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ABSTRACT

As energy-related problems continue to emerge, the need for stable energy supplies and issues regarding both
environmental and safety require urgent consideration. Renewable energy is becoming increasingly important,
with solar power accounting for the most significant proportion of renewables. As the scale and importance
of solar energy have increased, cyber threats against solar power plants have also increased. So, we need an
anomaly detection system that effectively detects cyber threats to solar power plants. However, as mentioned
earlier, the existing solar power plant anomaly detection system monitors only operating information such as power
generation, making it difficult to detect cyberattacks. To address this issue, in this paper, we propose a network
packet-based anomaly detection system for the Programmable Logic Controller (PLC) of the inverter, an essential
system of photovoltaic plants, to detect cyber threats. Cyberattacks and vulnerabilities in solar power plants were
analyzed to identify cyber threats in solar power plants. The analysis shows that Denial of Service (DoS) and Man-
in-the-Middle (MitM) attacks are primarily carried out on inverters, aiming to disrupt solar plant operations. To
develop an anomaly detection system, we performed preprocessing, such as correlation analysis and normalization
for PLC network packets data and trained various machine learning-based classification models on such data. The
Random Forest model showed the best performance with an accuracy of 97.36%. The proposed system can detect
anomalies based on network packets, identify potential cyber threats that cannot be identified by the anomaly
detection system currently in use in solar power plants, and enhance the security of solar plants.
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1 Introduction

As energy problems continue to surface, the need for a stable energy supply and the related
environmental and safety issues requires serious consideration. These problems are contributing
to the increased interest shown in renewable energy. The International Energy Agency’s (IEA)
renewable energy market update shows a year-on-year increase in renewable power capacity in 2022
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of 45%, despite the supply chain disruption and delays attributed to the spread of COVID-19 [1]. In
addition, the “IEA’s mid-term (2023) outlook for renewable energy supply” indicates that renewable
electricity generation is expected to increase by 37% between 2018 and 2023, reaching a total of 8,641
terawatt-hours (TWh), which will account for 30% of total generation by 2023 [2]. According to the
Federal Energy Regulatory Commission, the California Independent System Operator (CAISO) noted
renewables would supply 45% of summer loads in 2022 [3]. As indicated, the proportion of electrical
energy from renewable energy sources is steadily increasing, and every country actively applies itself
to its utilization. Solar power accounts for the most significant proportion of renewable energy in this
context.

However, with solar power’s rapid growth and increasing importance, cyber threats, such as
cyberattacks and vulnerabilities, have also steadily grown. For example, sPower, an energy provider
working with solar power plants and wind farms in the United States (US), was hit by a cyberattack
that disconnected communication between the central control center and the power generation
facilities [4]. According to the “Roadmap for PV System Cyber Security,” published by Sandia
National Laboratories, internet-based solar power plants are becoming increasingly vulnerable to
cyber threats, such as denial of service (DoS) attacks, ransomware, and malicious control [5]. One
of the reasons for this cyber threat is that today’s solar power plants focus primarily on monitoring
power generation, not detecting and responding to cyber threats. Therefore, cyber threat detection
and response systems have become increasingly necessary to ensure cybersecurity. For this reason, this
paper analyzes fatal threats to solar power plants while proposing a network packet-based anomaly
detection system to detect and respond to threats that conventional solar power plant anomaly
detection systems cannot detect.

In this paper, artificial intelligence (AI) aided network packet-based anomaly detection systems
are proposed to protect the Programmable Logic Controller (PLC) that controls the inverters in solar
power plants, making it possible to detect cyber threats to them early. Initially, the vulnerabilities of
solar power plants and the cyberattacks made on them are analyzed to identify the elements that
are exposed to cyber threats and to specify the types of threats before going on to understand the
attack methods and their ripple effects. Based on our analysis and results, we select two possible
cyberattacks (DoS and Man-in-the-Middle (MitM)) in solar power plants. And then, we propose a
machine learning-based anomaly detection system for network packets of inverters PLC to detect
cyberattacks. We conducted experiments with the preprocessed dataset of PLC network packets from
the Supervisory Control and Data Acquisition (SCADA) system. Machine learning is a branch of AI
that can distinguish between normal and anomaly motion by learning patterns from input data, which
are then applied to anomaly detection in potential cyber threats [6]. The proposed anomaly detection
system can enhance the security of solar power plants because it can detect potential cyber threats that
have not been previously detected by detecting cyberattacks based on network packets.

This paper’s primary contributions are as follows:

• We select potential or fatal cyberattacks (DoS and MitM) through analysis of solar plant
systems and cyber threats. Then, we propose a network packet-based anomaly detection system
for solar plant cybersecurity.

• We implemented the proposed anomaly detection system consisting of the following pipeline
for PLC network packet data from the SCADA system: Correlation analysis, feature extraction,
normalization, and anomaly detection.
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• In the series of experiments with benchmark datasets, among the anomaly detection models we
developed, the random forest model showed the highest accuracy at 97.36% and the F1-score
at 96.18%.

The remainder of this paper consists of the following: Section 2 analyzes the structure of the
photovoltaic plant and how it is currently monitored. Section 3 reviews existing studies and suggests
improvements. Section 4 analyzes cyberattacks and vulnerabilities in solar plants to identify targets
for cyberattacks and different types of threats. In Section 5, network packet-based anomaly detection
models are proposed to detect anomaly network packets passing between the PLC and the controller
in the inverter. This is implemented through machine learning and network packets. Section 6 verifies
the performance of the developed model.

2 Solar Power Plant Structure
2.1 Solar Power Plant Structure

A solar power plant consists of inverters and solar panels that utilize solar energy for electricity
production. The station can operate as an independent home or a grid-connected power system that
delivers generated power [7,8]. The data explaining the solar power plant components were analyzed
and reconstructed, as shown in Fig. 1.

