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ABSTRACT

Event extraction stands as a significant endeavor within the realm of information extraction, aspiring to automati-
cally extract structured event information from vast volumes of unstructured text. Extracting event elements from
multi-modal data remains a challenging task due to the presence of a large number of images and overlapping
event elements in the data. Although researchers have proposed various methods to accomplish this task, most
existing event extraction models cannot address these challenges because they are only applicable to text scenarios.
To solve the above issues, this paper proposes a multi-modal event extraction method based on knowledge fusion.
Specifically, for event-type recognition, we use a meticulous pipeline approach that integrates multiple pre-trained
models. This approach enables a more comprehensive capture of the multidimensional event semantic features
present in military texts, thereby enhancing the interconnectedness of information between trigger words and
events. For event element extraction, we propose a method for constructing a priori templates that combine event
types with corresponding trigger words. This approach facilitates the acquisition of fine-grained input samples
containing event trigger words, thus enabling the model to understand the semantic relationships between elements
in greater depth. Furthermore, a fusion method for spatial mapping of textual event elements and image elements
is proposed to reduce the category number overload and effectively achieve multi-modal knowledge fusion. The
experimental results based on the CCKS 2022 dataset show that our method has achieved competitive results, with
a comprehensive evaluation value F1-score of 53.4% for the model. These results validate the effectiveness of our
method in extracting event elements from multi-modal data.
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1 Introduction

Military informatization is the focus of modern military development. The application of event
extraction technology in the military sector holds great potential for enhancing the efficiency of
information acquisition. This technology enables the dynamic, real-time expansion of the information
base and contributes to the effective management and analysis of military information. In recent
years, internet-based equipment data has experienced significant growth. This kind of data is typically
disseminated in the form of text, images, and other multi-modal content [1]. Military equipment data
has gradually become an important resource and the basis for equipment requirement justification.

https://www.techscience.com/journal/CMC
https://www.techscience.com/
http://dx.doi.org/10.32604/cmc.2023.040751
https://www.techscience.com/doi/10.32604/cmc.2023.040751
mailto:jiayangli@lcu.edu.cn


98 CMC, 2023, vol.77, no.1

However, the currently available public datasets for multi-modal event extraction in the military
domain are relatively limited. They suffer from a lack of diversity in data samples, exhibit a wide
distribution of event elements, and pose challenges in effectively extracting crucial knowledge. There-
fore, extracting relevant event types and elements from multi-modal military equipment data is of
utmost importance. It facilitates the discovery of knowledge and application patterns that are suitable
for equipment requirement argumentation.

Event extraction is a widely studied topic in natural language processing research [2,3]. Its primary
objective is to automatically extract user-desired events from unstructured event information and
represent them in a structured format. Event extraction techniques have a wide range of applications in
the fields such as biomedical [4,5], judicial [6,7], social [8,9], journalistic [10,11], etc. But in the military
domain, there is still a lack of effective event extraction approaches due to less research on military
event extraction [12].

Usually, a military equipment event consists of triggers and arguments. Each trigger corresponds
to a military equipment event and determines the corresponding event type. Arguments refer to
multiple elements of the events. As shown in Fig. 1, the example consists of military equipment text and
its corresponding image. In this example, we extracted information about the event type, the argument
element, and the corresponding coordinate position of the event body in the image. If the object frame
corresponding to the text is not detected in the image, it is marked as “−1”. However, most event
extraction approaches are aimed at extracting arguments from the sentences of a document, such as
the Knowledge Base Population (KBP) dataset1, a popular event extraction dataset.

Figure 1: An example of a multi-modal event element

In this paper, we propose a multi-modal event extraction method based on knowledge fusion to
address the challenge of event arguments for multi-modal data. The method consists of three subtasks:
event type recognition, event argument extraction, and multi-modal knowledge fusion. In event type
recognition, we use an event multi-label classification model and a trigger word extraction model to
jointly define event types. The event multi-label classification model is built with BERT [13] as the
baseline to obtain the semantic features and contextual information of the text. The trigger word

1https://tac.nist.gov/2017/KBP/
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extraction model is built with ERNIE [14] as the baseline to obtain richer semantic information and
distinguish ambiguity. In event argument extraction, we obtain a dynamic word vector representation
based on contextual information from ERNIE. This representation captures bidirectional semantic
information using a Bidirectional Gated Recurrent Unit (BIGRU) [15]. Then, Conditional Random
Field (CRF) [16] decoding is used to identify event arguments. In multi-modal knowledge fusion, we
use the BERT model to recognize argument entities and the YOLOv5 [17] model for target detection.

