10,10] 1.00E−05
F04 Levy montalvo 2 variable [−5,5] 1.00E−05
F05 Ellipsoidal variable [−D, D] 1.00E−05
F06 Beale 2 [−1000,1000] 1.00E−05
F07 Kowalik 4 [−5,5] 1.00E−05
F08 2D Tripod 2 [−100,100] 1.00E−05
F09 Shifted Rosenbrock variable [−100,100] 1.00E−05
F10 Shifted Sphere variable [−100,100] 1.00E−05
F11 Shifted Rastrigin variable [−5,5] 1.00E−05
F12 Shifted Schwefel variable [−100,100] 1.00E−05
F13 Shifted Griewank variable [−600,600] 1.00E−05
F14 Shifted Ackley variable [−32,32] 1.00E−05
F15 Goldstein-Price 2 [−2,2] 1.00E−14
F16 Easom’s function 2 [−10,10] 1.00E−13
F17 Dekkers and Aarts 2 [−20,20] 5.00E−01
F18 McCormick 2 [−3,3] 1.00E−04
F19 Meyer and Roth 3 [−10,10] 1.00E−04
F20 Shuber 2 [−10,10] 1.00E−02
F21 Sinusoidal variable [0,p] 1.00E−02

The accuracy of the results, the number of iterations, and the success rate of the four algorithms
are compared in this section. Each algorithm runs 50 times on each function. Table 3 shows the
experimental results which include the mean deviation (MD), standard deviation (SD), average number
of iterations (AIR), and success rate (SR) of these 50 results. The success rate is the proportion of the
results obtained from 50 runs of the algorithm within the tolerance error range. Among the 21 test
functions, the success rate of the proposed method in this paper is higher than or equal to that of the
other three algorithms. The success rate of the SMO3 algorithm is 100% except for function F15. F15
is the only function whose success rate of the four algorithms cannot reach 100%, where the success
rates of SMO3, SMO, AsSMO, and FPSMO were 80%, 54%, 78%, and 0%, respectively. The mean
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deviation of the SMO3 algorithm on 14 functions is better than or equal to the other three algorithms,
and SMO, AsSMO, and FPSMO algorithms have 4 functions, 5 functions, and 1 function, respectively.
The standard deviation of the SMO3 algorithm on 13 functions is better than or equal to the other
three algorithms, while SMO, AsSMO, and FPSMO algorithms have 5 functions, 5 functions, and 1
function respectively. The average number of iterations of the SMO3 algorithm on 9 functions is better
than that of the other three algorithms, while SMO, AsSMO, and FPSMO algorithms only have 7
functions, 1 function, and 4 functions, respectively.

Table 3: Experimental results of unconstrained functions

Func_D Algorithm MD SD AIR SR(%)

F01_10

SMO 2.60E−06 3.07E−06 581.5 100
AsSMO 2.98E−06 3.40E−06 560.9 100
FPSMO 6.67E−01 8.20E−01 2.00E+04 0
SMO3 2.92E−06 3.46E−06 285.4 100

F02_60

SMO 0.00E+00 0.00E+00 149.1 100
AsSMO 0.00E+00 0.00E+00 148.4 100
FPSMO 0.00E+00 0.00E+00 85.7 100
SMO3 0.00E+00 0.00E+00 140.2 100

F03_60

SMO 6.55E−07 7.87E−07 191.9 100
AsSMO 5.78E−07 7.42E−07 188.8 100
FPSMO 1.15E−03 1.74E−03 15619.4 22
SMO3 2.45E−07 3.36E−07 375.1 100

F04_60

SMO 6.01E−07 7.49E−07 197 100
AsSMO 4.60E−07 5.98E−07 200 100
FPSMO 1.19E−02 2.52E−02 16418.8 18
SMO3 1.03E−07 1.35E−07 607.6 100

F05_100

SMO 1.54E−06 1.82E−06 2105.1 100
AsSMO 1.00E−06 1.28E−06 2230.2 100
FPSMO 6.82E+03 8.67E+03 2.00E+04 0
SMO3 1.05E−07 1.47E−07 1671.3 100

