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ABSTRACT

Smoking has an economic and environmental impact on society due to the toxic substances it emits. Convolutional
Neural Networks (CNNs) need help describing low-level features and can miss important information. Moreover,
accurate smoker detection is vital with minimum false alarms. To answer the issue, the researchers of this paper
have turned to a self-attention mechanism inspired by the ViT, which has displayed state-of-the-art performance in
the classification task. To effectively enforce the smoking prohibition in non-smoking locations, this work presents
a Vision Transformer-inspired model called SmokerViT for detecting smokers. Moreover, this research utilizes
a locally curated dataset of 1120 images evenly distributed among the two classes (Smoking and NotSmoking).
Further, this research performs augmentations on the smoker detection dataset to have many images with various
representations to overcome the dataset size limitation. Unlike convolutional operations used in most existing
works, the proposed SmokerViT model employs a self-attention mechanism in the Transformer block, making
it suitable for the smoker classification problem. Besides, this work integrates the multi-layer perceptron head
block in the SmokerViT model, which contains dense layers with rectified linear activation and linear kernel
regularizer with L2 for the recognition task. This work presents an exhaustive analysis to prove the efficiency
of the proposed SmokerViT model. The performance of the proposed SmokerViT performance is evaluated and
compared with the existing methods, where it achieves an overall classification accuracy of 97.77%, with 98.21%
recall and 97.35% precision, outperforming the state-of-the-art deep learning models, including convolutional
neural networks (CNNs) and other vision transformer-based models.
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1 Introduction

The smoking epidemic is one of the world’s significant public health threats, killing more than 8
million people yearly, including 1.2 million from passive smoking. In 2020 statistics [1], 22.3% of the

https://www.techscience.com/journal/CMC
https://www.techscience.com/
http://dx.doi.org/10.32604/cmc.2023.040251
https://www.techscience.com/doi/10.32604/cmc.2023.040251
mailto:zhonglong@zjnu.edu.cn


404 CMC, 2023, vol.77, no.1

world’s population smoke, and 80% of those 1.3 billion smokers worldwide are in low- and medium-
income countries. According to a report about different causes of death worldwide, smoking is the
second most significant risk factor for death [2]. Smoking monitoring and preventive policies are
included as actions that should be implemented in the World Health Organization (WHO) framework
convention on smoking control [3]. Therefore, detecting smokers in no-smoking areas is essential for
effective surveillance.

Traditional surveillance methods for smoker detection are inefficient and affected by various
factors, thus limiting the development of intelligent surveillance [4,5]. Researchers have continuously
applied different methods to surveillance systems to answer these problems and benefit from artificial
intelligence technology [6,7]. Deep learning is the state-of-the-art (SOTA) artificial intelligence method
that has become integral to computer vision [8]. Compared to traditional image processing and
machine learning methods, deep learning does not require complex image pre-processing. The Deep
Neural Network (DNN), which employs deep learning techniques [9], significantly improves object
detection efficiency by automatically learning the features from raw data. Convolutional Neural
Networks (CNNs), a subset of DNNs, have been widely utilized to classify and cluster images based
on similarity and recognize objects in scenes. CNNs have encouraged the exponential rise in deep
learning as it enables significant advancements in many exciting applications, including surveillance
[10,11], medical diagnosis [12], self-driving cars [13], etc.

Since the first CNN model AlexNet [14], resulted in faster training time efficiency, new CNN
models are proposed with improved accuracy with fewer parameters. Early models, such as the Visual
Geometry Group (VGG) [15], had many neurons and parameters, which may result in overfitting
and involve enormous computational resources. With the application of residual blocks, the training
efficiency of CNN models was improved with some widely used SOTA models such as ResNet [16],
Inception [17], and DenseNet [18]. All the previously proposed CNN methods employed in different
applications showed that accuracy is critical for applying deep learning in computer vision.

CNN models have become a vital tool in computer vision-based surveillance applications. Convo-
lution layers were previously widely used as the fundamental building block; however, current trends
of adding attention processes have prompted researchers to rethink this. In addition to assisting CNNs
with long-range dependencies, attention may replace convolutions to provide SOTA performance on
computer vision tasks [19]. Recently, researchers have examined using self-attention in vision-based
tasks because of its potential for word-dependency learning abilities [20]. Self-attention helps to learn
complex relations between neighbours and their further neighbours, which may help with the binary
classification problem.

CNNs need help in describing low-level features and can miss important information. Moreover,
accurate detection is vital with minimum false alarms. Considering the need for Artificial intelligence
(AI) based surveillance mechanism for smoker recognition in no-smoking indoor and outdoor
environments, this study focuses on the interpretation of self-attention and multilayer perceptron
(MLP) head for a better understanding of the employed deep learning method. To accurately recognize
smokers, this work introduces the method SmokerViT for smoker recognition in smart city indoor
and outdoor environments where the Transformer component learns the convolution-like features. In
SmokerViT, the patch extractor is 16 × 16 convolution with stride 16. Its output is then multiplied
by learnt weights to form q, k, and v embeddings of the self-attention layer. Moreover, the MLP
residual block is a linear layer in SmokerViT that raises the embedding dimension by a factor of 4,
adds non-linearity then lowers it back to the original. Further linear kernel L2 classifier is used for
classification. The proposed SmokerViT model uses these threefold attributes, resulting in a more
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robust recognition system for Smoking and NotSmoking images. The novelty of this research is to
develop a deep learning-based SmokerViT model for Smoker recognition with higher accuracy. The
main contributions of this research are:

• This research utilizes the smoker detection dataset, which has 1120 images evenly distributed
among the two classes (Smoking and NotSmoking). This research performs augmentations on
the dataset to have a considerable number of images with various representations to overcome
the dataset size limitation.