In addition, there is a shortage of sufficient annotated data and a significant presence of
overlapping event arguments in the military domain. To train and evaluate our model, we use a
data augmentation approach based on full-domain random substitution of parameter entities. This
approach allows us to implement event expansion while maintaining syntactic and semantic invariance.
We then construct an a priori template by integrating the model output used for event type recognition.
Moreover, we have designed a fusion method for the spatial mapping of textual event elements and
image elements. This method aims to reduce category count overload and effectively achieve multi-
modal knowledge fusion. The contributions of this paper are summarized as follows:

• We propose a multi-modal military event extraction framework based on knowledge fusion.
In this framework, text event elements and image elements are both mapped to the same label
space, effectively integrating multi-modal knowledge.

• We propose a method to construct an a priori template of event types + trigger words based
on the recognized event types. By effectively modeling the multidimensional semantics of
overlapping parameters of different event types, more meaningful representations of semantic
relationships between event elements can be learned.

• We conduct extensive experiments on the CCKS 2022 dataset2 and demonstrated the effective-
ness of the proposed method in multi-modal military event element extraction.

The remainder of the paper is structured as follows: Section 2 discusses the related work. In
Section 3, we provide an overview of multi-modal event element extraction approaches. We first
outline the general framework and then elaborate on event type recognition, event element extraction,
and multi-modal knowledge fusion. Section 4 provides details about the experiment results and a
discussion of the proposed methods. Finally, Section 5 concludes this paper with an overall summary
and future works.

2 Related Works

Our research includes three objectives: event extraction approaches, object detection approaches,
and multi-modal knowledge fusion. We review the major literature in the three areas.

2.1 Event Extraction

Event extraction methods can be mainly divided into pattern-matching-based and machine-
learning-based methods. Early event extraction usually uses pattern-matching-based methods. Riloff
[18] mentioned the inclusion of event elements in the context of event trigger words by manually
constructing a domain-specific dictionary for event extraction. However, the pattern-matching method
depends on the specific form of domain-specific text and is less generalizable to the system.

In recent years, machine learning methods have gradually become the mainstream approach for
event extraction. Compared with pattern-matching-based methods, machine learning methods are

2https://www.biendata.xyz/competition/KYDMTJSTP/

https://www.biendata.xyz/competition/KYDMTJSTP/


100 CMC, 2023, vol.77, no.1

more adaptable to different domains and have better portability. Deep learning has become a very
popular machine learning method and is widely used in event extraction tasks [19]. The first deep
learning-based event extraction method utilized a pipeline-based model. Chen et al. [20] enhanced the
traditional convolutional neural network model through a dynamic multi-pool mechanism and pro-
posed a dynamic multi-pool convolutional neural network (DMCNN). This approach performs event
extraction in two stages. To compensate for the shortcomings of the pipeline model, Tian et al. [21]
employed a pre-trained language model for event extraction. They transformed the joint extraction
task into an annotation problem and utilized an end-to-end model to extract entities and events.
Lyu et al. [22] proposed a transformation-based neural network model that exploits the connection
between the entity and event structures to perform joint entity and event extraction.

Although various event extraction methods have been proposed, they still produce unsatisfactory
performance due to the complexity of military texts and the universality of overlapping event elements.
Therefore, we propose a method to construct an a priori template of event types + trigger words based
on the recognized event types. Our method can comprehensively capture the inherent multidimensional
semantic features in military texts. At the same time, it can fully utilize the detailed features of trigger
words, thereby promoting a deeper understanding of the semantic relationships between elements.

2.2 Object Detection

Object detection algorithms can be mainly classified into traditional object detection algorithms
and deep learning-based object detection algorithms. Traditional object detection algorithms usually
extract features manually. Felzenszwalb et al. [23] proposed a deformable part model for object
detection. The model combines a Histogram of Oriented Gradient (HOG) and a Support Vector
Machine (SVM) classifier. However, traditional object detection methods can only extract low-level
image features and have low performance.