F06_2

SMO 2.50E−06 2.91E−06 25.9 100
AsSMO 2.33E−06 2.76E−06 30.1 100
FPSMO 3.65E+01 4.64E+01 18666.5 6
SMO3 2.59E−06 3.00E−06 36.7 100

F07_4

SMO 1.72E−06 2.05E−06 323.5 100
AsSMO 1.45E−06 1.75E−06 408.2 100
FPSMO 6.23E−03 8.76E−03 2.00E+04 0
SMO3 1.63E−06 2.14E−06 348.7 100

F08_2

SMO 3.10E−01 4.77E−01 12996.5 86
AsSMO 2.69E−01 3.67E−01 3886.8 84
FPSMO 7.90E−01 8.89E−01 19599.4 2
SMO3 2.39E−06 2.78E−06 4104.3 100

(Continued)
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Table 3 (continued)

Func_D Algorithm MD SD AIR SR(%)

F09_20

SMO 1.27E−06 1.65E−06 12809 100
AsSMO 1.87E−06 2.29E−06 8438.3 100
FPSMO 8.53E+00 8.86E+00 19295.2 4
SMO3 7.16E−07 9.44E−07 2322.3 100

F10_600

SMO 2.01E−07 2.71E−07 8383.4 100
AsSMO 2.62E−07 3.53E−07 6925.3 100
FPSMO 4.17E−07 6.60E−07 1802.2 100
SMO3 5.40E−07 6.50E−07 584.5 100

F11_100

SMO 8.27E−07 1.30E−06 4177.2 100
AsSMO 1.20E−06 1.67E−06 4260.2 100
FPSMO 3.48E−06 3.93E−06 437.8 100
SMO3 4.60E−07 5.95E−07 1215.2 100

F12_10

SMO 1.44E−06 1.83E−06 171.6 100
AsSMO 1.60E−06 1.98E−06 183.4 100
FPSMO 2.90E−06 3.44E−06 1167.6 100
SMO3 1.19E−06 1.35E−06 300.4 100

F13_10

SMO 2.10E−06 2.72E−06 371.3 100
AsSMO 4.87E−07 6.61E−07 558.9 100
FPSMO 2.33E−06 2.88E−06 317 100
SMO3 2.13E−06 2.54E−06 358.3 100

F14_30

SMO 4.83E−07 6.11E−07 910 100
AsSMO 5.68E−07 6.66E−07 1109.5 100
FPSMO 3.81E−06 4.03E−06 148.1 100
SMO3 4.75E−07 5.94E−07 434 100

F15_2

SMO 4.86E−14 4.88E−14 9226.6 54
AsSMO 3.41E−14 4.07E−14 4449.3 78
FPSMO 2.34E+00 3.27E+00 2.00E+04 0
SMO3 3.14E−14 3.96E−14 4041 80

F16_2

SMO 2.87E−14 3.25E−14 66.9 100
AsSMO 2.51E−14 2.93E−14 68.4 100
FPSMO 1.42E−01 2.62E−01 2.00E+04 0
SMO3 2.45E−14 2.85E−14 76.7 100

F17_2

SMO 5.08E−03 5.77E−03 11 100
AsSMO 4.16E−03 4.90E−03 12.2 100
FPSMO 3.98E+02 1.01E+03 16401.5 18
SMO3 4.42E−03 5.14E−03 14.9 100

F18_2

SMO 5.27E−06 6.02E−06 6.1 100
AsSMO 5.24E−06 6.25E−06 6.3 100
FPSMO 5.17E−03 1.14E−02 14400 16
SMO3 4.27E−06 5.36E−06 5.2 100

(Continued)



3312 CMC, 2023, vol.76, no.3

Table 3 (continued)

Func_D Algorithm MD SD AIR SR(%)

F19_3

SMO 1.06E−05 1.31E−05 17.6 100
AsSMO 1.49E−05 1.69E−05 20.1 100
FPSMO 4.51E−03 8.26E−03 2.00E+04 0
SMO3 1.41E−05 1.54E−05 13 100

F20_2

SMO 4.80E−06 5.31E−06 48.5 100
AsSMO 4.87E−06 5.44E−06 57.7 100
FPSMO 7.07E+00 1.74E+01 2.00E+04 0
SMO3 4.51E−06 5.27E−06 104.4 100