• This paper presents a novel end-to-end deep learning model called SmokerViT, which integrates
transformer blocks and MLP head with a fully connected layer to learn complex features
and linear kernel 2 regularizer for recognizing smokers. Moreover, SmokerViT, due to its
discriminative multi-head self-attention, possesses the intrinsic capabilities to classify images
irrespective of the backgrounds, image quality, and noisy artefacts.

• This research performs exhaustive analysis to optimize the SmokerViT model to achieve the
best performance on the test dataset. It can facilitate future research as a starting point for
efficient smoker recognition methods.

• The performance of the proposed SmokerViT model is compared with different deep-learning
models on the smoker detection dataset. This work uses several evaluation metrics to assess
the performance of the SmokerViT model, where it outperforms the existing state-of-the-art
solutions in classification accuracy.

The research paper is organized as follows: Section 2 details the related work associated with this
research, Section 3 gives the details of materials and methods adopted for solving the recognition task
for the smoker detection problem, and Section 4 offers a detailed performance analysis of the proposed
method and comparison with other methods and Section 5 concludes this research.

2 Related Work

There has been some research on various applications of surveillance using computer vision based
on different proposed CNN methods. These computer vision applications include human activity
recognition, pedestrian detection, traffic monitoring, face recognition, vehicle identification, fire
detection, motion detection, medical imaging, etc. Authors in [21] compared state-of-the-art machine
learning algorithms for insurance fraud detection. The proposed study’s decision tree algorithm
performed best for the considered task. Similarly, authors in [22] proposed an improved particle swarm
optimization method for data classification. Their proposed method has been tested to optimize the
weight of the feed-forward neural network for fifteen datasets. Another research [23] proposed CNN
based model for person head detection for counting the crowd in sports videos. Their proposed method
solves the multi-scale problem, which is the object detection problem’s core issue.

The smoker detection problem is relatively new and less explored, possibly due to the unavailability
of open-access image/video datasets. Authors in [24] proposed a deep learning method based on
YOLOv3-tiny named Improved YOLOv3-tiny to solve the problem of indoor low-precision smoke
alarms on their local dataset. The proposed method combined the advantages of YOLOv3 and
YOLOv3-tiny in terms of fewer parameters and higher accuracy for the localization task on their local
smoker dataset. The proposed method considered the performance metrics of mAP for the localization
task. It showed 85% mAP for improved YOLOv3-tiny compared to YOLOv3-tiny, which was 74%.
However, their work limitations are the low mAP and the unavailability of the dataset. Another similar
method [25] was proposed, named Eye-Smoker, YOLOv3 based transfer learning method for smoker
detection on their local dataset. In the proposed method, the smoker is detected based on the cigarette
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and does not consider other kinds, such as e-cigarettes and smoking pipes. Their proposed method
considered the localization task for smoker detection with 90% accuracy and around 94% mAP. Their
limitations of work are the low accuracy and unavailability of the dataset. These object detection
methods promote fast localization capabilities but lack high accuracy.

For the classification problem, false alarms should be kept minimal. A significantly high rate of
false alarms in one class and a higher number of accurate classifications in another can lead to higher
prediction accuracy; however, it might lack solving the desired problem. In [26], the authors proposed
a SmokingNet model based on GoogleNet for smoker detection problems on their local dataset.
Their work focused on evaluating the performance of smoking and not-smoking image classification
with different performance metrics. In their proposed method, the smoking image characteristics are
optimized based on the GoogleNet, and the feature extraction ability is enhanced using kernels of
non-square convolution. The proposed method achieved 90% accuracy, 90% precision and recall,
and 90% F1 measure. Their work limitations are using very basic GoogleNet as a base model and
the unavailability of the dataset. In previously published work [27], the research proposed Inception-
ResNet-V2-based transfer learning, where the pre-trained model was used as a backbone network
for the smoker detection problem on the local smoker detection dataset. In the proposed method,
the Inception-ResNet-V2 model is used, which is trained on the ImageNet dataset, the weights of the
pre-trained Inception-ResNet-V2 are frozen, and new fully connected layers are added with ReLU and
sigmoid activation functions. The fully connected layers learn the specific features of the task of smoker
detection. The proposed method fed the complete image with an input size of 224 × 224 to the network.
The neural network extracted the features based on the previously learned generic features trained on
the ImageNet dataset. The proposed solution has a training accuracy of 95.65% and 96.87% testing
accuracy with a recall of 97.32% and precision of 96.46%, discriminating the images of the Smoking
and NotSmoking classes. However, the proposed work had high accuracies; still, it lacked training the
model from scratch and better learn the low-level features.