Figure 1: Solar power plant structure

The components of the solar plant are described below. The photovoltaic (PV) panel converts solar
energy into alternating current (AC), and the Combiner box stores the PV panel’s power in one place.
The inverter converts AC into direct current (DC), and the distribution box distributes electricity from
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the DC to the power system or city. Finally, the controller controls the flow of power in the invert.
Solar energy from PV panels is generally converted into electricity in the form of DC. A combiner
box collects this electricity, which is then transferred to inverters that convert the DC into AC. The
distribution panel then transmits the AC to the electrical power grid or home users (in the city).

An inverter is essential to most electrical devices or connections to electrical grids because DC
must be converted into AC before electricity can be used daily or distributed to an electrical power
grid. In addition, this device is essential because its failure or malfunction can change the flow of the
electrical charge or even block electric power production and transmission. Therefore, a controller
manages the inverter and controls the output voltage [9].

2.2 Solar Monitoring System

Large-scale solar power plants require solar monitoring systems for efficient management.
Solar monitoring systems collect and monitor various factors, such as power, voltage, transformers,
inverters, solar irradiance, ambient temperature, and wind speed and direction. This system allows the
manager to monitor and manage the power station’s normal operation and electricity generation in
real-time [10]. The solar monitoring structure can be expressed as shown in Fig. 2.

Figure 2: Solar monitoring system

In addition to data collection, the solar monitoring system also features a circuit breaker with
a controller and a remote-control function for the inverter. Although this monitoring structure
is efficient and convenient in the maintenance of the solar power plant and for data collection,
as the inverter control is conducted through the web or mobile monitoring can be either via the
central monitoring system or via the external internet, the number of networks involved increases
exponentially. This increases the interface size between the inverter and the outside world, creating
risks. Suppose malicious users access the inverter via the interface between the inverter and the external
networks. In that case, they can manipulate the current flow by issuing an output control command
to the inverter and then transmitting malicious code or increasing the control traffic so that it causes
the inverter to malfunction, eventually adversely affecting the function of the solar power plant.
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3 Related Work

Multiple previous studies have suggested anomaly detection systems for solar power plants. An
anomaly detection system based on autoencoder long short-term memory (AE-LSTM), the Facebook-
Prophet, and Isolation Forest were designed to identify anomalies in the electricity generation of
solar power plants [11]. An artificial neural network (ANN)-based anomaly detection system has
been suggested that can predict and maintain the electricity generation of a solar power plant [12],
and another method has been proposed to verify a specific outlier and its candidate for processed
data on electricity generation by utilizing correlation analysis of the attribute values for solar power
generation and its K-nearest neighbors (K-NN) [13]. Monitoring systems have also been developed to
manage and maintain solar power plants. Based on big data, operations management was carried out
in these studies at all stages, ranging from electricity generation prediction to monitoring, automatic
recovery, and disposal diagnosis [14]. The impacts of cyberattacks on solar power generation have
also been analyzed and evaluated. Specifically, the effects of cyberattacks on the electric energy of PV
inverters were examined [15]. A convolutional neural network (CNN)-based anomaly detection model
was proposed for PV panels to detect power losses in solar power plants and to identify the causes of
anomalies [16]. One study developed a DC power line communication system to monitor PV panels
in solar plants, where monitoring data is uploaded to cloud storage and panel output is normalized to
monitor distribution to detect anomalies [17]. A technique for permanently controlling the measured
voltage of the inverter was presented to strengthen the cybersecurity of the PV inverter. This technique
is the product of machine learning by applying linear and lasso-based regression methods. After
machine learning, it compares the predicted data with the measured voltage before sending an alarm
to the operator should a specific deviation occur [18].

Jones et al. also built a test environment to experiment with cyberattacks on PV inverters, and
an intrusion detection system (IDS) was utilized to monitor and detect malicious network traffic [19].
This work presents the same attack scenario as “Unauthorized client”, “Invalid packet”, “Spoofing
TCP handshake”, “MitM Denial-of-service”, and “MitM Data spoofing” through experiments. This
work provides five possible cyberattack scenarios for the experiment. The scenarios describe adverse
effects affecting the confidentiality, integrity, and availability of the PV inverter, any of which may lead
to anomaly operations. An unauthorized client and Invalid packet indicate that a malicious attacker
can access and control a general PV inverter via Modbus. Spoofing TCP handshake attempts to flood
the PV inverter with TCP/IP for a DoS attack. MitM Denial-of-service and MitM Data spoofing carry
out a DoS or a spoofing attack through a MitM attack. As indicated above, the experiment showed
that cyberattacks could threaten PV inverters.

Based on recent research, we selected two critical attack scenarios (MitM, Dos) for solar power
plants as the study targets. Since most previous studies have focused on monitoring the electricity
generation of a solar power plant, including current and voltage, they are limited in that they can only
detect or predict anomalies in power generation. In such cases, detection is confined to anomalies in
electricity generation caused by a cyberattack. Furthermore, it is difficult to determine whether the
anomaly detected arose from a simple error, aging equipment, or a cyberattack. In addition, with a
static or dynamic I DS, only attacks that have been reported or are known to have affected the system
can be detected. A system that can efficiently detect cyber threats at the network level is sorely needed.

For this reason, it has become necessary to use anomaly detection to respond to cyber threats
by monitoring network packets in solar power plants. Network packet-based anomaly detection can
detect threats at the network level before cyberattacks begin, preventing potential damage. Suppose
there is an anomaly in the power generation in this case. It can analyze network packets simultaneously
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to determine if there is a potential cyber threat that can identify the cause. Therefore, this paper
proposes a system for detecting anomaly network packets in a solar power plant.

4 Analysis of Cyber Attacks and Vulnerabilities in Solar Power Plants

This section analyzes cyberattacks and the vulnerabilities of solar power plants. The analysis
results are used to determine targets at risk of cyberattacks and the types of threats and to understand
the attack methods and ripple effects.

4.1 sPower Solar Power Plant Cyberattack

In April 2019, sPower, an energy provider for solar power plants and wind farms in the US, was
hit with a cyberattack. On March 05, 2019, a malicious attacker attempted a DoS attack, exploiting
the vulnerability of the Cisco firewall. A DoS attack floods a target system or network with traffic or
induces collisions, making it inaccessible [20]. This resulted in a loss of communication between the
500 MW (megawatt) solar/wind power plant and the company’s control center. It was the first
cyberattack on renewable energy, such as solar and wind power [4]. The attack on the control
center that managed the solar power plants shut down its communication with its power generation
facilities. This indicates that an external network interface is connected to a solar plant and allows for
cyberattacks through that interface.