F21_10

SMO 1.56E−03 1.82E−03 1347.5 100
AsSMO 1.79E−03 2.11E−03 1465.8 100
FPSMO 9.51E−03 2.22E−02 1241 94
SMO3 1.52E−03 2.03E−03 399.5 100

To compare the pros and cons of the above four algorithms comprehensively, the accuracy, average
number of iterations, and success rate of each algorithm on 21 test functions are evaluated statistically
for the number ranked 1st to 4th according to the experimental results in Table 3. Let x1, x2, x3, and x4

be the numbers of the algorithm ranked 1st to 4th in the index, and their score calculation method is
given in Eq. (18).

score = x1 + 2x2 + 3x3 + 4x4 (18)

The experimental results are shown in Table 3 and the comprehensive score of MD, SD, AIR, and
SR is shown in Fig. 3. The smaller the comprehensive score, the more the number of rankings at the
top. The number of 1st rankings in the MD, SD, AIR, and SR indicators for the SMO3 algorithm
is 14, 13, 9, and 21, respectively; the comprehensive scores are 36, 29, 40, and 21, respectively; the
comprehensive rankings of four indexes are all No. 1.

Figure 3: Score of MD, SD, AIR, and SR
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The experimental results show that the SMO3 algorithm is more effective than SMO, AsSMO, and
FPSMO in coping with unconstrained optimization problems. That is because the position update
method based on PSO can increase the diversity of the population, opposition-based learning can
enhance the ability to explore new space, and the method of eliminating the worst individual based on
orthogonal experimental design can eliminate the worst individual in time.

5.2 Experiments on Constrained Optimization Problems

To examine the effectiveness of the CSMO3 algorithm in solving the constrained function
optimization problems, the experiment is conducted on the CEC2006 benchmark set [39], which
compares with the SMO algorithm, the AsSMO algorithm, and the FPSMO algorithm. These four
algorithms use the same individual pros and cons evaluation method, and the main parameter settings
are the same as in Section 5.1. Each algorithm runs 30 times. The feasible solution rate (FR), the best
solution (BS), the worst solution (WS), the average solution (AV), the average number of iterations
(AIR), and the success rate (SR) are respectively examined. The feasible solution rate is the ratio of
obtaining the feasible solution in 30 runs, and the success rate is the ratio of obtaining the best-known
solution in 30 runs. In the experiments on the CEC2006 benchmark set, the tolerance error is 1E-05
for g01, 1E-03 for g24, 1E-16 for both g08 and g12, and the tolerance errors of other functions are all
1E-04. The experimental comparison data on the CEC2006 benchmark set is shown in Table 4, where
the bold data of each index indicates that the corresponding algorithm ranks first in this index, and
‘Vn’ means that the number of constraint violations is n.

Table 4: Experimental comparison of the CEC2006 benchmark set

Func. Algorithm FR (%) BS WS AV AIR SR (%)

SMO 100 −14.99999 −13.828125 14.84374 2939.6 86.7
AsSMO 100 −14.99999 −13.82812 −14.8828 2275.5 90

g01 FPSMO 3.3 −3.71249 V7 V4.7 2.00E+04 0
CSMO3 100 −14.99999 −14.99999 −14.99999 218.4 100
SMO 100 −0.80352 −0.59605 −0.73225 18730.6 6.7
AsSMO 100 −0.80352 −0.67459 −0.76776 19367 3.3

g02 FPSMO 100 −0.26336 −0.16016 −0.20112 2.00E+04 0
CSMO3 100 −0.80353 −0.66593 −0.77667 16127.5 20
SMO 100 −0.82709 −0.28096 −0.60016 2.00E+04 0
AsSMO 100 −0.82211 −0.20072 −0.5079 2.00E+04 0

g03 FPSMO 90 −0.32654 V1 V0.1 2.00E+04 0
CSMO3 100 −0.83291 −0.30282 −0.62079 2.00E+04 0
SMO 100 −30665.53862 −30665.53857 −30665.53858 492.8 100
AsSMO 100 −30665.53861 −30665.53857 −30665.53858 402.3 100