To solve the parallel processing of words by using self-attention in Recurrent Neural Network
(RNN) models, a network called Transformer based on attention mechanism and removes recurrence
and convolutions was proposed [28], which accomplished great success in natural language processing
(NLP). After its success in NLP, an image classification model, Vision Transformer (ViT) [29],
was introduced in computer vision, disrupting the traditional CNN model with its competitive
performance on large-scale image datasets. With the development of transformers for computer
vision in 2021, there has been some research for computer vision applications using vision-based
transformers [30–32]. Transformers have seen much growth in image classification tasks with accuracy
similar to if not more than, CNN models. In [33], the authors proposed a multi-instance vision
transformer named MITformer for remote sensing scene classification. In their proposed method,
the local feature response was highlighted for the remote sensing scenes. Attention-based MLP was
inserted at the end of each encoder to enhance these features. Another work [34] proposed a hybrid
CNN and ViT method, CTNet, to classify high-resolution remote sensing (HRRS) images. The
proposed method has two modules, T-stream (stream for ViT) and C-stream (stream for CNN). In the
T-stream, the flattened patches of the image are sent into the pre-trained ViT for semantic features in
HRRS images. At the same time, C-stream is used to extract the local features. Ma et al. [35] proposed
a homo-heterogeneous transformer learning (HTTL) for remote sensing scene classification. In the
proposed HTTL, a patch generation module is used to design homo- and heterogeneous patches. The
feature learning module extracts the feature information of global and local areas. A fusion submodule
and metric learning-based classification module are used for the scene classification.
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In other computer vision applications, authors [36] proposed detecting rain and road surface
conditions using vision transformers. In their proposed method, a spatial self-attention network is
proposed to analyze the relationship between the detection results of adjacent images as a sequence-
to-sequence detection task. Dong et al. [37] proposed ViT based representation learning method for
polarimetric synthetic aperture radar (PolSAR) image classification. In the proposed method, the
ViT learned the global features of the PolSAR images, which improves the classification efficiency.
In [38], the authors proposed a multilabel vision transformer ForestViT for multilabel classification of
satellite images of deforestation, which adopts a self-attention mechanism, replacing the convolution
operations. Wang et al. [39] proposed a double output vision transformer (DOViT) for air quality
classification. The tokens are processed with multilabel self-attention (MSA) to extract features for
higher accuracy. Authors [40] proposed Transformer based LPViT for classifying and detecting defects
in printed circuit boards (PCBs). The proposed method used labels for better model strategy and mask
patch prediction to ensure the relationship of different patch extractions.

However, deep learning-based algorithms were formerly thought of as a black box, and there have
been issues with their interpretability for a long time [41–43]. CNNs face problems describing the low-
level features outside the actual area of interest [44]. Taking advantage of the context information for
feature extraction is not beneficial. This work exploits self-attention blocks and MLP head, which are
building blocks of the proposed method for visually interpreting Smoking and NotSmoking images.
In the proposed method SmokerViT, which is based on Transformer and MLP head, the smoker
recognition problem is considered. It achieves better prediction accuracy without convolutions than
the previously proposed CNN methods.

3 Materials and Methods

This section details the proposed SmokerViT and the image dataset used for Smoking and
NotSmoking classes for recognition problems. The following subsections explain the methodology
of this work.

3.1 Dataset Acquisition

The dataset for this study is the smoker detection dataset published online as open access, which
has different images of people smoking and not smoking indoors and outdoors. To the best of our
knowledge, there is no other open-access dataset related to the problem; the smoker detection dataset
facilitates future work in proposing new methods. The dataset can be accessed from [27].

3.2 Dataset Distribution

The smoker detection problem is considered binary, with two classes named, Smoking and
NotSmoking. The NotSmoking class images are labeled 0, while the Smoking images have a class
label 1. The smoker detection dataset is balanced and has 1120 images, with 560 images each in the
Smoking and NotSmoking classes. This research splits the dataset into training and testing with a ratio
of 80:20 with equal distribution from both classes. The training data is further divided into training
and validation, with 716 images belonging to training samples and 180 for validation.

3.3 Proposed Method

Smoker detection in no-smoking areas is a difficult task where many factors influence the
development of an AI-based surveillance system. The smoker recognition problem is solved by using
a smoker detection dataset. Higher detection accuracy needs a large dataset for training, although
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applying deep learning models significantly improves the results. If the dataset is too small, the model is
at risk of over-fitting, which means it cannot generalize effectively and will result in poor performance
on a new dataset. Therefore, to train a small dataset for deep learning, this work performed data
augmentations to have multiple training samples to overcome the dataset size limitation. This research
implemented various augmentation processes on the training dataset, as given in Table 1. This work
performed various augmentations such as resizing, scaling, flipping, shifting, etc., as illustrated in
Fig. 1. All the images in the dataset are resized to a uniform resolution of 224 × 224. After that,
augmentations are applied, such as vertical and horizontal shift by a factor of 0.2, 50° rotation, zoom
by a 0.2 factor, shear transformation, and horizontal flip by 0.2 factor. Some sample augmentation
images are depicted in Fig. 1.

Table 1: Data augmentation

Augmentation Value

Vertical and horizontal shift 0.2
Rotation 50°
Zoom 0.2
Shear transformation 0.2
Horizontal flip 0.2

Figure 1: Sample data augmentations

To efficiently execute the recognition task, this research proposes SmokerViT inspired by Vision
Transformer [29]. CNNs have been pivotal in solving the problems of computer vision-based appli-
cations. In CNN, the pixels of the image are interdependent, and instead of all pixels features
being trained on, only extracted features from the image patches using filters are being used for
training. However, if complete data of images are used for training, the chances of obtaining the best
performance become higher, which is the main work of the Transformer for vision-based applications.
In the proposed SmokerViT, the work first converted the image into patches of size 16 × 16. In
Transformer, the patches should be of the size that gives the equal rows and columns of the patches in
the image. The image size of 224 × 224 and 16 × 16 patch size will give 14 × 14, 196 patches per image.
After the conversion into patches, it is passed to the Transformer encoder for processing. After that,
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the output is passed into the Multi-Layer Perceptron (MLP) head, which in the proposed SmokerViT
consists of flatten, dense layer with ReLU function and a classification layer with kernel regularizer
L2 to output the prediction depicted in Fig. 2.