In recent years, most object detection methods have been based on deep learning. There are
two main types of mainstream deep learning object detection algorithms: two-stage object detection
algorithms and one-stage object detection algorithms. Two-stage detection algorithms first generate
candidate regions and then classify the candidate regions. Girshick et al. [24] proposed the regions with
CNN features (R-CNN) algorithm. The algorithm consists of generating candidate regions for region-
based feature extraction, using Support Vector Machines (SVM) to detect the candidate regions, and
determining their corresponding object classes and locations. The one-stage detection algorithm is
an end-to-end object detection algorithm that accomplishes both object edge prediction and object
classification. The YOLOv1 algorithm proposed by Redmon et al. [25] divides the image into many
grids, and then localizes and classifies each grid of the image.

Although various object detection methods exist, they tend to share common limitations. These
limitations include slow processing speeds, inefficient resource utilization, and challenges in general-
izing to new object classes that are significantly different from the training dataset. To address these
issues, our study adopted the YOLOv5 model to improve processing speed and resource efficiency. In
addition, we constructed a target detection and recognition dataset using a combined human-machine
label transformation approach, which effectively improves the overall performance of the model.

2.3 Multi-Modal Knowledge Fusion

Multi-modal knowledge fusion usually extracts feature representations of different modal infor-
mation to achieve a collaborative representation of multi-modal data. Zhang et al. [26] proposed a
multi-modal data source fusion model that utilizes gated cyclic units to capture the diversity of data
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sources bi-directionally. Additionally, they employed a hierarchical attention network to obtain a
holistic representation of the information. Ding et al. [27] first extracted visually relevant multi-modal
knowledge and then represented the multi-modal knowledge through a fine-grained explicit triad.

The majority of existing event extraction models predominantly concentrate on text-based
scenarios, overlooking the potential of event element extraction from multi-modal data. As a result,
the research on extracting event elements from multi-modal sources has received limited attention,
leading to a relatively underexplored area of study. To effectively achieve multi-modal knowledge
fusion, we propose a novel multi-modal label mapping method. This method facilitates the mapping
of independent variables extracted from textual data and objects extracted from images into a unified
label space, thus enabling the effective fusion of textual and visual information.

3 Materials and Methods

Our research proposes a multi-modal event element extraction framework that enables the
extraction of a wider range of event types and elements from large-scale multi-modal military news
documents. As shown in Fig. 2, the proposed framework comprises four phases organized in a pipeline
fashion. These phases encompass event type recognition, event argument extraction, object detection
and recognition, and multi-modal knowledge fusion.

Figure 2: A multi-modal event extraction framework

In the first phase of event extraction, trigger words are discovered from event sentences, and an
event trigger word is a keyword that reflects the occurrence of an event. Domain experts annotate
trigger words for different types of events and then expand the trigger word library by word



102 CMC, 2023, vol.77, no.1

vector similarity. A BERT-based multi-label classification model and an ERNIE-based trigger word
extraction model are used to recognize the types of events in military news.

In the second phase, we constructed an a priori template of event types + trigger words based on
the recognized event types to solve the problem of overlapping arguments of different event types in
event sentences. Then, the ERNIE-BIGRU-CRF model is used to implement argument slot filling to
extract the corresponding event arguments. In the third phase, the BERT model is used to recognize
argument entities, and the YOLOv5 object detection algorithm is used to recognize object bounding
boxes. Finally, the object bounding box coordinates are mapped to the text argument by using the
multi-modal label mapping method.

3.1 Event Type Recognition

3.1.1 Event Trigger Word Extraction

In event extraction, the trigger word can characterize the event occurrence, and it is the most
important feature word to decide the event type. However, an event can be represented by different
styles of triggers. There is a correspondence between the event type and the trigger word. The event type
can be identified based on the trigger word. For example, the news item “French Phantoms attacked
Palmyra and Raqqa in Syria” means that an attack event occurred due to the trigger word “attack”.
Therefore, this study constructs a trigger lexicon by labeling the trigger words of different types of
events by domain experts. However, event features are difficult to be covered as well as may filter some
words that can act as trigger words by themselves. Therefore, this study uses the ERNIE-based trigger
word model to fully extract the trigger word information in military news to expand the trigger word
database. The trigger words for different event types are shown in Table 1, the left column of the table
represents the event type, while the right column contains the corresponding trigger words.