g04 FPSMO 100 −30400.57074 −28152.99479 −29372.52622 2.00E+04 0
CSMO3 100 −30665.53864 −30665.53857 −30665.53859 364.8 100
SMO 100 5126.50462 5704.72014 5265.95289 2.00E+04 0
AsSMO 100 5126.54432 5947.93966 5233.32023 2.00E+04 0

g05 FPSMO 0 V3 V3 V3 2.00E+04 0
CSMO3 100 5126.52999 5636.09331 5261.59181 2.00E+04 0

(Continued)
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Table 4 (continued)

Func. Algorithm FR (%) BS WS AV AIR SR (%)

SMO 100 −6961.81386 −6961.81378 −6961.81379 1485 100
AsSMO 100 −6961.81386 −6961.81378 −6961.8138 1490.2 100

g06 FPSMO 30 −3290.56671 V1 V0.7 2.00E+04 0
CSMO3 100 −6961.81383 −6961.81378 −6961.81379 1506.6 100
SMO 100 24.38381 25.85533 24.95247 2.00E+04 0
AsSMO 100 24.38818 26.39786 24.9758 2.00E+04 0

g07 FPSMO 43.3 330.42756 V2 V0.63 2.00E+04 0
CSMO3 100 24.3187 24.92294 24.47794 2.00E+04 0
SMO 100 −0.095825 −0.095825 −0.095825 33.7 100
AsSMO 100 −0.095825 −0.095825 −0.095825 34.5 100

g08 FPSMO 100 −0.095823 −0.028086 −0.077529 2.00E+04 0
CSMO3 100 −0.095825 −0.095825 −0.095825 39.6 100
SMO 100 680.63039 680.64343 680.635024 2.00E+04 0
AsSMO 100 680.63025 680.96121 680.64383 2.00E+04 0

g09 FPSMO 100 734.36381 346943.815 18387.43191 2.00E+04 0
CSMO3 100 680.63022 680.63268 680.63124 2.00E+04 0
SMO 100 7053.26956 8077.26919 7442.60767 2.00E+04 0
AsSMO 100 3.53E+15 3.54E+15 3.53E+15 2.00E+04 0

g10 FPSMO 3.3 14801.87224 V2 V1.33 2.00E+04 0
CSMO3 100 7051.77361 7296.01169 7153.58994 2.00E+04 0
SMO 100 0.749997 0.99998 0.88055 19766.6 3.33
AsSMO 100 0.75475 0.99879 0.92286 2.00E+04 0

g11 FPSMO 100 0.75614 0.99987 0.86631 2.00E+04 0
CSMO3 100 0.749994 0.877598 0.76582 17966.9 23.3
SMO 100 −1.00000 −1.00000 −1.00000 49.9 100
AsSMO 100 −1.00000 −1.00000 −1.00000 51 100

g12 FPSMO 100 −0.99999 −0.83971 −0.97409 2.00E+04 0
CSMO3 100 −1.00000 −1.00000 −1.00000 51.7 100
SMO 96.7 0.36647 V1 V0.033 2.00E+04 0
AsSMO 93.3 0.20427 V1 V0.067 2.00E+04 0

g13 FPSMO 0 V2 V3 V2.93 2.00E+04 0
CSMO3 100 0.53114 2.21803 0.97086 2.00E+04 0
SMO 100 −45.69618 −40.75426 −43.16372 2.00E+04 0
AsSMO 100 −45.96364 −39.80034 −42.75604 2.00E+04 0

g14 FPSMO 0 V3 V3 V3 2.00E+04 0
CSMO3 100 −45.04055 −39.46251 −42.35213 2.00E+04 0
SMO 100 961.71536 972.00076 964.92695 2.00E+04 0
AsSMO 100 961.74193 970.71708 964.26395 2.00E+04 0

g15 FPSMO 33.3 962.91087 V2 V1.27 2.00E+04 0
CSMO3 100 961.71521 971.79005 964.21167 2.00E+04 0
SMO 100 −1.90515447 −1.90515426 −1.90515432 534.7 100

