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ABSTRACT

Flooding is a hazardous natural calamity that causes significant damage to lives and infrastructure in the real world.
Therefore, timely and accurate decision-making is essential for mitigating flood-related damages. The traditional
flood prediction techniques often encounter challenges in accuracy, timeliness, complexity in handling dynamic
flood patterns and leading to substandard flood management strategies. To address these challenges, there is a need
for advanced machine learning models that can effectively analyze Internet of Things (IoT)-generated flood data
and provide timely and accurate flood predictions. This paper proposes a novel approach-the Adaptive Momentum
and Backpropagation (AM-BP) algorithm-for flood prediction and management in IoT networks. The AM-BP
model combines the advantages of an adaptive momentum technique with the backpropagation algorithm to
enhance flood prediction accuracy and efficiency. Real-world flood data is used for validation, demonstrating
the superior performance of the AM-BP algorithm compared to traditional methods. In addition, multilayer
high-end computing architecture (MLCA) is used to handle weather data such as rainfall, river water level, soil
moisture, etc. The AM-BP’s real-time abilities enable proactive flood management, facilitating timely responses
and effective disaster mitigation. Furthermore, the AM-BP algorithm can analyze large and complex datasets,
integrating environmental and climatic factors for more accurate flood prediction. The evaluation result shows
that the AM-BP algorithm outperforms traditional approaches with an accuracy rate of 96%, 96.4% F1-Measure,
97% Precision, and 95.9% Recall. The proposed AM-BP model presents a promising solution for flood prediction
and management in IoT networks, contributing to more resilient and efficient flood control strategies, and ensuring
the safety and well-being of communities at risk of flooding.
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1 Introduction

Flooding has been a devastating aspect of human civilization for many centuries, as it affects the
lives and livelihoods of millions [1,2]. Therefore, effective flood early warning systems are essential to
reduce the losses from floods [3,4]. Monitoring floods enable authorities to make better decisions
to reduce the impact of floods. Due to climate change, traditional disaster management systems
are unable to effectively predict the initial occurrence of floods [5]. As climate change continues to
worsen, the frequency and intensity of flooding events are projected to rise, posing challenges to
traditional disaster management systems [6]. Forecasting the onset of heavy rains early is crucial in
limiting the damage caused by flooding [7,8]. Although several existing systems can predict rainfall in
advance, they often fall short due to the constantly changing climate [9]. In such a scenario, developing
more accurate, timely, and reliable flood prediction systems is of paramount importance to save lives,
minimize property damage and enhance the resilience of communities to flooding events.

The power of IoT in enhancing flood management is derived from its ability to provide a
seamless data collection, communication, and analysis platform. The integration of machine learning
algorithms and big data applications with IoT devices holds the potential to enhance flood forecasting,
early warning systems, monitoring, and management [10–12]. In the past few decades, researchers
have proposed different flood prediction models that utilize IoT and Artificial Intelligence (AI)
technologies. These models encompass a range of approaches, including simple correlations based
on stage-discharge data, deterministic models, Artificial Neural Networks (ANN), and fuzzy logic
techniques [13–21].

Khanna et al. [22] developed a flood prediction system using cloud computing, mobile edge
computing, fog computing, and the IoT. They used sensory data to create the multi-model computing
architecture. Anbarasan et al. [23] proposed a flood detection system based on Convolutional Deep
Neural Networks (CDNN), deep learning, and the IoT. They pre-processed the data and developed
rules for flood risk categories. Wan et al. [24] created a flood forecasting model using Elman
neural networks. They trained the models with a real-time recurrent learning algorithm and used the
Bayesian Theorem for probabilistic flood predictions. Pollard et al. [25] focused on coastal flood risk
management and explored the use of Big Data Approaches in flood risk assessment and emergency
response protocols.

Fang et al. [26] developed an integrated method for early snowmelt flood warnings using geoin-
formatics, IoT, and cloud services. They established an Integrated Information System for improved
early-warning and snow-melt flood simulation processes. Sooda et al. [27] suggested an IoT-based
flood observation and prediction structure using Big Data and High-Performance Computing. They
optimized sensor placement and energy conservation using social network analysis and dimensionality
reduction techniques. Puttinaovarat et al. [28] described a flood forecasting system that utilizes
hydrological, crowd-sourced, meteorological, and geographic big data. They proposed incorporating
the depiction of the first flood and extending it to the user’s current position. Hue et al. [29] developed a
flood forecasting model using elman neural networks for the Xianghongdian reservoir in East China.
The model is trained with a real-time recurrent learning algorithm and meets the required precision.

Chen et al. [30] developed a flooding process forecasting model using Convolution Neural
Networks and two-dimensional convolutional operations. They focused on the rainfall characteristics
in the Xixian basin. Dai et al. [31] proposed an artificial neural network-based model for predicting
flood depth in Macau, China. They acknowledged the need for improvements in input, model
structure, forecasted values, and the smoothness of the forecast time series. Dong et al. [32] proposed
a hybrid deep learning model, a fast, accurate, stable, and tiny gated recurrent neural network-fully
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convolutional network for forecasting channel flood changes using historical spatial-temporal data.
They suggested improvements such as training on larger datasets and incorporating built environment
information. Hu et al. [33] proposed an empirically attenuated component analysis method for the
early characterization of alarm floods. Their work highlighted the importance of incorporating labeled
historical data and including all possible types of alarm floods in the training dataset.

Table 1 presents a comparison of state-of-the-art flood prediction models. Despite the advance-
ment in flood prediction models, certain research gaps persist. Existing models often suffer from
inefficient parameter tuning, limiting their accuracy. They also struggle with scalability issues, hin-
dering their ability to process large volumes of weather data. High latency and reduced responsiveness
due to inefficient data management pose another challenge. Moreover, many models grapple with the
complexity of analyzing large-scale data and exhibit limited adaptability, being designed for specific
scenarios or locations, which restricts their broad applicability.