Input SmokerViT

Patch
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NotSmoking

Output

Transformer

Transformer
Encoder

MLP Head

FC Layer
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L2 Regularizer
(SVM)

Augmented
Images
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Figure 2: Working mechanism of SmokerViT

In SmokerViT, Vision Transformer takes the series of patches of images as input and predicts
the class labels for the input image. The transformer differs from traditional CNNs, which do
computations using pixel arrays. The Transformer divides the image into patches of fixed size. Then it
inputs these patches into a linear projection of flattened patches embedding layer to produce vectors
often known as tokens. These tokens precede a series of tokens. Additionally, the location data is
provided by the position embedding. The Transformer encoder will receive these tokens as embedded
patches and the location data. The Transformer encoder has the same number of outputs as inputs.
The output corresponding to the class is then entered into the MLP head to output the prediction and
classification. The architecture of SmokerViT is illustrated in Fig. 3.
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Figure 3: Architecture of SmokerViT

To consider the operation of SmokerViT in detail; first, the input image X with dimension h ×
w × c is divided into several patches of Xp as n × (p2.c), where h and w represent the image resolution
of input while (p, p) represents the image patch resolution, c denotes the number of channels, and

n = hw
p2

represents the number of image patches, and this is the input sequence length for the model.

These patches are then passed through a linear projection and mapped to the d dimension to get the
output referred to as patch embedding. The position embedding Epos is added to the patch embedding
E to keep the position information of the input. It is expressed as Epos ∈ R

(n+1)×d, which joins the [class]
token Z0

0 = Xclass. Its form at the output of Transformer encoder Z0
L works as image representation Y .

The Transformer encoder contains multi-head self-attention (MSA), layer normalization (LN) and
MLP block.

MSA: This layer linearly integrates the attention output. The encoder receives a sequence of
embedding to process, which undergoes three different linear transformations to output the three
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vectors query q, key k, and value v. The attention output for each embedding is calculated by the dot
product of these three vectors. Self-attention is calculated independently and repeatedly in parallel.
As a result, it is known as multi-head attention. The attention measures how strongly the patches are
connected, subsequently assisting in prediction. The MSA is calculated by the equation given below:

Attention = softmax
(

qkt

√
d

)
v (1)

Headi = Attention(qwq
i , kwk

i , vwv
i ) (2)

MSA = Concat(Head1, . . . , Headi)w0 (3)

where d is the dimension of k, and wi is the learnable weights.

LN: Layer normalization balances the mean-variance of each input neuron layer, making it
converge faster. Layer normalization is added before each block, as it has no prior image dependencies,
so it enhances the performance and decreases the execution time.

MLP: The MLP in the Transformer encoder consists of two layers with GeLU.

MLP head: After the Transformer encoder, the output is inserted into the newly added MLP head
for the classification of Smoking and NotSmoking images, which consists of flatten layer to flatten
the encoder output, dense layers with ReLU activation and linear kernel L2 regularizer as a classifier.

3.3.1 Activation Function

The activation function optimizes the processes and learns complex features specific to the task.
The proposed method considers ReLU (R) activation function. R is a piecewise linear function that
outputs the input directly if it is positive; otherwise outputs zero and is given by:

R (X) = max(0, X) (4)

3.3.2 Optimizer

This work considers RMSProp (Root Mean Squared Propagation) optimizer for the proposed
SmokerViT method. RMSprop applies the exponential moving average of the squared gradients to
adjust the learning rate. RMSprop only accumulates gradients in a specific fix window instead of
letting all the gradients accumulate for momentum. The equation for RMSprop is as follows:

θt+1 = θt − η√
E[g2]t + ε

gt (5)

where η shows the learning rate, ε represents the small term preventing division by zero, E[g2] is the
past squared gradients RMSprop running average, and gt is the gradient function.

3.3.3 Loss Function

The binary cross entropy loss function is often used for binary classification. It helps to evaluate
model accuracy by calculating the prediction probability. Following is the equation for the binary cross
entropy loss function:

Binary Crossentropy Loss = z. log(ẑ) + (1 − z) . log(1 − ẑ) (6)

where z represents the label, i.e., 1 denotes the Smoking class and 0 denotes NotSmoking class, and ẑ
is the predicted probability of z.
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3.3.4 Linear Kernel L2 as a Classifier

This work used the linear kernel L2 algorithm because it can help solve problems with multi-
collinearity (highly correlated independent variables) by limiting the coefficient and maintaining all
the variables. Linear kernel, basic kernel, is the best in case of many features and given by f

(
X , Xj

) =∑
X · Xj where X , Xj is the data to classify. Linear kernel L2 predicts based on the mean of data to

avoid overfitting, unlike L1, which takes the median of data for estimation. L2 adds the penalty to the
cost function as the squared value of the weights and learns complex patterns. L2 is computationally
efficient, and predictions are more accurate when the output is a function of all input variables. L2
regularization is calculated by:

L2 regularizer = λ
∑n

i=0
w2

i (7)

where wi is the weight and λ represents the regularization parameter. If λ is 0, this acts as Ordinary
Least Square (OLS), where it will make the weight coefficient 0 and result in underfitting, while if λ is
very large, it will increase the weight and result in underfitting.