4.2 Vulnerabilities of Solar Power Plants

At Still Hacking Anyway (SHA2017), Willem Westerhof presented 21 inverter vulnerabilities.
SHA2017 is a non-profit hacker conference held in the Netherlands. Westerhof had built a test bed
of two inverters to experiment with, and his test confirmed that a hacker could remotely control
the inverter and change the current flow. He noted that a hacker’s attempt to launch a large-scale
cyberattack on an inverter could threaten a power grid [21]. In this study, the target inverters were
connected to the internet for remote control and monitoring. The test results indicate that a malicious
attacker can control the inverter, thus causing anomaly solar power plant operation.

The Common Vulnerabilities and Exposures (CVE) program provides information on publicly
known security vulnerabilities. Table 1 shows several vulnerabilities of solar power systems as disclosed
by CVE [22].

Table 1: CVE list for solar power plants [22]. Adapted with permission from reference [22], Copyright
© 2023, MITRE Corporation

Name CVE description

CVE-2021-34544 Sensitive information can be read because/export.html, email.html, and
sms.html store clear text passwords.

CVE-2021-34543 This allows a remote attacker to connect to the server and gain
administrative privileges.

CVE-2019-19229 The admincgi-bin/service.fcgi on solar inverter devices allows
action=download&filename=directory traversal.

CVE-2019-19228 Because the account’s password is stored in the /tmp/web_users.conf file, an
attacker can bypass the authentication.

(Continued)
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Table 1 (continued)

Name CVE description

CVE-2019-11367 Using HTTP basic authentication will provide the account and password in
the WWW-Authenticate attribute.

CVE-2018-12927 The solar inverter allows remote attackers to obtain potentially sensitive
information via a direct request for the inverter_info.htm or
english_main.htm URI.

CVE-2018-12735 A remote attacker could obtain potentially sensitive information through
direct requests to the converter_info.htm or english_main.htm URIs.

CVE-2017-9864 An attacker can change the plant time even when not authenticated.
CVE-2017-9863 If a user simultaneously has Sunny Explorer running and visits a malicious

host, cross-site request forgery can be used to change settings in the inverters.
CVE-2017-9854 By sniffing for specific packets on the local host, plaintext passwords can be

obtained as they are typed into Sunny Explorer by the user.
CVE-2017-9852 User passwords will almost always be a default.
CVE-2017-9648 An uncontrolled search path element has been identified, which could allow

an attacker to execute an arbitrary code on a target system using a malicious
DLL file.

Most of the vulnerabilities of a solar power plant described as CVE are threats caused by a
default password set to access sensitive information or insufficient security settings. Most threats can
be counteracted through password changes and access control. Still, a MitM attack, such as sniffing,
is difficult for solar power plants to counter because it can intercept packets or transmit malicious
commands. A malicious attacker can exploit the corresponding cyberattack vulnerability if a solar
power plant has an unwanted external interface.

To summarize the results mentioned above, most cyberattacks on a solar power plant occur
through external network interfaces, and the types of threats include a DoS attack and a MitM attack,
both of which interfere with the operation. External network connections for data transmission or
control for solar plant management increase the likelihood of exposure to the above threats. In a solar
power plant, the PV inverter will be the principal target of cyber threats, and several studies have
been conducted to analyze inverter-related cyberattacks and vulnerabilities. According to the results
analyzed in Section 4, cyber threats, such as a DoS attack or a MitM attack on a PV inverter, must be
detected through analysis and monitoring at the network level to ensure that the cybersecurity of the
solar power plant is protected.

5 Proposal for a Network Packet-Based Anomaly Detection System

This section proposes network packet-based anomaly detection models for solar power plants.
As detailed in Sections 2 and 4, these models are meant to detect anomalies in the network packets
targeting the communication section of the PLC in the PV inverter when exposed to threats. The
controller or monitoring system controls the inverter through the PLC in the inverter. This means the
communication between the controller and the PLC can be identified as the network communication
interval. Therefore, when a cyberattack occurs against the inverter, it is detected in the network



764 CMC, 2023, vol.77, no.1

communication section of the PLC in the inverter and the controller, so it is necessary to monitor
the PLC’s network packets to detect cyber threats to the inverter.

5.1 Overview

For this reason, the datasets to be used in the proposed network packet-based anomaly detection
models utilize PLC network packets from SCADA systems provided by the University of Coimbra
(Portugal) [23,24]. The PLC network packet was converted into a CSV file using CICFlowMeter [25].
Since cyberattacks on solar power plants are typically a DoS or MitM attack, as shown in Section 4,
anomaly datasets were selected to identify a MitM attack, a Query2 flooding attack, and a ping
flooding attack. Algorithms used to develop the anomaly detection models included Random Forest,
K-NN, Kernel-Support Vector Machine (K-SVM), XGBoost, Isolation Forest, and the Local Outlier
Factor (LOF). The workflow for the proposed anomaly detection model is shown in Fig. 3.

Figure 3: The proposed anomaly detection model workflow

1) Collecting raw data: we collect PLC network packets (Raw Data) and perform preprocessing
on the data. 2) Analyzing data: A correlation analysis and feature extraction are conducted to generate
the rectified dataset on the collected data. 3) Developing anomaly detection model: we developed an
anomaly detection model using the rectified dataset after normalizing the data. The detection model
performs classification and clustering using various machine learning models. 4) Deploying detection
system: Using the developed anomaly detection model, an anomaly detection system is established in
the solar plant to monitor network packets between the controller and the inverter to detect anomaly
data. The following Sections 5.2 and 5.3 describe the steps to develop anomaly detection models.