Table 1: State of the art comparison table

Authors Method/model Study location Improvements/
enhancements

Khanna et al. [22] Model using the cloud,
and fog computing with
IoT

India Incorporating more
influential
parameters

Anbarasan et al. [23] CDNN-based flood
detection system using
deep learning and IoT

India Including more
low-cost sensors and
futuristic algorithms

Wan et al. [24] Elman neural
network-based flood
forecasting model

Huai River Watershed,
East China

Bayesian Theorem
for probabilistic
flood predictions

Pollard et al. [25] Coastal flood risk
management using Big
Data Approaches
(BDAs)

East China Incorporating
insights from initial
BDA deployments

Fang et al. [26] An integrated method
for early snowmelt
flood warnings using
geoinformatics, IoT,
and cloud services

N/A Addressing data for-
mat/standardization
and system
compatibility

Sooda et al. [27] IoT-based intelligent
flood observation and
prediction structure

Xinjiang, northwest of
China

Using fewer sensors

Puttinaovarat et al. [28] Adaptive
machine-learning
framework for flood
forecasting

Southern Thailand Incorporating a
depiction of the first
flood and
color-coded sections

(Continued)
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Table 1 (continued)

Authors Method/model Study location Improvements/
enhancements

Hua et al. [29] A real-time recurrent
learning algorithm

East China Adding a dynamic
neural network with
a longer lead time

Chen et al. [30] CNN-based model for
forecasting flooding
process

Xixian Basin, China Integrating more
elements like
vegetation, soil, and
evaporation

Dai et al. [31] ANN-based model for
predicting flood depth
in the following hour

Macau, China Addressing
insufficient input
and smoothing the
forecast time series

Dong et al. [32] The hybrid deep
learning model for
channel flood
forecasting

Harris County, Texas Training on a larger
dataset and
incorporating built
environment info

Hu et al. [33] Empirically Attenuated
Component Analysis
(EACA) for early alarm
flood characterization

Tennessee Eastman
process

Gathering labeled
historical data and
covering all alarm
flood types

Traditional approaches to data management often face difficulties in handling the real-time nature
of meteorological data and the intricate relationships between various environmental factors [34–
37]. Meteorological data is characterized by its dynamic and time-sensitive nature. It is collected
from numerous sensors and stations across different geographical locations, providing updates at
frequent intervals [38,39]. Managing such real-time data requires efficient data ingestion, storage,
and processing mechanisms that can handle the high data velocity and volume associated with mete-
orological observations. Furthermore, meteorological data is multidimensional and interconnected
with complex relationships between different environmental factors. Variables such as temperature,
humidity, wind speed, atmospheric pressure, and precipitation are interconnected and influence
each other. Capturing and understanding these complex relationships is crucial for accurate flood
prediction and management [40]. To address these challenges, this research proposes a Multilayer
High-End Computing Architecture (MLCA) that incorporates fog and cloud computing technologies.
This advanced architecture aims to enhance the efficiency of handling large datasets, leading to more
accurate flood prediction models.

ANN models are effective in analyzing time-series data and capturing complex relationships
between environmental factors, which are crucial in flood prediction. However, large datasets can pose
challenges for machine learning models, such as the need for more computational resources and the
risk of overfitting [41,42]. To overcome these challenges, the proposed approach combines two learning
algorithms: The adaptive momentum (AM) algorithm and the backpropagation (BP) algorithm. The
AM algorithm dynamically adjusts the learning rate during the training process based on the gradient
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information. This adjustment allows for faster convergence and better optimization of the ANN
model. On the other hand, the BP algorithm updates the weights and biases of the ANN based on
the error between the predicted and actual outputs. By incorporating the AM and BP algorithms, the
procedure aims to enhance the efficiency and effectiveness of the ANN model in flood prediction. It
helps the model process large datasets more efficiently and improve the accuracy of the predictions by
adjusting the learning rate and updating the model’s parameters based on the prediction errors. The
important research contributions of this paper are summarized as follows:

Proposed Multilayer High-End Computing Architecture (MLCA) for efficient handling of
large datasets in flood prediction models.
Combination of adaptive momentum (AM) and backpropagation (BP) algorithms to improve
efficiency and accuracy of Artificial Neural Network (ANN) models in flood prediction.
Addressing challenges of processing large datasets in flood prediction by dynamically adjusting
learning rate and updating model parameters.

The layout of this article is delivered as follows: Section 2 describes the proposed methodology
along with a layered architecture description, deep analysis of existing flood prediction models,
detailed High-End Computing Architecture (MLCA), and hybridized BP model. Section 3 provides
the experimental results of the proposed system. Section 4 concludes the paper.

2 Proposed Methodologies

A reliable flood forecasting and monitoring system are dependent on several elements including
reliable meteorological data collecting, effective data analysis, timely result alerts, and an intuitive user
interface. The four-layered design proposed for an efficient flood forecasting system is illustrated in
Fig. 1. The proposed architecture is composed of four layers: the lowest layer is referred to as the
sensing layer or Internet of Things layer, the second layer is referred to as the Fog Computing Layer,
the layer above the Fog Computing Layer is referred to as the Data Analysis Layer and the topmost
layer is referred to as the Presentation Layer or user interface.

Figure 1: Four-layered architecture for weather big data analysis and flood management
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2.1 Sensing Layer

The sensing layer consists of a broad IoT network architecture that is connected to a variety of IoT
weather smart sensors, such as cameras, sensors, and other monitoring devices. This layer generates
massive amounts of large heterogeneous data.

Temperature sensing and humidity: To facilitate modeling, the sensor node monitors the temper-
ature in degrees Celsius in the region in which it is monitored using a DHT11 sensor. This sensor is
a capacitive-type humidity and temperature sensor that measures the surrounding air and provides
temperature in degrees Celsius and relative humidity in percentage terms. The temperature has a
small impact on rainfall in general. A high temperature implies the possibility of torrential rains,
while a moderate temperature indicates a decent chance of precipitation. Low temperatures imply a
minimal probability of rain. Static humidity sensing nodes quantify the atmosphere’s relative humidity
in percentage terms. The general trend indicates that when the amount of humidity increases, the
likelihood of rain increases as well. In this research, the DHT11 sensor was employed for both
temperature and humidity sensing, providing an efficient and accurate method for monitoring these
weather parameters.