(Continued)
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Table 4 (continued)

Func. Algorithm FR (%) BS WS AV AIR SR (%)

AsSMO 100 −1.90515447 −1.90515426 −1.90515433 471.4 100
g16 FPSMO 26.7 −1.53373 V1 V0.73 2.00E+04 0

CSMO3 100 −1.90515464 −1.90515426 −1.90515436 383.6 100
SMO 50 8871.60597 V2 V0.63 2.00E+04 0
AsSMO 63.3 8878.58122 V2 V0.5 2.00E+04 0

g17 FPSMO 0 V4 V4 V4 2.00E+04 0
CSMO3 93.3 8892.95779 V3 V0.2 2.00E+04 0
SMO 100 −0.86601 −0.67194 −0.78878 2.00E+04 16.7
AsSMO 100 −0.86602 −0.67347 −0.82717 2.00E+04 30

g18 FPSMO 6.7 −0.53208 V8 V5.43 2.00E+04 0
CSMO3 100 −0.86602 −0.67463 −0.85793 2.00E+04 30
SMO 100 33.84292 38.87246 35.26715 2.00E+04 0
AsSMO 100 33.68172 37.19281 35.08186 2.00E+04 0

g19 FPSMO 100 1402.22812 5091.41985 2749.60765 2.00E+04 0
CSMO3 100 33.38158 36.38671 34.60199 2.00E+04 0
SMO 0 V10 V18 V13.3 2.00E+04 0
AsSMO 0 V9 V18 V13.1 2.00E+04 0

g20 FPSMO 0 V19 V20 V19.9 2.00E+04 0
CSMO3 0 V12 V19 V16.8 2.00E+04 0
SMO 0 V1 V4 V2.27 2.00E+04 0
AsSMO 0 V1 V4 V2.73 2.00E+04 0

g21 FPSMO 0 V3 V5 V4.6 2.00E+04 0
CSMO3 10 290.75339 V4 V1.53 2.00E+04 0
SMO 0 V15 V19 V17.43 2.00E+04 0
AsSMO 0 V16 V19 V18.1 2.00E+04 0

g22 FPSMO 0 V19 V19 V19 2.00E+04 0
CSMO3 0 V8 V19 V12.97 2.00E+04 0
SMO 0 V1 V4 V2.73 2.00E+04 0
AsSMO 0 V2 V4 V2.97 2.00E+04 0

g23 FPSMO 0 V2 V5 V3.77 2.00E+04 0
CSMO3 23.3 −68.57482 V4 V1.40 2.00E+04 0
SMO 100 −5.50801 −5.50801 −5.50801 183.8 100
AsSMO 100 −5.50801 −5.50801 −5.50801 193.7 100

g24 FPSMO 100 −5.47611 −4.66801 −5.0939 2.00E+04 0
CSMO3 100 −5.50801 −5.50801 −5.50801 187.3 100

For function g01, the algorithm proposed in this paper can obtain the known optimal solution in
each solution and its success rate is 100%. The success rates of SMO, AsSMO, and FPSMO algorithms
are 86.7%, 90%, and 0%, respectively.
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For function g02, the feasible solution rate of the four algorithms is 100%, but the success rate of
the CSMO3 algorithm is higher than that of the other three algorithms.

The known optimal solution of g03 is −1.00050. However, none of these four algorithms can
obtain the known optimal solution. The feasible solution rate of CSMO3 algorithms is 100% and the
BS, WS, and AV of CSMO3 algorithms are better than that of the other three algorithms.

For g04, the success rate of the CSMO3 algorithm is 100% and the BS, WS, AV, and AIR of CSMO3

algorithms are better than that of the other three algorithms.

The known optimal solution of g05 is 5126.49671. The best solution of SMO, AsSMO, and
CSMO3 are 5126.50462, 5126.54432, and 5126.52999 respectively. These solutions are close to the
known optimal solution. For the average solution, AsSMO is better than CSMO3. The BS of SMO is
better than CSMO3. The WS of CSMO3 is better than that of SMO, AsSMO, and FPSMO.

For g06, the FR, BS, WS, AV, and SR of SMO, AsSMO, and CSMO3 are almost equal. The AIR
of SMO is better than AsSMO and CSMO3.