5.2 Feature Selection Based on Dataset Correlation Coefficient Analysis

The correlation coefficient is a quantitative statistical value that shows a linear relationship
between two variables. One example is the Pearson correlation coefficient (PCC), which measures
how strong a relationship is between two data sets and returns a value between −1 and +1. 1 indicates
a strong positive relationship, and −1 indicates a strong negative one. When the value is 0, there is
no relationship at all. If the absolute value of the correlation coefficient is high, it indicates a strong
relationship between the two variables. The PCC values can be used to identify linear relationships
between each feature in the data, which, in turn, are utilized to remove unnecessary features or analyze
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ones with high relationships when detecting anomalies. The PCC coefficients for the two variables X
and Y can be expressed as follows [26]:

rxy =
∑n

1 (xi − x) (yi − y)√∑n

1 (xi − x)
2
√∑n

1 (yi − y)
2

(1)

This step determines the linear relationships between each feature data in the datasets and any
unnecessary feature data in the data learning. The correlation matrix for the feature data is shown in
Fig. 4. The features for Fig. 4 are presented below in Table 2. These features represent the relatively
small labels in Fig. 4.

Figure 4: PCC heatmap for PLC network dataset



766 CMC, 2023, vol.77, no.1

Table 2: Features of the PLC network dataset (label sequence, Table 2: left to right, x-axis: top to
bottom, y-axis: left to right). Adapted with permission from reference [23], Copyright © 2018, Frazão, I

Features

‘src ip’, ‘dst ip’, ‘src port’, ‘dst port’, ‘src mac’, ‘dst mac’, ‘protocol’, ‘timestamp’, ‘flow duration’,
‘flow byts’, ‘flow pkts’, ‘fwd pkts’, ‘bwd pkts’, ‘tot fwd pkts’, ‘tot bwd pkts’, ‘totlen fwd pkts’, ‘totlen
bwd pkts’, ‘fwd pkt len max’, ‘fwd pkt len min’, ‘fwd pkt len mean’, ‘fwd pkt len std’, ‘bwd pkt len
max’, ‘bwd pkt len min’, ‘bwd pkt len mean’, ‘bwd pkt len std’, ‘pkt len max’, ‘pkt len min’, ‘pkt len
mean’, ‘pkt len std’, ‘pkt len var’, ‘fwd header len’, ‘bwd header len’, ‘fwd seg size min’, ‘fwd act data
pkts’, ‘flow iat mean’, ‘flow iat max’, ‘flow iat min’, ‘flow iat std’, ‘fwd iat tot’, ‘fwd iat max’, ‘fwd
iat min’, ‘fwd iat mean’, ‘fwd iat std’, ‘bwd iat tot’, ‘bwd iat max’, ‘bwd iat min’, ‘bwd iat mean’, ‘bwd
iat std’, ‘fwd psh flags’, ‘bwd psh flags’, ‘fwd urg flags’, ‘bwd urg flags’, ‘fin flag cnt’, ‘syn flag
cnt’, ‘rst flag cnt’, ‘psh flag cnt’, ‘ack flag cnt’, ‘urg flag cut’, ‘ece flag cnt’, ‘down up ratio’, ‘pkt
size avg’, ‘init fwd win byts’, ‘init bwd win byts’, ‘active max’, ‘active min’, ‘active mean’, ‘active std’,
‘idle max’, ‘idle min’, ‘idle mean’, ‘idle std’, ‘fwd byts avg’, ‘fwd pkts avg’, ‘bwd byts avg’, ‘bwd pkts
avg’, ‘fwd blk rate avg’, ‘bwd blk rate avg’, ‘fwd seg size avg’, ‘bwd seg size avg’, ‘cwe flag count’,
‘subflow fwd pkts’, ‘subflow bwd pkts’, ‘subflow fwd byts’, ‘subflow bwd byts’, ‘label’

In Fig. 4, a brighter color indicates a stronger positive linear relationship, while a darker color
indicates a stronger negative linear relationship. In addition, the empty areas in Fig. 4 indicate
the absence of data values or repetitively continued ones. The PCC analysis results helped remove
unnecessary features during the data learning, such as a section with a certain value, and selected
feature data to be learned around a point where the absolute value of PCC was not zero. Grouping
feature data with coefficients with high absolute values before learning can help determine a causal
relationship for a specific phenomenon and improve model performance. Among the features shown
in Table 2, 69 units of feature data were selected, including port numbers, protocols, the header length
of each packet, and the payload length. The set features are bolded in Table 2. The feature in Table 2
is described in detail in Table 3.

Table 3: Features of the PLC network dataset feature description

Feature Description

Src IP Source IP address
Src Port Source port number
Dst IP Destination IP address
Dst Port Destination port number
Protocol Protocol used in the flow (TCP, UDP, etc.)
Timestamp Timestamp of the first packet in the flow
Flow Bytes/s Flow byte rate (number of bytes per second)
Flow Packets/s Flow packet rate (number of packets per second)
Flow-based features These features are derived from the overall flow characteristics
Flow Duration The total time (in microseconds) that the flow lasts
Total Fwd Packets The number of packets sent by the source IP to the destination IP
Total Backward Packets The number of packets sent by the destination IP to the source IP

(Continued)
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Table 3 (continued)

Feature Description

Total Length of Fwd
Packets

The total number of bytes sent by the source IP to the destination
IP

Total Length of Bwd
Packets

The total number of bytes sent by the destination IP to the source
IP

Time-based features These features describe the timing characteristics of the network
traffic flow

Flow IAT Mean The average time between two consecutive packets in the flow
Flow IAT Std The standard deviation of the interarrival times between packets in

the flow
Flow IAT Max The maximum interarrival time between packets in the flow
Flow IAT Min The minimum interarrival time between packets in the flow
Fwd IAT Mean The average time between two consecutive packets sent by the

source IP to the destination IP
Fwd IAT Std The standard deviation of the interarrival times between packets

sent by the source IP to the destination IP
Fwd IAT Max The maximum interarrival time between packets sent by the source

IP to the destination IP
Fwd IAT Min The minimum interarrival time between packets sent by the source

IP to the destination IP
Bwd IAT Mean The average time between two consecutive packets sent by the

destination IP to the source IP
Bwd IAT Std The standard deviation of the interarrival times between packets

sent by the destination IP to the source IP
Bwd IAT Max The maximum interarrival time between packets sent by the

destination IP to the source IP
Bwd IAT Min The minimum interarrival time between packets sent by the

destination IP to the source IP
Statistical features These features are derived from the statistical properties of the

packets and bytes in the flow
Fwd Packet Length Mean The average packet length sent by the source IP to the destination