Table 1: Military events taxonomy

Event type Trigger words

Attack events Attack/strike/impact/assault/destroy/air strike/kill/destroy/hit/bomb/
combat/eliminate

Scouting events Scouting/monitoring/surveillance/listening/search/monitoring/detection/
tracking/search/scanning/patrol

Safeguard events Safeguard/protect/maintain/guard/protect/support/supply/provide/
replenish/refuel/transport

Blocking events Blocking/blockade/containment/encirclement
Deployment events Deployment/service/integration/joining/inclusion/berthing/formation/

docking
Defensive events Defensive/lock capture/capture/protect/defend/prevent/avoid
Maneuvering events Maneuvering/fly over sail through/go through/enter/sail into/sail

towards/enter port/arrive/transfer

3.1.2 Event Multi-Label Classification

In event type recognition, since text contains multiple event types, a sentence may belong to
multiple event types. Therefore, we need to use a multi-label text classification algorithm [28] to identify
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event types. Since a text contains a large number of unlabeled events, we propose to add a multi-label
classification model with empty event classes to perform event multi-label classification. Fig. 3 shows
an overview of the multi-label classification model.

Figure 3: BERT model for multi-label text classification

The multi-label classification model is shown in Fig. 3. We encode the text using BERT to acquire
a dynamic word vector representation of the sentence. Then, the encoded vectors are passed through
a feedforward neural network that incorporates a sigmoid layer to classify the text and recognize the
event type.

3.2 Event Argument Extraction

Event argument extraction aims to extract the relevant arguments and the roles played by the
arguments in an event. However, in the military domain, the scarcity of annotated data and the
presence of overlapping event arguments pose significant challenges. To address these issues, we first
use a full-domain random substitution data enhancement method based on arguments to perform
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event expansion while keeping the syntactic semantics unchanged. The main idea of the algorithm is
to replace the arguments corresponding to the initiator, bearer, time, and location with arguments of
the same type in the event text. For example, <Initiator: “Raider” Akinci latest UAV, Bearer: Russian
“Armor-S1” Bomb and gun integrated air defense system, April 2021> replaced with <Initiator:
French Mirage, Bearer: Syrian Palmyra, February 2020>. The trigger words, such as “attack,”“strike,”
and “destroy,” are replaced randomly. Then we extract the event arguments using the event argument
extraction model. Fig. 4 shows an overview of the event argument extraction model, which is divided
into four main phases: construction of input text, model pre-training, model building, and model fine-
tuning.

Figure 4: ERNIE-BIGRU-CRF model for event argument extraction

3.2.1 Construction of Input Text

In the stage of constructing input text, we aim to address the issue of overlapping arguments
between different event types within a sentence. Based on the event types and trigger words, we
first use the event type recognition model output for integration, and then construct an a priori
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template of event types + trigger words as input text, implemented in the form of [CLS] + event
types + trigger words + [SEP] + [text] + [SEP]. After using this approach to input text, fine-grained
input samples with event trigger words can be obtained, enabling the model to more fully understand
the semantic relationships between arguments. Meanwhile, trigger words that are not related to the
event type are filtered using a multi-label classification model. The final result is generated by the
trigger word extraction model and the multi-label classification model voting, which can further reduce
the propagation error of the pipeline.

3.2.2 Model Pre-Training

Sun et al. [29] stated that continued pre-training on an in-domain corpus can significantly improve
the model’s understanding of a specific domain. We divide the text into text sequences with a length
of less than 300. To improve the adaptation and modeling abilities of the language model to the data,
we continuously pre-trained the language model on the training texts.