The known optimal solution of g07 is 24.30621. Except for FPSMO, the FR of the other three
algorithms is 100%. The best solution of the CSMO3 algorithm is 24.31870, and the difference between
this value and the known optimal solution is only 0.01249. The results show that CSMO3 is better than
the other three algorithms.

For g08, the experiment results of SMO, AsSMO, and CSMO3 are equal except for the AIR. The
AIR of SMO is better than AsSMO and CSMO3.

The known optimal solution of g09 is 680.63006. The SMO, AsSMO, and CSMO3 can find
the solution, which is almost equal to the known optimal solution, where the best solution of the
CSMO3 algorithm is 680.63022. The BS, WS, and AV of CSMO3 are better than that of the other
three algorithms.

The known optimal solution of g10 is 7049.248021. The best solution of SMO, AsSMO, FPSMO,
and CSMO3 is 7053.26956, 3.52952E+15, 14801.87224, and 7051.77361, respectively, where the BS
of the CSMO3 algorithm is less than the value of other algorithms. In addition, the worst solution of
CSMO3 is 7296.01169, which is better than that of the other algorithms.

For g11, all the algorithms can find a feasible solution in each solution. However, the SR of
these algorithms is the smallest. The SR of CSMO3 is 23.3% and it is better than the BS of the other
algorithms.

For g12, the experiment results of SMO, AsSMO, and CSMO3 algorithms are equal except for the
AIR. The AIR of SMO, AsSMO, and CSMO3 are 49.9, 51, and 51.7, respectively.

The known optimal solution of g13 is 0.053942. None of these four algorithms can obtain the
known optimal solution. The feasible solution rate of SMO, AsSMO, FPSMO, and CSMO3 is 96.7%,
93.3%, 0%, and 100%, respectively. CSMO3 is the only algorithm that can find a feasible solution in
each run.

The known optimal solution of g14 is −47.76489. The feasible solution rates of SMO, As SMO,
FPSMO, and CSMO3 are 100%, 100%, 0%, and 100%, respectively, but these four algorithms cannot
obtain the known optimal solution. The BS, WS, and AV of CSMO3 are worse than those of SMO
and AsSMO.

The known optimal solution of g15 is 961.71502. The best solution of CSMO3 is 961.71521, and
the difference between this value and the known optimal solution is 0.00019. The WS of AsSMO is
better than the WS of CSMO3, but the BS and AV of CSMO3 are better than the other algorithms.



CMC, 2023, vol.76, no.3 3317

For function g16, the success rate of CSMO3 is 100% and the BS, WS, AV, and AIR of CSMO3

are better than that of the other three algorithms.

The known optimal solution of g17 is 8853.53967. None of these four algorithms can obtain
the known optimal solution. The feasible solution rates of SMO, AsSMO, FPSMO, and CSMO3

algorithms are 50%, 63.3%, 0%, and 93.3%, respectively. The average number of constraint violations
of CSMO3 is 0.2, which is better than the other algorithms. The BS of the SMO algorithm is
8871.60597. This value is better than the BS of CSMO3.

For g18, the FR, BS, WS, AV, and SR of CSMO3 are equal to or better than the other algorithms.

The known optimal solution of g19 is 32.65559. None of these four algorithms can obtain the
known optimal solution, but these algorithms can all find a feasible solution. The BS, WS, and AV of
the CSMO3 algorithm are better than SMO, AsSMO, and FPSMO.

A feasible solution for g20 is not found so far. AsSMO can find solutions that violate 9 constraints
and the average number of constraint violations of AsSMO is 13.1. In this function, the performance
of AsSMO is better than SMO, FPSMO, and CSMO3.

The known optimal solution of g21 is 193.72451. SMO, AsSMO, and FPSMO cannot find feasible
solutions. The FR of CSMO3 is 10% and the best solution of CSMO3 is 290.75339. The performance
of the CSMO3 algorithm is better than that of the other algorithms.