IP
Fwd Packet Length Std The standard deviation of packet lengths sent by the source IP to

the destination IP
Fwd Packet Length Max The maximum length of a packet sent by the source IP to the

destination IP
Fwd Packet Length Min The minimum length of a packet sent by the source IP to the

destination IP
Bwd Packet Length Mean The average packet length sent by the destination IP to the source

IP
Bwd Packet Length Std The standard deviation of packet lengths sent

(Continued)
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Table 3 (continued)

Feature Description

Fwd PSH Flags, Bwd PSH
Flags

Count of TCP PSH flags in the flow

ACK Flag Count, PSH
Flag Count, URG Flag
Count, CWE Flag Count,
ECE Flag Count

Counts of various TCP flags in the flow

Bwd Packet Length Max The maximum length of a packet sent by the destination IP to the
source IP

Bwd Packet Length Min The minimum length of a packet sent by the destination IP to the
source IP

Fwd Header Length, Bwd
Header Length

The total size of headers in bytes for packets sent by the source IP
to the destination IP and vice versa

Fwd Packets/s, Bwd
Packets/s

The packet rate (number of packets per second) for packets sent by
the source IP to the destination IP and vice versa

Packet Length Mean,
Packet Length Std, Packet
Length Variance

The mean, standard deviation, and variance of packet lengths in
the flow

Init_Win_bytes_forward The initial TCP window size (in bytes) of the first packet sent by
the source IP to the destination IP

Init_Win_bytes_backward The initial TCP window size (in bytes) of the first packet sent by
the destination IP to the source IP

act_data_pkt_fwd The number of packets with a payload sent by the source IP to the
destination IP

min_seg_size_forward The minimum segment size (in bytes) sent by the source IP to the
destination IP

Active Mean, Active Std,
Active Max, Active Min

The mean, standard deviation, maximum, and minimum time (in
microseconds) a flow was active before becoming idle

Idle Mean, Idle Std, Idle
Max, Idle Min

The mean, standard deviation, maximum, and minimum time (in
microseconds) a flow was idle before becoming active

Subflow Fwd Packets,
Subflow Fwd Bytes

The number of packets and bytes in a subflow sent by the source
IP to the destination IP

Subflow Bwd Packets,
Subflow Bwd Bytes

The number of packets and bytes in a subflow sent by the
destination IP to the source IP

Down/Up Ratio The ratio of the number of packets traveling down and up

5.3 Classification Algorithm and Clustering Algorithm for Data Training

The anomaly detection models for network packets learned the data based on supervised learning
(SL) and unsupervised learning (UL). SL is used to learn algorithms for data classification or accurate
prediction of result values. SL algorithms can detect anomalies by learning what is labeled normal
and anomaly data, and these are classified into specific categories and then divided into normal
and anomaly values [27]. The SL algorithms used included K-NN, Random Forest, K-SVMs, and
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XGBoost. The K-NN algorithm is a basic and simple classifier used when there is little prior knowledge
of data distributions. This algorithm stems from the assumption that similar data are distributed close
to each other. As a result, the distance between the points where the data are distributed is calculated
through Euclidean distance, and the set K value determines the number of neighbors. For a given two
data points (xi, xj ∈ R

p), the equation for calculating the Euclidean distance is as follows [28]:

d
(
xi, xj

) =
√∑p

l=1

(
xil − xjl

)2
(2)

In Eq. (2), d
(
xi, xj

)
means the Euclidean distance between the data points xi and xj, and p means

the dimension. xil and xjl are the lth features of the data points xi and xj, respectively.

Random Forest is an SL algorithm used for classification and regression. Random Forest is a type
of ensemble model. It contains a collection of unrelated decision trees for analysis and combination
to reduce variance and predict data more accurately. It makes optimizing the number of trees and
the maximum acceptable depth (number of nodes) from the root node to the end possible to avoid
underfitting or overfitting [29].

K-SVMs are algorithms used for classification, regression, and outlier detection. They define a
decision boundary for the classification. Therefore, if new data are unclassified, they will be classified
according to which side of the boundary they belong to [30].

XGBoost, which stands for eXtreme gradient boosting, supports parallel gradient boosting, an
algorithm implemented using an ensemble technique that combines multiple decision trees. XGBoost
is another type of ensemble model. Parallel processing ensures fast learning and classification, and
ensemble modeling improves the capacity for prediction in classification and regression models [31].

UL algorithm learns patterns and correlations from unlabeled input datasets to output result
values. It includes clustering algorithms that learn unlabeled feature data from anomaly detection
models and categorize the data. After learning, the models determine whether the data are normal
or abnormal [32]. Most power stations currently in operation are not labeled for network packets,
so UL algorithms are used more than SL algorithms to implement anomaly detection models. In
particular, UL algorithms are more appropriate for power generation control systems that repeat a
certain motion, including the Isolation Forest and the LOF.

Isolation Forest is a decision tree-based anomaly detection algorithm. It detects anomalies by
taking advantage of the fact that a normal feature keeps branching binary decision trees, but an
anomaly one does not, cutting off at the top of the trees [33].

The LOF is an anomaly detection algorithm that learns features to distinguish between normal
categories and to detect outliers by considering the relative density of a feature. Since it considers
the densities of features if a given feature point deviates from its neighbors, it can be detected as an
outlier [34]. We created a figure in Fig. 5 to conceptually represent how LOF detects anomaly data.
In the figure, each data point is represented as a two-dimensional feature (Features 1 and 2), which
can be any feature in a real-world anomaly detection situation. LOF models are trained with regular
observations (empty white circles). The trained model classifies new data as regular (green circle) or
outlier (red circle). Suppose the data is not a point adjacent to an empty white circle. In that case, it
is considered a different type of data than previously learned (white circles), classified as outliers (red
circles), and detected as anomaly data.