Sensing of air pressure: The sensor nodes deployed to measure air pressure in millibars.
The following points demonstrate how pressure affects weather conditions. If the air pressure
suddenly increases, it suggests that the weather is clear and the temperature is about to fall. A rise
in air pressure indicates that the weather is improving or that the conditions will remain stable. If
atmospheric pressure remains constant, meteorological conditions remain constant as well. When
atmospheric pressure gradually decreases, it suggests that the weather will be moist and there is a
chance of rain. If the air pressure rapidly lowers, thunderstorms or heavy rains are likely.

Sensing of humidity: Static humidity sensing nodes quantify the atmosphere’s relative humidity in
percentage terms using a DHT11 sensor. This sensor is a capacitive-type humidity and temperature
sensor that measures the surrounding air and provides relative humidity in percentage terms. The
general trend indicates that when the amount of humidity increases, the likelihood of rain increases
as well.

Sensing of the water level: The water level, indicated in feet or cubic centimeters, shows the
maximum amount of water that can be incorporated into a reservoir without overflowing or causing
a hazard. A low value implies that the reservoir is still capable of handling additional flowing or
rainwater. In this research, ultrasonic sensors were employed to measure the water level. Ultrasonic
sensors emit high-frequency sound waves and measure the time it takes for the sound waves to bounce
back from the water surface, calculating the distance to the water surface accordingly.

Sensing of rainfall: The rainfall attribute is indicated in millimeters (mm) of rain and is determined
by the use of a network of fixed rainfall measurement sensors, specifically optical rain gauges, located
at strategic locations around the area. Optical rain gauges use infrared or laser beams to detect
raindrops falling through a sensing area, estimating the rainfall rate based on the number and size
of the raindrops. Depending on the amount of rainfall, it is described as severe rainfall, very heavy
rainfall, heavy rainfall, moderate rainfall, or light rainfall. The categorizing of rainfalls is done on a
day-by-day and hour-by-hour basis.

2.2 Fog Computing Layer

To increase the processing capability of the proposed approach’s data analysis module, a fog layer
is inserted between the edge and cloud layers. These fog nodes are found in a variety of geographic
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regions. It offers the memory, computing capability, storage, and resources required to handle the
sensing layer’s data [43]. The data analysis layer will utilize the cloud to store and process data supplied
by IoT devices. As seen in Fig. 1, data will be transported from IoT devices to cloud computing via a
network of multiple network devices, which may include encodes and gateways. When real-time flood
levels are forecast using a data analysis layer on a cloud computing infrastructure, the system will incur
latency due to the number of steps required for data to transit. This configuration has the potential to
drastically reduce the system’s latency.

2.3 Data Analysis Layer (Cloud Computing Layer)

The third layer is responsible for further processing and analyzing the aggregated data from the fog
computing layer. It employs advanced algorithms, machine learning techniques, and big data analytics
to predict and assess flood risks, identify potential threats, and generate actionable insights. Cloud
computing provides scalability and the resources needed to handle large volumes of data and complex
computations effectively.

2.3.1 Data Pre-Processing

In artificial intelligence, data pre-processing involves removing unnecessary data before feature
extraction that has no impact on prediction results. Data pre-processing can significantly increase
the training efficiency and precision of all AI algorithms. Weather data values are normally obtained
through weather sensors, and the data collecting procedure is semi-automated. As a result of sensor
failure and human mistakes, there is a possibility of having irrelevant and redundant data in weather
data. Therefore, in this study, weather data are pre-processed to enhance the efficacy of flood
prediction. First, in pre-processing, the dimension of the input is lowered by removing redundant data,
allowing the ANN model to learn more intelligence from the least amount of data. Second, correlation
analysis is performed to identify the data that influence the prediction.

2.3.2 Data Dimension Reduction

Due to the advancement of technology, weather monitoring has been computerized. As a result,
multidimensional weather data is generated daily. In this multi-dimensional meteorological data, many
hidden details forecast the upcoming weather patterns. However, AI algorithms struggle to learn from
multidimensional weather data due to data dimensions. Therefore, in this study, principal component
analysis was employed to reduce the obstacles caused by data dimension. The primary purpose of
Principal Component Analysis (PCA) is to extract more information from fewer variables. It also
reduces the dimension of the data and the problem’s complexity. In this study, the following formula
is used to reduce the data dimension:

Y =
∑n

i=1
D, 1 ≤ i ≤ n (1)

The data dimension is denoted by D = (D1, D2, . . . , Dn). The actual number of data variables
in the data collection is denoted by X = (X1, X2, . . . , Xn) and (Y = Y 1, Y 2, . . . , Y n) is the new data
variables produced by the PCA.

In general, redundant features not only decline the prediction accuracy but also increase the
training complexity. Obviously, due to geographical location and climatic change, there will be
variations in the weather data’s features. Therefore, the correlation between inputs and predicted
results (class) must be analyzed. The correlation analysis between the major meteorological parameters



1060 CMC, 2023, vol.77, no.1

of this study is calculated using formula (2). The results of the correlation analysis are presented
in Table 2.

Cxy = cov (x, y)

σxσy

(2)

Table 2: Correlation strength analysis and its relationship to weather forecasting

The absolute value return by the formula (1) correlation strength

1 Extremely high influence on weather forecasting.
0.8 High influence on weather forecasting.
0.6 Influence on weather forecasting.
<0.6 Very little impact on weather forecasting.