Pseudocode:
// Step 1: Data Preparation
dataset = preprocess_images(labeled_images) // [N × H × W × C] array of preprocessed images
training_set, validation_set, test_set = split_dataset(dataset) // [Ntrain, H, W , C], [Nval, H, W , C],
[Ntest, H, W , C] arrays
// Step 2: Model Architecture
model = create_SmokerViT(num_transformer_blocks, embedding_size, num_attention_heads) // a
SmokerViT model
// Step 3: Training
initialize_weights(model) // initialize model weights randomly
for epoch in 1 to num_epochs:
for batch in training_set:
loss = calculate_loss(model, batch) // calculate binary cross-entropy loss between model predictions

and ground truth labels
update_weights(model, loss) // update model weights using RMSprop

validation_accuracy = evaluate(model, validation_set) // calculate validation accuracy
if validation_accuracy does not improve for num_epochs_to_stop:
break // Early stopping if validation accuracy plateaus

end
end

end
// Step 4: Hyperparameter Tuning
hyperparameters = {learning_rate: [0.01, 0.0001], batch_size: [16, 32, 64], num_transformer_blocks:
[6, 12]} // candidate hyperparameters
best_hyperparameters = grid_search(model, hyperparameters, training_set, validation_set) // find best
hyperparameters using grid search
// Step 5: Evaluation
test_accuracy = evaluate(model, test_set) // calculate test accuracy
metrics = calculate_metrics(model, test_set) // calculate other evaluation metrics (e.g., precision, recall,
F1 score)
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4 Performance Evaluation

The performance of the proposed SmokerViT for smoker recognition is evaluated and compared
with other methods on the smoker detection dataset. The system configurations for simulation are i7-
11800H, 16 GB DDR4, NVIDIA RTX3060 6 GB, and the simulation setup is Anaconda Python 3.8
with Tensorflow 2.6 and Keras 2.3 libraries. The proposed SmokerViT is tested with various hyper-
parameters values for the best results. Table 2 depicts the hyper-parameters for the simulations.

Table 2: Simulation parameters

Parameters Value

Input size 224 × 224
Patch size 16 × 16
Maximum epochs 50
Batch size 32
Learning rate 1e-3
Loss function Binary cross entropy
Optimizer RMSprop

4.1 Evaluation Metrics

This section presents the evaluation metrics for analyzing the performance of the proposed
SmokerViT method. This work evaluated the methods on the following metrics:

Prediction Accuracy = Tp + Tn

Tp + Tn + Fp + Fn

(8)

Precision/Positive predictive value (PPv) = Tp

Tp + Fp

(9)

Sensitivity/Recall/True positive rate(TPr) = Tp

Tp + Fn

(10)

Specificity/Selectivity/True negative rate(TNr) = Tn

Tn + Fp

(11)

False positive rate(FPr)/Fall out = 1 − Specificity (12)

False negative rate(FNr)/miss rate = 1 − Sensitivity (13)

FDr = 1 − PPv (14)

F1 = 2 ∗
(

Precision ∗ Recall
Precision + Recall

)
(15)

Er = Fp + Fn

Tp + Tn + Fp + Fn

(16)

The Tn is the true negative, accurately classified as NotSmoking images, while Tp is the true
positive, accurately classified as Smoking images by the proposed solution. Fn is the false negative
where the Smoking image is categorized as NotSmoking, and Fp is the false positive where NotSmoking
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images are labelled as Smoking. Precision is the percentage of correctly positive outcomes to those
the classifier predicted correctly, whereas the ratio of correctly positive results to all the relevant
samples that should be positive is known as the Recall or Sensitivity of the proposed method. The
ratio of correct negative predictions to the results that the classifier predicts as negative is known as
Specificity or true negative rate. FDr is the total number of false positive classifications to the total
positive classifications. The F1 score is the harmonic mean of precision and recall, which shows how
the classifier predicts correctly. FPr is the ratio of negatives falsely categorized as positives and the total
number of actual negatives, while FNr is the ratio of positives being falsely classified as negatives and
the total number of actual positives. Er is the error rate, the ratio of all the incorrect predictions to the
total number of test samples.

4.2 Attention Maps of Learned Features

This subsection interprets the visualization of the proposed method to understand the smoker
recognition mechanism better. This research visualized the attention maps of some sample images
predicted for the smoker recognition tasks from the self-attention block, illustrated in Fig. 4. Self-
attention is the main reason the Transformer integrates data across the complete image, including in the
base layers. The attention maps show how well the method utilizes this capacity for the considered task.
Some attention heads already focus on the desired representations on most images in the initial layers,
demonstrating that the proposed method employs the capability to integrate information globally. The
attention to the desired features increases with the model depth, and it becomes clearer what features
the model pays attention to for the desired task. The original input images are converted into pseudo-
colour images to highlight the attention mask applied to the input image. It can be seen from the sample
of images considered for both the Smoking and NotSmoking classes that the brighter part represents
the attention mapping of the proposed method. Globally this research discovers that the method pays
attention to image areas that are significant for classification in terms of semantics. From the maps, it
can be noted that the attention of the method is on the cigarettes and their smoke for the detection of
smokers. Similarly, the absence of cigarettes and smoke around the person’s mouth or hand is predicted
to be a NotSmoking image.