The known optimal solution of g22 is 236.43098. None of these four algorithms can find a feasible
solution. CSMO3 algorithm can find solutions that violate 8 constraints, and the average number of
constraint violations is 12.97. In this function, the performance of CSMO3 is better than the other
algorithms.

The known optimal solution of g23 is −400.05510. SMO, AsSMO, and FPSMO cannot find
feasible solutions. The FR of CSMO3 is 23.3% and the best solution of CSMO3 is −68.57482. The
performance of CSMO3 is better than other algorithms in function g23.

For function g24, the experiment results of SMO, AsSMO, and CSMO3 are equal except for the
AIR. The AIR of SMO, AsSMO, and CSMO3 are 183.8, 193.7, and 187.3, respectively.

Experiment results show that the proposed algorithm in this paper is better than SMO, AsSMO,
and FPSMO. The FR of CSMO3 in 24 test functions is equal to or better than the other three
algorithms. It is noted that the FR of CSMO3 in g13, g17, g21 and g23 are 100%, 93.3%, 10%, and
23.3%, respectively. These data are better than the FR of SMO, AsSMO, and FPSMO. Moreover, the
SR of the CSMO3 algorithm is not worse than the other three algorithms in each test function. For
the BS of CSMO3, the BS of five functions is equal to the other algorithms, the BS of 13 functions is
better than the other algorithms and only the BS of six functions is worse than other algorithms. In
the WS of CSMO3, the WS of eight functions is equal to other algorithms, the WS of 10 functions is
better than other algorithms, and only the WS of six functions is worse than the other algorithms. For
the AV of CSMO3, the AV of three functions is equal to other algorithms, the AV of 17 functions is
better than other algorithms, and only the AV of four functions is worse than other algorithms.

5.3 Experiments on Engineering Optimization Problems

To further verify the effectiveness of the CSMO3 algorithm, the spring tension design problem
and the pressure pipe design problem are considered. The optimal solution of the CSMO3 algorithm
is compared with the solution results of related algorithms in [40,41].
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5.3.1 Spring Tension Design

The optimization of spring tension design is to minimize the weight, when the three decision
variables of the spring coil diameter, the average diameter of the spring coil, and the number of coils
need to meet a set of constraints. The mathematical model of this problem is described by Eq. (19).

min f (x) = x2
1x2 (2 + x3)

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

g1 (x) = 1 − x3x3
2

71785x4
1

≤ 0

g2 (x) = 4x2
2 − x1x2

12556
(
x3

1x2 − x4
1

) + 1
5108x2

1

− 1 ≤ 0

g3 (x) = 1 − 140.45x1

x3
2x3

≤ 0

g4 (x) = x1 + x2

1.5
− 1 ≤ 0

0.05 ≤ x1 ≤ 2

0.25 ≤ x2 ≤ 1.3

2 ≤ x3 ≤ 15

(19)

where the coil diameter is denoted by x1, the average diameter of coils is denoted by x2, and the number
of coils is denoted by x3.

The comparison of solution results is shown in Table 5. The results show that the optimal solution
of the CSMO3 algorithm proposed in this paper is 0.012665153339, which is better than the optimal
solution of those algorithms used to compare with the flower pollination algorithm based on the
gravitational search mechanism (GSFPA) presented in [40]. The result of the CSMO3 algorithm is
only worse than GSFPA.

Table 5: Comparison of optimal solutions for spring tension design

Algorithm x1(d) x2(D) x3(P) f(x)

CDE 0.051609 0.354714 11.410831 0.0126702
HPSO 0.051706 0.357126 11.265083 0.0126652
AATM 0.051813 0.35969 11.119252 0.0126682
SCA 0.05216 0.368158 10.648442 0.0126692
FPA 0.052277278 0.371203525 10.49087566 0.012673971
GSFPA 0.051413617 0.350365659 11.65914645 0.012659429
CSMO3 0.051807 0.35957 11.1233986 0.012665153
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5.3.2 Pressure Pipe Design

Optimization of pressure pipe design is to minimize the costs when four decision variables of
cylindrical pipe thickness, hemispherical pipe thickness, cylindrical pipe inner diameter, and cylindrical
pipe length must meet a few constraints. The mathematical model of this problem is as follows:

min f (x) = 0.6224x1x3x4 + 1.7781x2x2
3 + 3.1661x2

1x4 + 19.84x2
1x3

s.t.