Formula (2) represents the correlation coefficient (Cxy), which is determined by dividing the
covariance (cov(x,y)) between the variables by the product of their standard deviations (σx and σy).

cov (x, y) = E (xy) − E (x) E (y) (3)

The covariance between the features and the class, cov(x, y), is computed using formula (3), where
E(xy) represents the expected value of the product of x and y, and E(x) and E(y) denote the expected
values of x and y, respectively.

σx = √
E (x2) − E2 (x) (4)

σy = √
E (y2) − E2 (y) (5)

Formulas (4) and (5) calculate the standard deviations (σx and σy) of the features and the class,
respectively. These values represent the square root of the differences between the expected values of
the squares E

(
x2

)
and E

(
y2

)
and the squares of the expected values E2 (x) and E2 (y).

2.4 Data Set

In order to train the forecast model, data were collected from the Regional Meteorological Centre
in Chennai. This dataset consists of weather data (maximum temperature, minimum temperature,
maximum humidity, minimum humidity, rain, wind direction, wind speed, and cloud coverage)
recorded from 2014 to 2019 in various places in Chennai. The dataset’s detailed information is
summarized in the table below. The class label for this data set is the rain attribute. This study divides
the meteorological data set into four categories based on the amount of precipitation. When trained in
this approach, errors and complexities during training can be reduced to a certain level. Accordingly,
rainfall intensity below 2.5 millimeters per hour is classified as the first category, rainfall intensity
between 2.5 millimeters and 8 millimeters per hour as the second category, rainfall intensity above
8 millimeters per hour as the third category, and rainfall intensity above 40 millimeters per hour as the
fourth category. These data categories are labeled as light rain, moderate rain, heavy rain, and severe
rain. The weather data set is detailed in Table 3.
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Table 3: Weather attributes details and data types

Attributes Attribute details Data type

Date This field specifies the date when the weather data was
obtained.

String

Time This field specifies the time when the weather data was
obtained.

String

Maximum temperature This parameter specifies the daily maximum temperature
in a certain location.

Numeric

Minimum temperature This parameter specifies the day’s lowest temperature in a
particular region.

Numeric

Maximum humidity This parameter indicates the daily maximum humidity for
a specific location.

Numeric

Minimum humidity This parameter specifies the minimum daily humidity for
a particular location.

Numeric

Wind direction This variable specifies the wind direction for a particular
day.

String

Wind speed This variable represents the wind speed on a particular
day.

Numeric

Cloud coverage This variable represents the cloud coverage details of the
location where rain falls.

String

Rain It represents the highest daily precipitation in a specific
region.

Numeric

2.5 Study Area

Chennai is located between approximately 12°50′4′ ′N and 13°17′24′ ′N in latitude, and between
approximately 79°58′53′ ′E and 80°20′12′ ′E in longitude. It is approximately 6.7 m above sea level.
The majority of Chennai is below sea level. Chennai, the fourth largest city in India approximately
seven and a half million people living in the city continued to battle with the periodic floods
and droughts. Chennai Corporation is organized into fifteen zones, each of which has 200 wards.
Certain areas in Chennai suffer from poor drainage facilities during the monsoon season due to
their huge topography. Climate change and global warming have considerably increased the amount
of precipitation in Chennai over the past two decades, therefore Chennai has been chosen as the
study area of this research. Every year, the northeast monsoon contributes up to 60% of the yearly
rainfall to Chennai and its neighboring areas. During the northeast monsoon, Chennai’s coastline
districts are frequently flooded. Between 1943 and 2015, six catastrophic floods completely wrecked
the city of Chennai. Especially, floods in 1943, 1978, 2005, and 2015 wreaked havoc on Chennai
and its surrounding areas. Two major rivers, Koovam and Adyar split Chennai into many regions.
Due to recent urban expansion and development, the major industries of Chennai, particularly the
Information Technology (IT) sector, have established themselves on the banks of these rivers. These
rivers are prone to flooding as a result of sudden high rainfall, which can cause significant harm to
employees and businesses. Figs. 2a–2c show Chennai’s flood-prone zones before and after industrial
revaluation and urbanization. Figs. 2b and 2c compare the flood-prone areas in Chennai before
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and after industrialization. It clearly shows that the flood-prone areas increased significantly after
industrialization, indicating the considerable impact of human actions on the city’s vulnerability to
floods.

Figure 2: (a) Chennai basin map. (b) Chennai basin map before the industrial revolution. (c) Chennai
basin map after the industrial revolution

2.6 Data Analysis Layer

Artificial Neural Networks (ANNs) are machine learning models inspired by the structure and
function of biological nervous systems, including neurons and synapses [44,45]. ANNs are widely used
for predicting future values based on historical time series data. They offer numerous advantages,
such as robustness and simplicity, making them popular for time series prediction compared to other
machine learning models.

Fig. 3 illustrates the general architecture of an ANN. ANNs can be trained for regression or
classification tasks due to their flexible architecture. In this study, a system using ANN is developed
to forecast flash floods based on historical daily rainfall time series data. The ANN aims to model
a set of N input variables and M output variables (Y) using various activation functions. The input
layer of the feed-forward network takes the time series data and maps it to artificial neurons, which
are determined through backpropagation. The architecture of feed-forward networks comprises three
layers: the input layer, the hidden layer, and the output layer. The number of hidden neurons can vary
depending on the complexity of the task.

In this study, ten meteorological variables contributed as inputs for the ANN model. These
factors include the date, the time, the maximum temperature, the minimum temperature, the maximum
humidity, the minimum humidity, the wind direction, the wind speed, the cloud cover, and the
likelihood of rain (all these are explained in Table 3). The selected factors play a significant role in
influencing flood conditions and improving the accuracy of the ANN model, as explained below:
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1. Date and time: Seasonal variations and daily fluctuations in meteorological conditions can
affect flood risk. Including date and time as input variables help the model capture these
variations and their impact on flood events.

2. Maximum and minimum temperature: Temperature affects the rate of evaporation and
precipitation, which in turn, influences the water cycle and flood risk. Using temperature data
allows the model to learn the relationship between temperature and flood events.