Figure 4: (Continued)
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Figure 4: Sample images of smoking and NotSmoking (a, d) original and (b, c) attention maps

4.3 Performance Analysis of SmokerViT

This section presents the performance analysis of the proposed SmokerViT, a method based on
the Transformer and MLP head. This work was analyzed by using different regularizers as a classifier
to prove the effectiveness of linear kernel regularizer (L2) over Gaussian kernels. Moreover, this work
proves the efficiency of the proposed method with and without the proposed MLP head and with and
without data augmentation with simulation settings presented in Table 2.

Table 3 presents the performance of SmokerViT in terms of prediction accuracy using different
kernels. The result shows that using linear kernel L2 SmokerViT obtained the best result with 97.77%
overall prediction accuracy, while the Gaussian kernel displayed overall prediction accuracy of 94.64%.
It can be noted that linear kernel L2 showed the best accuracy for the Smoking and NotSmoking
classes with 98.21% and 97.32%, respectively, whereas the Gaussian kernel showed 93.75% Smoking
and 95.54% accuracy for NotSmoking class.

Table 3: Performance of SmokerViT using different kernels

Class Linear kernel L2 Gaussian kernel

Smoking 98.21% 93.75%
NotSmoking 97.32% 95.54%
Overall 97.77% 94.64%

This work considered the best result obtained on linear kernel L2 for the SmokerViT. This
research performed further analysis by removing the MLP head and replaced with a sigmoid as a
classifier with a single output to demonstrate the efficiency of the proposed model. Table 4 presents
the performance of the proposed method with and without MLP head and augmentation and without
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augmentation block. It can be observed that the proposed model with MLP head and augmentation
has the best results, whereas without augmentation performed worst for both the classes and overall
prediction accuracy. The performance of SmokerVit with the proposed MLP head is improved using
augmentation to 97.77% from 95.54% without the MLP head. This is because the augmentation
significantly increased the dataset size with various representations, which helped predict unseen
Smoking and NotSmoking images in the test dataset. While without augmentation, and proposed
MLP head has significantly low performance with 88.39% overall prediction accuracy.

Table 4: Performance of SmokerViT with and without augmentation and MLP head

Class With proposed MLP Without proposed MLP

Without
augmentation

With augmentation Without
augmentation

With
augmentation

Smoking 92.85% 98.21% 89.29% 94.64%
NotSmoking 91.07% 97.32% 87.50% 96.43%
Overall 91.96% 97.77% 88.39% 95.54%

Moreover, this work performed simulations to show the effectiveness of using a Transformer as
the main network over other SOTA models with an L2 kernel classifier. This work used ResNet,
Inception-ResNet-V2 model to show the efficiency of using Transformer over these models. Table 5
shows that the best results are achieved using Transformer with 97.77% accuracy, while the second
best results are achieved using Inception-ResNet-V2 with 96.43% accuracy, followed by InceptionV3
with 87.05% accuracy. ResNet performed worse with 85.71% accuracy. It can be observed from the
table that SmokerViT has more parameters than the other models; however, the focus of this study is
the higher accuracy.

Table 5: Performance comparison of using different models for feature extraction

Model Params (mln) Training time (hr) Accuracy

Inception-ResNet-V2+L2 kernel 73.99 1.83 96.43%
ResNet152V2+L2 kernel 60.41 4.27 85.71%
InceptionV3+L2 kernel 23.92 1.52 87.05%
SmokerViT 86.19 3.66 97.77%

The time complexity of the proposed SmokerViT model can be expressed as O(N2L), where N
represents the number of patches in the input image, and L represents the number of self-attention
layers in the transformer.

The O(N2L) notation arises from each self-attention layer having a quadratic complexity of O(N2),
as it involves computing pairwise dot products between all pairs of patches. Since the SmokerViT
model has L self-attention layers, the total time complexity is O(N2L).

It is worth noting that the SmokerViT model also has additional computational costs associated
with the feedforward network and positional embeddings, but these are typically negligible compared
to the self-attention computation.
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The loss performance curves of the proposed SmokerViT in terms of training loss and validation
loss are depicted in Fig. 5. The training phase of the proposed SmokerViT is carried out through 50
epochs. From the result, it can be noted that the training loss started at 76.24% and achieved less than
19.56% loss at the 10th epoch. After 10 epochs, the loss curve remained steady till the 50 epochs, with
a final loss of 8.28%. Similarly, the validation loss started at 30.82% and reached 9.62% at the 10th
epoch. After that, the loss curve remained steady till 50 epochs, with a final loss of 5.39%.

Figure 5: Loss performance of the proposed SmokerViT

The confusion matrix depicts the predictive analysis of Smoking and NotSmoking image classifi-
cation. It can be seen from the confusion matrix in Fig. 6 that the proposed SmokerViT displayed
a prediction accuracy of 97.77% and 2.23% error rate with 109 Tn and 110 Tp with 3 Fp and 2
Fn, respectively. Table 6 shows the performance of the proposed SmokerViT on individual classes.
The proposed method achieved 98.21% prediction accuracy, 97.35% precision, 98.21% recall, and
97.78% F1 score for the Smoking class. Whereas for the NotSmoking class, the proposed method
displayed 97.32% prediction accuracy, 98.20% precision, 97.32% recall, and 97.76% F1. The proposed
SmokerViT displayed the overall performance with 97.77% prediction accuracy, 98.21% recall, 97.35%
precision, and 97.78% F1 measure for classifying Smoking and NotSmoking images of the smoker
detection dataset.