This section describes anomaly detection algorithms. SL algorithms learn from labeled data so that
SL can classify data according to labels. This makes it possible to identify normal data and various
types of attack data. In contrast, UL algorithms detect anomaly network packets by learning and



770 CMC, 2023, vol.77, no.1

clustering unlabeled data. Section 6 presents anomaly detection systems using relevant algorithms and
feature data previously selected through correlation analysis.

Figure 5: Local outlier factor (LOF) example

6 Network-Based Anomaly Detection Model Results

This section presents the results of developing and verifying the solar power plant network-based
anomaly detection models. The environments and settings in which the anomaly detection models were
implemented are presented in Table 4.

Table 4: Summary of a basic experimental setup for anomaly detection

Configuration Description Module-based

PC specification CPU: i7-11700, RAM: 32 GB, DISK: SSD 500 GB, GPU:
RTX 3060 12G, OS: Windows 10 20H2, Python 3.9.10

Usage modules scikit-learn, matplotlib, seaborn, pandas, numpy

(Continued)
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Table 4 (continued)

Configuration Description Module-based

Total dataset Normal data: 11,589; Anomaly data: 11,439.
(DoS: 5,232, MitM: 6,207)
Divide by 8:2 learning and validation

Scaler
and encoder

StandardScaler (SS), No Scaler (NORM),
MinMaxScaler (MMS), MaxAbsScaler (MAS),
RobustScaler (RS)
String Encoder: Label Encoding

Metrics Balanced accuracy, accuracy, recall, precision, F1-score,
ROC Curve

scikit-learn

Random forest random_state = 30, max_depth = 20, n_estimators = 100 scikit-learn
K-NN n_neighbors = 3 scikit-learn
Isolation forest n_estimators = 100, random_state = 40 scikit-learn
Local outlier
factor

n_neighbors = 3 scikit-learn

K-SVM C = 2, gamma = 2.0, kernel = ‘rbf’ scikit-learn
XGBoots n_estimators = 100, gamma = 0, subsample = 0.75,

colsample_bytree = 1, max_depth = 7
scikit-learn

The major metrics used to verify the anomaly detection models proposed in this project include
balanced accuracy (Eq. (3)), accuracy (Eq. (4)), recall (Eq. (5)), precision (Eq. (6)), F1-score (Eq. (7)),
and the ROC curve. Verification was based on the result values of true positives (TP), true negatives
(TN), false positives (FP), and false negatives (FN).

Balanced accuracy = 1
2

(
(TP)

(TP + FN)
+ (TN)

(TN + FP)

)
(3)

Accuracy = (TP + TN)

(TP + TN + FP + FN)
(4)

Recall = (TP)

(TP + FN)
(5)

Precision = (TP)

(TP + FP)
(6)

F1 Score = (2 × Precision × Recall)
(Precision + Recall)

(7)

In addition, the reliability of results was ensured by correctly identifying the real positives
predicted among all positives predicted through balanced accuracy (BA) and a correct prediction of
real negatives among predicted negatives [35]. Label encoding was applied to categorical data before
the data were used for learning. After that, the feature data to be used for learning were selected
through correlation analysis, and various scalers were applied to the learning data for preprocessing.
The scaler is an essential factor that influences model performance. The scaling techniques included
StandardScaler (SS), MinMaxScaler (MMS), MaxAbsScaler (MAS), and RobustScaler (RS), all of
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which are commonly used for normalization. After normalization, the anomaly detection models were
trained with the final preprocessed datasets, eventually improving several algorithms’ performance.
The SL algorithms used for the proposed models included K-NN, Random Forest, K-SVMs, and
XGBoost. The UL algorithms for the proposed models were Isolation Forest and the LOF.

Each model was trained and verified with 11,589 normal datasets and 11,439 anomaly datasets.
Labeled data were used to train SL models, and UL models were trained with separate unlabeled
datasets. The performance was measured by inputting labeled data during verification. Table 5 shows
the results of data learning and anomaly detection performance evaluations, which are models of
the experimental environment mentioned above. All models performed k-fold cross-validation (k =
5), and the average detection performance and standard deviation were presented in the table. Most
algorithmic models showed high performance in terms of accuracy, and among them, XGBoost had
the highest BA when using SS as the scaler, with an F1-score of 0.9681, an accuracy of 0.9681, and a
ROC curve of 0.9965. Also, In Random Forest with MMS, the accuracy was the highest at 0.9736. The
UL algorithm performed lower than the SL algorithm because it learned unlabeled data. However, the
choice of learning algorithms depends on the operating environment and datasets. It is important to
avoid judging SL as being better than UL simply by looking at the performance table.

Table 5: Performance evaluation results by algorithm type for anomaly detection. The performances
are expressed as the average with standard deviation

Algorithm Scaler Balanced
accuracy

Accuracy Precision Recall F1-score ROC curve

SS 0.9681
(±0.00201)

0.9681
(±0.00202)

0.9643
(±0.00298)

0.9719
(±0.00140)

0.9681
(±0.00199)

0.9965
(±0.00043)

MMS 0.9680
(±0.00199)

0.9680
(±0.00200)

0.9645
(±0.00373)

0.9714
(±0.00245)

0.9680
(±0.00196)

0.9965
(±0.00043)

XGBoost MAS 0.9678
(±0.00166)

0.9678
(±0.00166)

0.9645
(±0.00317)

0.9710
(±0.00180)

0.9677
(±0.00163)

0.9964
(±0.00047)

NORM 0.9669
(±0.00173)

0.9669
(±0.00174)

0.9633
(±0.00401)

0.9705
(±0.00221)

0.9669
(±0.00168)

0.9964
(±0.00045)

RS 0.9668
(±0.00216)

0.9668
(±0.00216)

0.9636
(±0.00387)

0.9700
(±0.00204)

0.9668
(±0.00212)

0.9964
(±0.00048)

RS 0.9447
(±0.00447)

0.9446
(±0.00448)

0.9382
(±0.00559)

0.9515
(±0.00358)

0.9448
(±0.00440)

0.9757
(±0.00166)

NORM 0.9167
(±0.00220)

0.9167
(±0.00221)

0.9142
(±0.00692)