3. Maximum and minimum humidity: Humidity is a measure of the amount of water vapor in the
atmosphere. High humidity levels can lead to increased precipitation, potentially increasing the
risk of floods. Incorporating humidity data enables the model to understand the link between
humidity and flood events.

4. Wind direction and speed: Wind can affect the distribution of rainfall and the movement of
floodwater. Including wind data in the model helps capture the influence of wind on flood risk.

5. Cloud cover: Cloud cover can impact the amount of precipitation, with increased cloud cover
potentially leading to higher rainfall and flood risk. By including cloud cover data, the model
can learn the relationship between cloud cover and flood events.

6. Likelihood of rain: The probability of rain is an important factor in predicting flood events, as a
higher likelihood of rain increases the potential for flooding. By incorporating the likelihood
of rain as an input variable, the model can better predict flood risk based on precipitation
probabilities.

Figure 3: Graphical representation of the ANN architecture

By incorporating these meteorological variables into the ANN model, the model can better
understand the complex relationships between these factors and flood risk, leading to more accurate
and reliable flood predictions. This comprehensive approach allows the ANN model to capture the
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nuances of flood events and make more informed predictions based on the combined influence of
multiple factors.

The output node provides four outputs based on the precipitation amount. Using hidden nodes,
the logistic sigmoid function transforms all input node variables into output variables.

f (zi) = 1
1 + e−zi

,

zi =
∑10

j=1
wijxj + βi (6)

In the equation above, zi represents the weighted sum of meteorological input variables, xj

represents the incoming value of the j meteorological input variables, and wij represents the weight
that occurs when the jth neuron is coupled to the ith neuron (at the hidden layer). β represents the bias
value of the ith neuron. Fig. 3 shows how the activation function produces the output through the
hidden layer using the values of ten input nodes and the bias value. This procedure is mathematically
described by the following equations:

Ij =
∑n

i=1
xiwij + βi (7)

In formula (7), Ij represents the input to the jth node in the hidden layer. It is computed by summing
up the products of the input values (xi) and their corresponding weights (wij) and adding the bias term
(βi). Using the sigmoid activation function, formula (7) transfers weather inputs to the hidden layer.
This strategy is mathematically represented by formula (8).

f (I) = (
1 − e−2I

)
/
(
1 + e−2I

)
(8)

Using the following equation, the predicted result is computed. ŷi reflects the forecast results:

ŷi = f
(
Ij

)
(9)

During flood prediction, ANN is fed ten significant meteorological factors detected by IoT
sensors. Also, the ANN model includes 20 hidden neurons. The proposed ANN model is shown in
Fig. 4. Depending on how much rain is expected to fall in a day or an hour, five types of precipitation
are predicted: violent rain, extremely heavy rain, heavy rain, moderate rain, light rain, and no
precipitation. The classification of rainfall is detailed in Table 4.

2.7 Training Optimization

Unlike programming languages, neural networks solve problems through learning. Learning is
achieved by neural networks through the model training process [46]. To ensure the success of the
training, different parts of the data must be examined. The training efficiency of neural network models
is dependent on the data and the learning algorithm adopted [47,48]. Advanced learning algorithms
effectively transfer intelligence to the ANN from historical facts or data. Typically, ANN models
use the backpropagation (BP) algorithm as their learning algorithm [49]. BP attains the appropriate
learning rate (learning rate is a small positive integer. It indicates the rate at which the neuron updates
its learned knowledge) by decreasing or increasing the learning rate in both the forward and reverse
directions [50]. The traditional BP algorithm performs better when the size of the data set is modest.
However, as the size of the data set grows, achieving the ideal learning rate takes a large amount of time.
To address this problem, the traditional BP algorithm has been hybridized in this study. Formula (10)
is used to adjust the weight in the conventional backpropagation procedure. The weight increase is
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represented by w(t+1)the learning rate by η and the total error by d (E).

w(t+1) = wt − η
d (E)

d (w1)
(10)

Figure 4: Proposed ANN model for predicting flood events

Table 4: Rainfall categorization

One day rainfall in millimeters One hour of rainfall in millimeters Rainfall categorization

>120 mm 40 mm Violent rain
<100 mm 20–30 mm Extremely heavy rain
Between 40 and 60 mm 10–20 mm Heavy rain
Between 10 and 30 mm 5–10 mm Moderate rain
<10 mm <1 mm Light rain

In order to accelerate the training process of backpropagation, adaptive momentum (AM) and
backpropagation (BP) have been integrated into this study (BP-AM). The parameter selection and
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weight-updating procedure of an ANN can be accomplished in a highly efficient manner using
adaptive momentum. The following equation depicts the BP-AM weight-updating procedure:

�w (n) = −ηEw (w (n)) + α (n)�w (n − 1) n = 0, 1, . . . (11)

In the previous equation, η represents the learning rate, α denotes adaptive momentum, and n is
the number of iterations for weight update. The adaptive momentum α is updated in the following
way:

αi(n) =
{
α ηEw(w(n)).�wn−1

||�w(n−1)||2
0

, if Ew (w (w(n)) .�w (n − 1) < 0 (12)

In the above equation αi (n) = α1, α2, α3, . . . , αn. BP-AM self-adjusts continuously by calculating
the present weighting coefficients by the most recent weighting coefficients. If the AM values are less
than zero, a positive integer is assigned to them in order to speed learning by updating momentum.
Otherwise, the AM is set to zero to keep the error downward. In Algorithm 1, the processing steps of
the proposed BP-AM are described.

Algorithm 1: Adaptive momentum backpropagation (BP-AM)
1. Randomly initialize the ANN biases and weights.
2. For each iteration in the training process:

a. Perform forward propagation to calculate the output of the ANN.
b. Calculate the error between the ANN output and the target output.
c. Perform backpropagation to calculate the gradients of the error concerning the weights (using
formula (10)).
d. Update the weights using the BP-AM weight-updating procedure given by formula (11).
e. Update the adaptive momentum α using formula (12).

i. If the adaptive momentum α values are negative, update the adaptive momentum with a positive
value to speed up the learning process.

ii. Otherwise, adjust the adaptive momentum α to zero to maintain the error as low as possible.
3. Repeat step 2 until a stopping criterion is met (such as a maximum number of iterations or a

minimum error threshold).