3.2.3 Model Building

The event argument extraction model is shown in Fig. 4. Firstly, ERNIE encodes the sentences to
obtain a semantic feature vector of the sentences. Given the input token sequence S = (s0, s1, . . . , sn),
we incorporate each token into the transformer encoder to generate a word vector sequence X =
(xi1, xi2, . . . , xin). This sequence is trained through the ERNIE model’s embedding layer to obtain the
word vector as follows:

{Wi1, Wi2 , . . . , Win} = We (xi1, xi2, . . . , xin) (1)

where Win ∈ R768 is the representation of the n− th word and We refers to the embedding layer’s weight
parameter.

Then, the vector is fed into BI-GRU to capture the long-range dependencies and output a sentence
representation vector that incorporates deep semantic information as follows:

hf
n = GRU

(
Win, hf

n−1

)
(2)

hb
n = GRU

(
Win, hb

n−1

)
(3)

C = Concat
(
hf

n, hb
n

)
(4)

where hf
n denotes the hidden state passed forward to the next node, hb

n denotes the hidden state passed
backward to the next node, hf

n−1 denotes the hidden state of the previous node forward, hb
n−1 denotes

the hidden state of the previous node backward, Concat represents the splicing of the forward and
backward hidden layer state vectors, and C is the output vector of the BiGRU layer.

Finally, the event arguments are labeled by the CRF layer and calculated as follows:

L = CRF (C) (5)

Score =
∑m

i=1
Ci,yi +

∑n−1

i=1
Lyi ,yi+1

(6)

where m is the number of label types, Ci,yI
is the score of the tag yi of the i − th token in the sequence,

and yi represents the score of a transition from the tag yi to tag yi+1.
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The event argument extraction model calculates the loss value of the CRF layer on a sentence
level, as follows:

Loss = − log
(

Pr∑m

i=1Pm

)
(7)

where Pm is the score corresponding to each predicted path, m is the number of paths, and Pr represents
the score of ground truth.

3.2.4 Model Optimization

To enhance the performance of the event element extraction model, we incorporate a fine-tuning
process that involves adjusting the learning rates. However, during experimentation, we observed that
the model often converges within the desired range of 2e-5. To address this issue, we designed the
learning rates using a layer-by-layer decreasing LayerRate [29], where lower learning rates are assigned
to the lower layers of the network during the training phase. The learning rate is as follows:

θl
t = θ l

t−1 − ηl · ∇θ l J (θ) (8)

ηk−1 = ξ · ηk (9)

where ηk represents the kth layer learning rate and ξ represents the decay factor, ξ = 0.95.

In model training, the CRF layer failed to converge to the same learning rate. Due to the
unequal coordination between the model and the CRF layer, the learning rate of the CRF layer has
increased by 100 times. The Fast Gradient Method (FGM) [30] can form adversarial samples by adding
perturbations to the embedding layer. Therefore, we use FGM to improve the robustness of the model
to train a better-performing event argument extraction model.

3.3 Multi-Modal Knowledge Fusion

This article employs the BERT model to detect the types of arguments to achieve multi-modal
knowledge fusion of text and images. Then, we use the YOLOv5 model to identify the object bounding
boxes in the images and extract the corresponding type information. We propose a multi-modal label
mapping method that jointly maps the classification results from argument identification and object
detection to the same label space. By employing rule-based post-processing techniques, we establish
links between spatial information (bounding box coordinates) and textual information (arguments) to
effectively connect the visual and textual modalities.

3.3.1 Argument Recognition

In argument recognition, we first classify the arguments using a set of predefined rules. The
unrecognizable arguments are then manually labeled using a crowdsourcing architecture, and the
labeled dataset is transformed into a dataset for argument recognition.

Recently, pre-trained language models have achieved remarkable results on many natural language
processing tasks. Given the input token sequence W = (w0, w1, . . . , wn), we train this sequence through
the embedding layer of the BERT model to obtain the feature vectors Ti = (T0, T1, . . . , Tn), as follows:

Ti = BERT (w0, w1, . . . , wn) (10)

where Ti represents the text vector representation obtained using the BERT pre-trained model, i
represents the i − th text in the multi-modal dataset.
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3.3.2 Object Detection and Recognition

In object detection and recognition, image data annotation is combined with textual information.
For example, “helicopter gunship” belongs to the category “aircraft”. Therefore, each object in the
image corresponds to a specific category. In this paper, we classify the weaponry in the image data into
aircraft, ships, missiles, trucks, submarines, and six other “parent types”.