0.9190
(±0.00613)

0.9166
(±0.00201)

0.9644
(±0.00249)

K-NN SS 0.9164
(±0.00285)

0.9164
(±0.00287)

0.9133
(±0.00887)

0.9196
(±0.00718)

0.9164
(±0.00253)

0.9653
(±0.00193)

MMS 0.9163
(±0.00234)

0.9163
(±0.00235)

0.9124
(±0.00714)

0.9204
(±0.00656)

0.9164
(±0.00217)

0.9651
(±0.00292)

MAS 0.9163
(±.00234)

0.9163
(±0.00235)

0.9124
(±0.00714)

0.9204
(±0.00656)

0.9164
(±0.00217)

0.9651
(±0.00292)

SS 0.9615
(±0.00307)

0.9615
(±0.00309)

0.9419
(±0.00671)

0.9833
(±0.00163)

0.9622
(±0.00289)

0.9933
(±0.00098)

MAS 0.9612
(±0.00311)

0.9611
(±0.00312)

0.9410
(±0.00624)

0.9837
(±0.00238)

0.9619
(±0.00294)

0.9936
(±0.00088)

(Continued)
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Table 5 (continued)
Algorithm Scaler Balanced

accuracy
Accuracy Precision Recall F1-score ROC curve

Random
forest

MMS 0.9612
(±0.00309)

0.9736
(±0.00310)

0.9409
(±0.00621)

0.9837
(±0.00238)

0.9618
(±0.00292)

0.9936
(±0.00088)

NORM 0.9603
(±0.00301)

0.9602
(±0.00302)

0.9407
(±0.00585)

0.9820
(±0.00168)

0.9609
(±0.00285)

0.9928
(±0.00099)

RS 0.9601
(±0.00261)

0.9600
(±0.00263)

0.9405
(±0.00569)

0.9820
(±0.00251)

0.9608
(±0.00246)

0.9928
(±0.00099)

RS 0.9340
(±0.00157)

0.9338
(±0.00157)

0.8880
(±0.00319)

0.9922
(±0.00140)

0.9372
(±0.00135)

0.9563
(±0.00345)

SS 0.9119
(±0.00596)

0.9117
(±0.00598)

0.8687
(±0.00899)

0.9695
(±0.00356)

0.9163
(±0.00527)

0.9569
(±0.00479)

K-SVM MMS 0.9097
(±0.00554)

0.9095
(±0.00556)

0.8645
(±0.00820)

0.9705
(±0.00265)

0.9144
(±0.00488)

0.8953
(±0.00867)

MAS 0.9097
(±0.00554)

0.9095
(±0.00556)

0.8645
(±0.00820)

0.9705
(±0.00265)

0.9144
(±0.00488)

0.8953
(±0.00869)

NORM 0.6290
(±0.00302)

0.6276
(±0.00301)

0.5725
(±0.00198)

0.9967
(±0.00091)

0.7273
(±0.00163)

0.6882
(±0.00303)

RS 0.6185
(±0.00595)

0.6185
(±0.00586)

0.6203
(±0.00548)

0.6188
(±0.01296)

0.6194
(±0.00412)

0.6158
(±0.01408)

MMS 0.6174
(±.00795)

0.6173
(±0.00788)

0.6190
(±0.00583)

0.6179
(±0.01542)

0.6183
(±0.00663)

0.6130
(±0.02454)

Isolation
forest

MAS 0.6174
(±0.00795)

0.6173
(±0.00788)

0.6190
(±0.00583)

0.6179
(±0.01542)

0.6183
(±. 0.00663)

0.6130
(±0.02454)

NORM 0.6183
(±0.00614)

0.6182
(±0.00606)

0.6200
(±0.00525)

0.6184
(±0.01326)

0.6191
(±0.00441)

0.6150
(±0.01478)

SS 0.6183
(±0.00634)

0.6183
(±0.00625)

0.6199
(±0.00466)

0.6194
(±0.01351)

0.6195
(±0.00510)

0.6108
(±0.01857)

SS 0.5260
(±0.00457)

0.5276
(±0.00259)

0.5160
(±0.00577)

0.9453
(±0.00693)

0.6676
(±.00459)

0.5321
(±0.01084)

NORM 0.5259
(±0.00442)

0.5275
(±0.00277)

0.5160
(±0.00586)

0.9453
(±0.00711)

0.6675
(±0.00473)

0.5321
(±0.01083)

Local outlier
factor

RS 0.5214
(±0.00233)

0.5230
(±0.00528)

0.5134
(±0.00720)

0.9446
(±0.00569)

0.6652
(±0.00628)

0.5290
(±0.00760)

MAS 0.5179
(±0.00250)

0.5194
(±0.00729)

0.5116
(±0.00831)

0.9402
(±0.00305)

0.6625
(±0.00655)

0.5144
(±0.00459)

MMS 0.5179
(±0.00427)

0.5196
(±0.00795)

0.5115
(±0.00831)

0.9498
(±0.00593)

0.6649
(±0.00764)

0.5210
(±0.00592)

The performance of each model is expressed using a ROC curve graph. The ROC curve graph
is in which the x-axis is the false positive rate, and the y-axis is the actual positive rate. The ROC
curve is a representative performance indicator because it can visualize a classifier’s performance by
changing various classification thresholds. Fig. 6 shows the ROC curve for (a) K-NN, (b) Random
Forest, (c) K-SVM, (d) Local Outlier Factor, (e) Isolation Forest, and (f) XGBoost. Fig. 7 shows the
model representing the maximum ROC curve for each algorithm.
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Figure 6: ROC curves of the proposed learning models

Figure 7: Best ROC curve models for each algorithm

We developed multi-classification models based on the models with the highest BA in binary
classification (normal vs. anomaly). Labels were divided into three categories: normal, DoS attack, and
MitM attack. Table 6 shows the performance of an anomaly detection model that detects cyberattack
network packets from multi-label datasets.