The BP-AM algorithm integrates adaptive momentum into the traditional backpropagation
process to improve the efficiency of hyperparameter tuning in ANNs. The weights are updated using
both the current gradients and the previous weight changes, with the adaptive momentum term
providing a self-adjusting mechanism to accelerate convergence.

2.8 Flood Forecasting Using Presentation Layer

In this research, an Artificial Neural Network (ANN) is employed to predict the amount of
rainfall in a specific study area, which serves as the basis for issuing flood warnings 24 h in advance.
This proactive approach enables residents and authorities to take necessary precautions and minimize
potential damage. The flood warning system is disseminated through various channels, including a
mobile app, social media, and a dedicated website. Key features of this system are:

1. Rainfall Prediction: The ANN model predicts the amount of rainfall in the next 24 h, giving
residents and authorities ample time to prepare for potential flooding.

2. Flood Map: The flood map illustrates the areas expected to be affected by flooding, enabling
individuals to visualize and understand the extent of the potential flood.
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3. Flood Zones: The system identifies different flood zones, categorizing areas by their risk level.
This information is crucial for evacuation planning and resource allocation.

4. Safer Zones: The system highlights safer zones within the study area, providing guidance for
evacuation routes and temporary shelter locations.

5. Lightweight Design: The web portal is designed to be lightweight and accessible even in remote
locations with limited network coverage, ensuring that warnings reach all potentially affected
individuals.

6. Emergency Communication Feature: The website includes a feature to facilitate communica-
tion between residents and the government’s disaster management team. This allows users to
report damage, request assistance, or share information about the emergency.

The process flow of disaster management is shown in Fig. 5.

Figure 5: Visual representation of the presentation layer workflow

3 Results and Discussion
3.1 System Details

The proposed flood early warning system was implemented with the following computational
hardware and software API. A desktop with the following specifications is used: 11th Gen Intel®

CoreTM i5-11260H (12 MB cache, 6 cores, 12 threads, up to 4.40 GHz Turbo), NVIDIA GeForce
RTX 3050, 4 GB GDDR6, 16 GB, 2 × 8 GB, DDR4, 3200 MHz and 512 GB, PCIe NVMe, SSD. The
prediction model is developed using Python 3.7, TensorFlow, PyTorch, sci-learn, and Windows 10 as
the operating system.

3.2 Dataset Analysis

Training loss in ANN is an incorrect prediction caused by not selecting the most suitable features
from labeled data using weights and bias. When an ANN model’s prediction is perfect, the loss is
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zero; otherwise, it is more than one. This section analyses the training effectiveness of the proposed
flood prediction model. For this, the most prevalent accuracy metrics are Mean Absolute Error
(MAE), Mean Square Error (MSE), and Root Mean Square Error (RMSE) are used. Formulas (8)–
(10) are used to calculate these error evaluation procedures. When there are fewer errors, the amount
of information lost during training is minimal. The data of the training set, testing set, and validation
set are separated into multiple sizes, training, testing, and validation are performed and the average
values are obtained to give a more trustworthy comparison. Table 5 lists the various partition ratios
for data sets.

Table 5: Data set partition ratios

Data set partition ratio (training, validation, testing) Fold name

60:30:10 Fold 1
70:10:20 Fold 2
70:15:15 Fold 3
75:20:10 Fold 4
90:5:5 Fold 5
85:5:10 Fold 6
80:5:15 Fold 7
80:15:5 Fold 8
70:15:15 Fold 9
70:20:10 Fold 10

Absolute error is the error in the total number of observations (Total absolute error = total
observations − actual). The following formula is used to calculate the MAE, which is the average
absolute error value:

MAE = 1
N

∑N

i=1

∣∣yi − ŷi
∣∣ (13)

MSE is defined as the average square difference between observed weather data and predicted
results.

MSE = 1
N

∑N

i=1

∣∣yi − ŷi
∣∣2

(14)

The RMSE returns the standard deviation of the difference between the observed data and
estimation data of the weather forecast model.

RSME =
√

1
N

∑N

i=1

∣∣yi − ŷi
∣∣2

(15)

For experimental analysis, both the traditional BP algorithm and an AM-BP algorithm are
utilized. The experiment’s configuration is listed in Table 6.

The comparison of the MAE, MSE, and RMSE between the traditional Backpropagation (BP)
algorithm and the AM-BP algorithm are presented in Tables 7–9.
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Table 6: Control parameters of the present ANN

Parameters Configuration

Number of inputs neurons 10
Number of outputs neurons 6
Number of hidden neurons 20
The activation function in the hidden layer Sigmoid
The activation function in the output layer Linear
Learning algorithm AM-BP

Table 7: MAE comparison results with the presented AM-BP algorithm and traditional BP algorithm

Fold details BP (MAE) AM-BP (MAE)

Fold 1 1.22 0.099
Fold 2 1.19 0.087
Fold 3 1.26 0.082
Fold 4 0.97 0.081
Fold 5 0.95 0.071
Fold 6 0.97 0.081
Fold 7 0.90 0.078
Fold 8 0.85 0.093
Fold 9 1.27 0.083
Fold 10 1.81 0.092
Average value 1.139 0.0847

Table 8: MSE comparison results with presented AM-BP algorithm and traditional BP algorithm

Fold details BP (MSE) AM-BP (MSE)

Fold 1 5.89 3.98
Fold 2 5.87 2.87
Fold 3 6.69 4.75
Fold 4 4.98 2.09
Fold 5 4.73 2.12
Fold 6 6.98 4.18
Fold 7 4.87 2.09
Fold 8 5.83 3.10
Fold 9 7.98 4.25
Fold 10 8.90 4.01
Average value 6.272 3.344
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Table 9: RMSE values comparison results with presented AM-BP algorithm and traditional BP
algorithm