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

g1 (x) = −x1 + 0.0193x3 ≤ 0
g2 (x) = −x2 + 0.00954x3 ≤ 0

g3 (x) = −πx2
3x4 − 4πx3

3
3

+ 1296000 ≤ 0
g4 (x) = −240 + x4 ≤ 0
0 ≤ x1, x2 ≤ 100
10 ≤ x3, x4 ≤ 200

(20)

where cylindrical pipe thickness is denoted by x1, the hemispherical pipe thickness is denoted by x2,
the cylindrical pipe inner diameter is denoted by x3, and the cylindrical pipe inner diameter is denoted
by x4.

The comparison of solution results is shown in Table 6. The optimal solution of the CSMO3

algorithm is 5884.8205, which is 31.6566 smaller than the optimal solution 5916.4771 of the GSFPA
algorithm [40] and is better than the optimal solution of those heuristic algorithms used to compare
with GSFPA presented in [40]. Thus, it can be found that the CSMO3 algorithm proposed in this paper
is also effective in dealing with engineering optimization problems.

Table 6: Comparison of optimal solutions for pressure pipe design problems

Algorithm x1(TS) x2(Th) x3(R) x4(L) f(x)

CPSO 0.8125 0.4375 42.0913 176.7465 6061.0777
GenAS 1.125 0.625 47.7 117.701 8129.8
HPSO 0.8125 0.4375 42.0984 176.6366 6059.7143
SPA 0.8125 0.4375 40.3239 200 6288.7445
FPA 0.7957 0.3976 41.2243 187.8048 5929.6933
GSFPA 0.7863 0.3924 40.7214 194.6374 5916.4771
CSMO3 0.7782 0.3847 40.3212 199.9779 5884.8205

5.3.3 Parameter Estimation for Frequency-Modulated (FM) Sound Waves

The mathematical model of this problem is shown in [41]. There are six dimensions to optimize the
FM synthesizer parameter. This issue is highly complex and multimodal, with strong episodic nature.
In theory, the function value of the optimal solution to this problem is equal to zero.

Inspired by the Gorilla group and their social way of life in nature, a new metaheuristic algorithm
called Artificial Gorilla Troops Optimizer (GTO) has been developed [41]. In optimizing the FM
synthesizer parameter, a GTO can find high-quality solutions. The optimal solution of GTO is
[−1.0000, −5.0000, 1.5000, 4.8000, 2.000, 4.9000], and the function value is 2.2811E−27. By using
the CSMO3 algorithm to solve the problem, another optimal solution [0.9999, 5.0000, 1.5000,
−4.7999, −2.0000, 4.8999] can be obtained, corresponding to the function value of 2.3583E−17. The
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optimization results of engineering problems show that the algorithm proposed in this paper performs
also better than those heuristic algorithms used to compare with GTO presented in [41].

6 Conclusions and Future Work

This paper developed an improved method for the spider monkey algorithm. Because the position
of a spider monkey determines the solution, how to update the position of the spider monkey plays
a crucial role in problem-solving. A new updating method based on historical optimal domains and
particle swarm was developed and population diversity can be improved. Also, this paper applied
the OBL strategy to the traditional spider monkey algorithm. The proposed method can increase
the individual diversity in the iterative process to avoid prematurely falling into the local optima.
Furthermore, A method to eliminate the worst individuals in each group of the SMO algorithm based
on the orthogonal experimental design is developed. The experiments on the classical unconstrained
functions, constrained functions of the CEC2006 benchmark set, and engineering examples show that
the optimization ability of the proposed algorithm is significantly better than other SMO and some
evolution algorithms.

The method proposed in this paper has good performance in solving continuous function
optimization problems. However, the spider monkey position update method cannot effectively
describe the change of the solution for a combinatorial optimization problem, so the algorithm cannot
effectively solve a combinatorial optimization problem. In the future, one direction worth exploring
is how to build a spider monkey position update method suitable for combinatorial optimization
problems, and then improve the ability of SMO to solve combinatorial optimization problems.
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