Figure 6: Confusion matrix of SmokerViT
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Table 6: Performance of SmokerViT

Class Accuracy Precision Recall F1

Smoking 98.21% 97.35% 98.21% 97.78%
NotSmoking 97.32% 98.20% 97.32% 97.76%
Overall 97.77% 97.35% 98.21% 97.78%

Receiver Operating Characteristic (ROC) curve, shown in Fig. 7a, is another graphical represen-
tation for assessing the performance that shows the proposed method’s ability to predict classification
with varying prediction thresholds. The ROC curve is plotted by considering Recall (TPr) on the y-axis
against FPr on the x-axis. The Area under the Curve (AUC) depicts how well the method differentiates
between the classes. The AUC of 0.9948 by the SmokerViT means that it has a 99.48% chance of
accurately classifying the Smoking and NotSmoking classes. This work also analyzed the proposed
SmokerViT based on the Precision-Recall (PR) curve, which depicts how well it performed for
classifying Smoking images because, unlike ROC, the PR curve does not consider Tn for performance
evaluation. PR curve also depicts whenever the class distribution has variation, unlike ROC, which
shows no change. It can be noted from Fig. 7b that the curve is near the top right corner, showing that
the SmokerViT performed well in classifying the Smoking class. SmokerViT achieved 99.51% average
precision (AP) for the Smoking and NotSmoking classification.

Figure 7: (a) Receiver operating characteristic curve with AUC and (b) precision-recall curve with AP

For the smoker recognition problem, false negatives should be minimal. From Fig. 8b, it can be
seen that the false negative occurred when the background of the image is similar to the person in the
image. In computer vision, spatial resolution is crucial, which has led to the inaccurate classification
of the Smoking image as NotSmoking. Better-quality images let the model generalize more accurately.
In addition, the neural network had trouble distinguishing between cigarette and the background
pixels in the images when the background was blurry. The lack of a considerable number of varying
images in the training set might also account for the false alarms. Another possible reason is that some
photos in the test set were new to the model and lacked representation of comparable images in the
training set. The model performed poorly in generalizing the novel scenarios.
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Figure 8: (a) False positives and (b) false negatives

Subsequently, a similar problem was seen with false positives. Smoker recognition relies heavily
on the accuracy and practicality of the classifier, both of which are affected by the number of false
positives. Images of false positives are shown in Fig. 8a. The scarcity of diversity in the training set
and the variety of datasets may result in the incorrect classification of some NotSmoking images as
Smoking. It can also be observed image with the background as a cloud was misclassified as Smoking;
moreover, a similar hand gesture to the smoking was also labeled as Smoking.

4.4 Comparative Study with Other Methods

For validating the effectiveness of the proposed SmokerViT, this research compared the per-
formance with other methods, both CNN and Transformer based models such as EfficientNetV2
[45], ResNest [46], MobileNetV3 [47], ResNetD [48], ViT [29], Levit [49], Davit [50] and Coatlite
[51] on the smoker detection dataset. The hyperparameters are listed in Table 7. Table 8 presents
the comparative analysis of these methods. It can be observed that SmokerViT displayed superiority
over other considered methods in classifying the Smoking and NotSmoking classes. All the methods
considered for comparison were used as pre-trained models using transfer learning and added the
classification layer with a sigmoid activation function. After SmokerViT, ViT performed better among
all the other considered methods for classification tasks on the local dataset for the smoker detection
problem, as explained in Table 6. ViT achieved 96.43% accuracy, 96.43% sensitivity, and 96.43%
specificity, followed by Levit with 94.64% accuracy, Coatlite with 91.07% accuracy, Davit with 90.18%,
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ResNetD with 88.40% accuracy, ResNest with 86.61% accuracy, EfficientV2 with 85.27% and at last
MobileNetV3 with 82.14% accuracy. It can be observed that ResNetD and Davit outperformed ViT
in terms of sensitivity at 97.32% compared to ViT at 96.43%. However, MobileNetV3 performed
worse in terms of specificity than other models due to the significantly large number of false positives
and considerably lower number of false negatives. The proposed method performed best among
other considered methods in all evaluation metrics. MobileNetV3 has the lowest accuracy of 82.14%
compared to other CNN methods for analyzing the unique smoker classification problem. Fig. 9 shows
the performance comparison of all the methods on individual classes. SmokerViT achieves the best
results on both classes, followed by ResNetD and Davit for Smoking class with 97.32% accuracy while
ViT for NotSmoking class with 96.63% accuracy.

Table 7: Hyperparameters of the models

Parameters EfficientNetV2 ResNest MobileNetV3 ResNetD Levit Davit Coatlite ViT
Structure CNN CNN CNN CNN CNN+Transformer Transformer Transformer Transformer
Input image 224 × 224 224 × 224 224 × 224 224 × 224 224 × 224 224 × 224 224 × 224 224 × 224
Patch size – – – – 16 × 16 16 × 16 – 16 × 16
Epochs 50 50 50 50 50 50 50 50
Batch size 32 32 32 32 32 32 32 32
Learning rate 1e-4 1e-4 1e-3 1e-4 1e-3 1e-3 1e-3 1e-3
Optimizer Adam Adam RMSprop Adam RMSprop RMSprop RMSprop RMSprop

Table 8: Comparative analysis of SmokerViT with other methods on smoker detection dataset