Fold details BP (RMSE) AM-BP (RMSE)

Fold 1 8.16 6.30
Fold 2 9.31 7.98
Fold 3 11.98 9.30
Fold 4 13.63 9.95
Fold 5 11.67 6.40
Fold 6 11.68 6.34
Fold 7 13.61 9.61
Fold 8 12.35 9.60
Fold 9 11.65 8.21
Fold 10 12.78 7.78
Average value 11.68 7.78

The MAE results in Table 7 show a significant reduction in error rate from an average of 1.139 in
BP to 0.0847 in AM-BP. Similarly, the MSE results in Table 8 show an average of 6.272 in BP to 3.344 in
AM-BP, illustrating a substantial improvement in error rates. RMSE results in Table 9 follow the same
trend, reducing from an average of 11.68 in BP to 7.78 in AM-BP. These findings demonstrate that the
AM-BP algorithm provides a much lower training error rate compared to the traditional BP algorithm.
Therefore, the research shows that AM-BP can significantly improve the accuracy and efficiency of
ANN-based flood prediction systems, making it a more reliable choice for handling heterogeneous
weather data.

The prediction data from 2014 to 2019, as illustrated in Fig. 6, suggests that the proposed model’s
output aligns closely with observed values, indicating a high level of accuracy.

Figure 6: (Continued)
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Figure 6: The results of the proposed method to predict precipitation in 2014–2019 before 24 h and the
actual observations

3.3 Accuracy Analysis

Assessment based on the accuracy of the flood forecasting system and the machine learning
models in existence is done using different measures of accuracy such as Total accuracy (A), Precision
(P), Recall (R), and F1-Measure (F1). Using formulas (16)–(19) the accuracy of the proposed flood
forecasting model is determined. These equations are dependent on True Negative flood prediction
(TNFC), True Positive flood prediction (TPFC), False Negative flood prediction (FNFC) and False
Positive flood prediction (FPFC).

A = TPFC + TNFC

TPFC + TNFC + FPFC + FNFC

(16)

P = TPFC

TPFC + FPFC

(17)

R = TPFC

TPFC + FNFC

(18)
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F1 = 2 (P × R)

P + R
(19)

Accuracy is one of the important features of the flood forecasting system. Many different outputs
are achieved through false results. A comparison of the results of the accuracy of the proposed
flood forecasting method and the existing methodologies are depicted in Fig. 7. The accuracy of
the proposed flood forecasting system is achieved to be 96% accuracy, 96.4% F1-Measure, 97%
Precision, and 95.9% recall. Fig. 7 demonstrates the AM-BP-based system’s high prediction accuracy
and reliability. As depicted in Fig. 7, the AM-BP training procedure has improved the overall accuracy
of the prediction model by 2% to 3%. These results show that the noise level of the training data is
minimal and that the invention of the optimal training technique substantially enhances accuracy.

Figure 7: Accuracy comparison results

3.4 Accuracy Analysis with Existing Methods

In this section, we provide a comparative analysis of the proposed flood prediction method
and the existing methods, namely Wan et al. [24], Puttinaovarat et al. [28], Dong et al. [32] and
Khanna et al. [22]. The comparison is based on key performance metrics such as accuracy, recall,
precision, and F1-score.

Fig. 8 shows the accuracy comparison with state-of-the-art flood prediction methods. In this com-
parative analysis, the proposed flood prediction method outperforms existing methods (Wan et al. [24],
Puttinaovarat et al. [28], Dong et al. [32], and Khanna et al. [22]) across key performance metrics such
as accuracy, recall, precision, and F1-score. The proposed method demonstrates superior performance
in identifying true flood events, avoiding false alarms, and providing a balanced evaluation of the
model’s effectiveness. The improved performance can be attributed to the novel techniques and features
integrated into the proposed model. Further research and development could result in even more
accurate and reliable flood prediction models, ultimately reducing the devastating impacts of floods
on people, infrastructure, and the environment.
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Figure 8: Accuracy comparison with state-of-the-art flood prediction methods

3.5 Regression Analysis

Regression analysis represents the relationship between the predicted and observed values. This
determination coefficient represents the degree of relationship between the two factors. Regression
analysis returns values between 1 and −1. Higher values closer to 1 suggest a greater degree of
similarity, whereas lower values closer to −1 suggest a lower similarity. Regression values for the
proposed forecasting model are calculated using formula (20).

R2 =
[
n

[∑n

i=1

(
Fov ∗ Fpv

) − (∑n

i=1Fov

) (∑n

i=1Fpv

)]]2

[
n
∑n

i=1F 2
ov − (Fov)

2
] −

[
n
∑n

i=1F 2
pv − (

Fpv

)2
] (20)

In above equations Fov represents the observed values, Fpv represents the predicted values of the
flood prediction model, Fov represents the mean of the observed flood results, and n represents the
total number of observations. R2 represents the regression values.

Fig. 9 depicts the model’s predicted chance of flooding based on regression analysis. This study
employed test data from 2014 to 2019 for the implementation of a regression analysis. According to
the figures, in most cases, the prediction results and the observed values are very close. This shows
that the prediction efficiency of the proposed forecasting model is very similar to the real value. The
right-side gradient line in the figure represents the severity of the flood, with the top red indicating
high levels of rainfall and the bottom blue indicating low levels of rainfall.