Finally, we compared our anomaly detection model to existing and representative anomaly
detection models used in solar power plants. Existing anomaly detection models use different features
or different classification models. For example, existing anomaly detection models use solar power
plant operation information as data, whereas our model uses network packets for anomaly detection.
We conducted an indirect comparison based on the performance presented in each study referenced.
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Table 6: Results of performance evaluation by multi-classification model. The performances are
expressed as the average with standard deviation

Algorithm Scaler Balanced
accuracy

Accuracy Precision Recall F1-score ROC curve

XGBoost SS 0.9684
(±0.00151)

0.9673
(±0.00225)

0.9680
(±0.00286)

0.9684
(±0.00151)

0.9682
(±0.00211)

0.9975
(±0.00032)

Random
forest

SS 0.9643
(±0.00228)

0.9578
(±0.00311)

0.9561
(±0.00330)

0.9643
(±0.00228)

0.9595
(±0.00292)

0.9947
(±0.00066)

K-NN RS 0.9410
(±0.00414)

0.9391
(±0.00431)

0.9400
(±0.00413)

0.9410
(±0.00414)

0.9405
(±0.00408)

0.9805
(±0.00120)

K-SVM RS 0.9308
(±0.00177)

0.9162
(±0.00220)

0.9009
(±0.00247)

0.9308
(±0.00177)

0.9123
(±0.00237)

0.9722
(±0.00141)

Isolation
forest

RS 0.6185
(±0.00595)

0.6185
(±0.00586)

0.6186
(±0.00595)

0.6185
(±0.00595)

0.6184
(±0.00589)

0.6131
(±0.01337)

Local outlier
factor

SS 0.5166
(±0.00583)

0.5165
(±0.00640)

0.5167
(±0.00592)

0.5166
(±0.00583)

0.5156
(±0.00578)

0.5265
(±0.00916)

Table 7 compares the performance of existing anomaly detection models used in solar power
plants and our new model. Ibrahim [11] proposed anomaly detection for PV systems using AC power,
yield, and temperature. Anomaly detection models were then developed using AE-LSTM, Facebook-
Prophet, and Isolation Forest. Of these, the model that presented the most accurate performance
was Isolation Forest, so Isolation Forest was selected as our first comparison index. The accuracy
of the model was 0.8963. Benedetti et al. [12] proposed anomaly detection for ANN-based PV systems
using AC power, a pyranometer, and temperature. The accuracy of this model was more excellent than
0.9000, so it was included as a comparison index. Seo et al. [13] proposed an anomaly detection system
for solar power plant generation using solar radiation and temperature. This anomaly detection model
was developed using K-NN. The accuracy of the model was 0.8800. Vlaminck et al. [16] used solar
panel images for anomaly detection in solar panels. Their anomaly detection model was developed
using CNN, with an accuracy of 0.9680.

Table 7: Comparison of existing anomaly detection models’ performance, including ours

Reference Classifier Features Accuracy

Ibrahim [11] Isolation forest AC power, yield, and temperature 0.8963
Benedetti et al. [12] ANN AC power, pyranometer, and temperature 0.9000
Seo et al. [13] K-NN Solar radiation and temperature 0.8800
Vlaminck et al. [16] CNN Solar panels images 0.9680
Our model Random forest Network packet 0.9736

These existing anomaly detection models were not developed for cybersecurity purposes because
they only detect power generation anomalies in PV systems. However, our anomaly detection model
focuses on cybersecurity using network packets within the inverters. Regarding cybersecurity, the
proposed method is more efficient than any existing anomaly detection model. In addition, the results
were meaningful because the RF model had the highest accuracy of 0.9736, which is higher than the
performance of any existing anomaly detection model.
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As mentioned earlier, machine learning algorithms can be used to implement network packet-
based anomaly detection systems, and since the status of the network packet datasets will differ
depending on the particular solar power plant, an appropriate algorithm model and preprocessing
method should be selected when introducing and utilizing anomaly detection systems with PV
inverters. The existing anomaly detection systems for solar power plants work only when an anomaly
occurs in the electricity generation. In other words, damage can be detected only after a cyberattack.
However, the network-based anomaly detection systems proposed have the potential to minimize the
impact of attacks because their capacity to monitor at the network level makes it possible to detect
cyberattacks well in advance. In particular, the proposed system can detect attacks such as a DoS or
MitM attack on a solar power plant. Thus, if a network packet-based anomaly detection system is
used together with an existing anomaly detection system, it would provide more efficient monitoring,
thus enhancing the overall security of the solar power plant.

7 Conclusion and Future Research

Cyber threats continue to increase proportionally to the growing importance and scale of solar
power plants. This paper proposes an anomaly detection system on the solar power plant network for
cybersecurity. The anomaly detection system makes it more effective in responding to cyber threats.
First, we analyzed the structure of the solar power plant and identified the operation method and
major systems. Cyberattacks on solar plants, published vulnerabilities, and various related studies were
then analyzed to identify where cyber threats occur, the types of attacks, and their ripple effects. The
analysis identified cyber threats to the inverters in the solar power plant, including DoS and MitM
attacks, as major threats. Since the inverter controls the flow of power through the PLC, this threat
to the inverter should be further emphasized, and therefore, if the inverter is exploited, it can lead to
fatal events. On this basis, PLC network packet-based anomaly detection systems were proposed to
detect possible cyber threats in solar power plants, such as DoS and MitM attacks on inverters. We
preprocessed the dataset with correlation analysis and normalization and then developed a proposed
anomaly detection system using supervised and unsupervised machine learning-based algorithms. The
experimental results show that, among various classification models, Random Forest with MMS had
the highest anomaly detection performance (accuracy of 97.36% and F1-score of 96.18%). The results
show these numbers are high enough to detect anomalies and respond to cyber threats. Existing
anomaly detection systems for the electricity generation of solar power plants cannot detect cyber
threats, such as MitM and DoS attacks. However, the network-based anomaly detection systems
proposed in this paper can help improve the security of solar power plants by detecting cyber threats
at the network level.

In this paper, PLC data from an existing SCADA system were used instead of the network packets
of the PLC in the inverter to prove anomaly detection. There is a need for further testing and verifying
the actual packets used in the solar power plant. In this regard, future research should focus on
establishing a test bed for a solar power plant to collect and experiment with normal and attack
packets.
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