Method Predictio Accuracy Sensitivity Specificity FDr FPr FNr

EfficientNetV2 [45] 85.27% 91.07% 79.46% 18.4% 20.54% 8.93%
ResNest [46] 86.61% 90.18% 83.04% 15.83% 16.96% 9.82%
MobileNetV3 [47] 82.14% 92.86% 71.43% 23.53% 28.57% 7.14%
ResNetD [48] 88.40% 97.32% 80.36% 16.79% 19.64% 2.68%
Levit [49] 94.64% 93.75% 95.54% 4.55% 4.46% 6.25%
Davit [50] 90.63% 97.32% 83.04% 14.84% 16.96% 2.68%
Coatlite [51] 91.10% 93.75% 88.39% 11.02% 11.61% 6.25%
ViT [29] 96.43% 96.43% 96.43% 3.57% 3.57% 3.57%
SmokerViT (ours) 97.77% 98.21% 97.32% 2.65% 2.68% 1.79%

Figure 9: Performance comparison in terms of classes of SmokerViT and other methods
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4.5 Comparative Study with Previous Work

This work compares the performance of the proposed SmokerViT with our previous work [27].
Table 9 shows SmokerViT has a better overall prediction accuracy of 97.77% compared to 96.87% by
our previously proposed method InceptionResNetV2. It can be noted that SmokerViT has improved
the performance of smoker recognition for both classes, where it displayed 98.21% and 97.32%
accuracies in discriminating the Smoking and NotSmoking images, respectively. InceptionResNetV2
achieved 97.32% and 96.43% accuracies for the Smoking and NotSmoking classes. Fig. 10 compares
the two methods in terms of precision, recall, and F1 measure. It can be observed that SmokerVit
performed better in all the considered performance metrics, which is because the self-attention
mechanism focuses on the entire image, unlike convolutions in CNN that focus on the interpretation of
the high-level features rather than low-level features in classifying Smoking and NotSmoking images.

Table 9: Comparative analysis of SmokerViT with previous work on smoker detection dataset

Class InceptionResNetV2 [27] SmokerVit

Smoking 97.32% 98.21%
NotSmoking 96.43% 97.32%
Overall 96.87% 97.77%

Figure 10: Performance of SmokerViT and InceptionResNetV2

In this research work, SmokerViT displayed self-attention capability and MLP Head to recog-
nize Smoking and NotSmoking images. The results show that better performance is achieved by
SmokerViT compared to the SOTA models, implying that the self-attention mechanism and MLP
Head architecture may be more suitable than CNN for the Smoker recognition problem. In contrast
to transformers, which can compute the attention of any patch, regardless of its distance, a CNN
needs to perform additional convolutions to increase the receptive field to determine the relationship
between any neighboring pixels, resulting in difficulty in possessing the ability to perform long-
range computation. In SmokerViT, the patch embedding component is used to learn convolution-like
features, whereas self-attention is used to learn important features and ignore the noisy ones. Results
show that the SmokerViT performed better than CNN and Transformer based models, validating the
superiority of using both the self-attention mechanism and MLP Head.

While looking at the results, it can be observed that the SmokerViT has performed better in both
the Smoking and NotSMoking classes. However, CNNs models were better at predicting Smoking
images while poorly classifying NotSmoking class compared to Transformer based models, which
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performed well in classifying both the Smoking and NotSmoking classification. While SmokerViT
was equally good in classifying both classes indicating that SmokerViT is more robust than using
CNN or transformer-based models in dealing with balanced datasets.

Many researchers used CNN for the smoker detection problem, but there is not much work on
this problem. This is the first time using transformers and MLP Head with Linear kernel L2 classifier
for the smoker recognition task. Additionally, previous research results were compared with this
proposed work, as depicted in Table 9. It can be observed that SmokerViT outperformed the Inception-
ResNet-V2 model for Smoking and NotSmoking image classification using the same dataset. More-
over, the high accuracy displayed by the proposed method can help an AI-based smoker detection
system and save time and human resources simultaneously. This research can benefit researchers
to improve further the methodology for image segmentation to detect cigarette smoker detection
problems.

5 Conclusion

This research proposed a transformer-based smoker recognition method. For effective surveil-
lance of the no-smoking areas, this research proposed SmokerViT based on the self-attention mech-
anism instead of CNN. The dataset for this work has two classes with 560 images each for the
Smoking and Notsmoking classes. Further, this work performed augmentations on the smoker
detection dataset to have many images with various representations to overcome the dataset size
limitation. The proposed SmokerViT is inspired by Vision Transformer and adding our own MLP
head block, which has a dense layer with ReLU activation function and linear kernel L2 regularizer as
a classifier. SmokerViT extracted features through long-range dependency compared to CNN models,
which took advantage of useful global information. Ablations were performed on the proposed
SmokerViT to prove the efficiency of the MLP head block and data augmentation. The SmokerViT
performance was evaluated and compared with the previously proposed CNN model for the smoker
detection problem and other Transformer and CNN-based methods. The SmokerViT achieved a 0.93%
higher accuracy of 97.77%, with 0.92% better recall of 98.21% and 0.92% better precision of 97.35%
compared to the previous proposed Inception-ResNet-V2 based transfer learning method. Moreover,
the results showed that SmokerViT achieved competitive performance compared to other models with
considerably higher values of the evaluation metrics.

For future works, several issues that were not addressed in this research need to be observed.
The effect of dataset size on the training performance of the method and data augmentation by
various complex models for ensuring further variances of the image representations can be considered
for future study. Moreover, the weak point of this research is the higher number of parameters
and high execution time. In future work, this point would be considered for designing the model,
which is lightweight and, at the same time, yield higher accuracy. Moreover, the hybrid method of
convolutions and transformer might help the smoker recognition system to perform better, considering
the shortcomings of the proposed method.
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