3.6 Discussion

According to the United Nations, floods are responsible for an average of 240,000 deaths and
19 million displaced people per year. “Flood modeling” is the attempt to construct computerized
representations of floods to simulate different possibilities and inform flood risk management. An
efficient flood model must be able to predict the behavior of a flood, including the propagation,
the impacts and extent of flooding, the risks involved, and how to respond in terms of prevention,
early warning, and evacuation. Despite the development of numerous computerized flood prediction
models, no model to date has been effective. In this study, IoT and AI were efficiently combined
to create a successful flood prediction model. This innovative flood forecasting system features an
integrated architecture with four layers. The bottom layer collects weather data for the prediction
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model using IoT sensors. High computational resources are needed to process the data because the
volume of data being collected is always increasing. Consequently, a fog computing layer with high
processing resources has been placed between the data analysis and weather monitoring layers in this
research. It primarily supplies the necessary computing power for the prediction model. Next, the
data analysis layer is added, which consists of three essential components. First, there is a module for
data pre-processing to reduce noise in the weather data. PCA is utilized to minimize the dimension of
the data. Second, correlation analysis has been performed to exclude irrelevant data from the flood
prediction model. To forecast floods, ANN was utilized in this study.

Training is a crucial component of an AI model. When utilizing the most effective training
algorithms, training loss can be drastically decreased. In this study, adaptive momentum is used to
optimize the training procedure of the BP algorithm to minimize training loss. Experimental data
suggest that its training errors are lower. According to the experimental results, the MAE = 0.0847,
MSE = 3.344, and RMSE = 7.78 of the proposed AM-BP algorithm are significantly lower than those
of the BP algorithm (MAE = 1.139, MSE = 6.272, and RMSE = 11.68). The comparison of MAE,
MSE, and RMSE is summarized in Tables 7 to 9. The experimental results demonstrate that the
suggested model can more accurately forecast the rain that will occur in the study area 24 h in advance.
The predictions for the years 2014 to 2019 are depicted in Fig. 6. The predicted values of the proposed
model and observed values are almost slimmer. In addition, comparisons and analyses of precision,
F1-Measure, recall, and accuracy have been conducted. According to the results, the proposed method
achieves 5% Precision, 2% F1-Measure, 5% recall, and 3% accuracy recall more than the existing
methods.

Compared to prior research, the proposed AM-BP algorithm and MLCA for flood prediction
and management offer several outstanding improvements and achievements. The AM-BP algorithm
enhances the parameter tuning process of ANN, leading to better model accuracy and performance,
addressing the limitations of prior research that suffered from suboptimal tuning processes. The
MLCA’s hierarchical design provides a scalable and efficient solution for handling large volumes of
weather data, overcoming the scalability issues faced by existing models in prior research.

By incorporating fog computing for local data processing and analysis, the MLCA reduces latency
and improves responsiveness in real-time flood prediction applications, addressing limitations of
prior research that struggled with high latency and reduced responsiveness. The MLCA leverages
cloud computing for large-scale storage, processing, and advanced analytics, enabling more effective
flood prediction and management compared to existing models in prior research that struggled with
handling large-scale weather data.

Moreover, the proposed AM-BP algorithm and MLCA are designed to be more versatile, making
them applicable to various flood scenarios and locations, addressing the limitations of prior research
where models were designed for specific scenarios or locations and could not be easily adapted. In
comparison to traditional BP algorithms, the proposed AM-BP algorithm demonstrates superior
performance in terms of MAE, MSE, and RMSE as mentioned earlier. The significant improvements
in these performance metrics can be attributed to the enhanced parameter tuning process in the
AM-BP algorithm and the integration of the MLCA for flood prediction and management. These
outstanding improvements and achievements demonstrate the potential of the proposed research to
advance the field of flood prediction and management, providing more accurate, scalable, and efficient
solutions for handling weather big data and real-time flood prediction applications.

In addition, as discussed in [51] and [52] for the past two decades, the Underwater Internet of
Things (UIoT) is widely used for developing Industrial applications such as deep-sea monitoring,
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diver network monitoring, early warning system, etc., among that early prediction of tsunami is much
necessary to protect human life from danger. In this case, the proposed AM-BP model can be used
to predict the accuracy of a tsunami by deploying and frequent collection of data from the deep-sea
environment.

Figure 9: The chance of flooding in Chennai from 2014 to 2019 is based on regression analysis
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4 Conclusion

In this paper, the proposed AM-BP model offers a promising solution for flood monitoring,
management, and decision-making in IoT systems. By incorporating the adaptive momentum algo-
rithm with the back propagation algorithm, the model demonstrates improved accuracy, speed, and
generalization ability. The adaptive nature of the AM-BP model allows it to dynamically adjust the
learning rate and momentum parameters during the training process, enabling faster convergence and
better adaptation to different flood patterns and conditions. This enhances the model’s prediction
accuracy and its ability to capture complex relationships in flood data. The experiments conducted
using real-world flood data demonstrate that the adaptive momentum and back propagation model
outperforms existing methods in terms of accuracy and efficiency. The model achieves high prediction
accuracy, enabling timely and accurate flood warnings and management decisions. Furthermore, the
adaptability of the model is a significant advantage for flood monitoring and management systems.
As flood patterns and conditions can change over time, it is crucial for the model to continuously
update itself with new data to make accurate predictions. The adaptive nature of the model allows it
to learn and adjust its predictions based on the latest information, improving its effectiveness in flood
monitoring and management.

Overall, the adaptive momentum and back propagation model presented in this study has the
potential to significantly improve flood prediction and management. By providing accurate and timely
predictions, the model can enhance preparedness and reduce damage in flood-prone areas. Further
research and implementation of this model in real-world flood monitoring and management systems
can lead to more effective and efficient flood management strategies. Experimental results demonstrate
the superiority of the proposed AM-BP algorithm, achieving a 96% accuracy, 96.4% F1-Measure,
97% Precision, and 95.9% recall. These metrics illustrate the significant advancements compared to
previous flood prediction models. In the future, the current methodology can be utilized in underwater
networks by extending and adapting the proposed AB-BP learning algorithm to UIoT networks
to improve prediction accuracy. Thus, a natural disaster caused by deep-sea environments such as
tsunamis, undersea landslides, the deep-water fast wave, etc. can be predicted.
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