To efficiently construct the object detection and recognition dataset, we use a combined human-
machine label transformation method. The argument types are first converted to their “parent types”
using an argument recognition model, then the data are labeled using Lambelme, and finally, the
labeling errors are corrected through a manual review process.

Due to the overall better detection performance and faster processing speed of YOLOv5 in the
object detection domain, we use YOLOv5 as the detection model. The basic model is fine-tuned by
using military equipment object images to finally recognize the object bounding box of the image and
the corresponding type. Before inputting the image into the model, we preprocess it by dynamically
scaling it to a standardized size. Given input image dataset I = (I0, I1, . . . , In), the feature representation
of each image output by the image feature extraction model is as follows:

Vi = YOLOv5 (I0, I1, . . . , In) (11)

where Ti represents the image features obtained through the YOLOv5 model, i represents the i − th
image in the multi-modal dataset.

3.3.3 Multi-Modal Label Mapping

In the multi-modal label mapping stage. Firstly, we fuse the output of the feature from independent
variable recognition and object detection to obtain the fusion features of the text-image as follows:

Ai = Ti ⊕ Vi (12)

where ⊕ represents the fusion of feature vectors, Ai represents the feature vector after the text and
image fusion.

Then, we input the fused feature Ai into the self-attention module and perform feature mapping
through a fully connected layer, as follows:

M = tanh (Ai) (13)

α = softmax
(
mTM

)
(14)

Ei = Ai αT (15)

Xi = P Ei (16)

where mT and P are learnable parameters for the hidden layer, α is the standardized attention weight,
Ei is the feature representation output by the attention layer, and Xi is the feature representation
obtained through the fully connected layer.

Finally, the features are processed by the Softmax layer and calculated as follows:

Fi = softmax (Xi W + b) (17)

where Fi is the final classification result, W is the weight matrix, and b is the bias term.

In this stage, we classify the “initiator”, “bearer” and “using the device” of the argument. Because
“time” and “location” cannot be extracted from the image, these two arguments are assigned a value
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of “−1”. We use an object detection algorithm to identify the object bounding box and its type. A
single image may contain multiple object boxes of the same type, thus we select the object box with
the largest area. If the argument type corresponds to the image type, the object box coordinates are
assigned to the argument. If they do not correspond, the value “−1” is assigned. But this method is
not accurate enough. Therefore we use predefined rules to filter wrong arguments and overlapping
arguments.

4 Experiments

In this section, we conduct a series of experiments to evaluate the effectiveness of our proposed
approach. We first describe the implementation details, including data and hyperparameter settings.
Then, we show the experimental results, including the performance of the model at each stage, and the
entire multi-modal event element extraction approach.

4.1 Dataset and Evaluation Metrics

In our experiments, we use the CCKS 2022 dataset oriented to the open-source multi-modal
military event element extraction evaluation task. The dataset includes seven different event types:
attack, scouting, safeguard, blocking, deployment, defensive, and maneuvering events. In this dataset,
1400 annotated military news texts are used as the training set, 200 annotated military news texts
are used as the validation set, and 400 military news texts are used as the test set for evaluating the
multi-modal event element extraction approach.

We use Precision (P), Recall (R), and F-Measure (F1) as the major metrics to evaluate the model
performance of our models. A prediction is considered correct when it accurately identifies the event
type, the event argument, and the location coordinates of the argument in the image. Regarding the
correct coordinates of the argument in the image, one criterion is that the intersection ratio between
the predicted position and the labeled position of the argument is greater than 0.5. If there is no
corresponding coordinate for the argument in the image, the output is designated as −1 to indicate
correctness. We use the event element matching F1 as the final evaluation metric with the following
equation:

F1 = 2 ∗ P ∗ R
P + R

(18)

where P = the number of predicted correct event elements/number of all predicted event elements, and
R = the number of predicted correct event elements/number of all correctly annotated elements.

4.2 Implementation Details

We use a PyTorch [31] and PaddlePaddle [32] based framework to implement the multi-modal
event element extraction method. We divide 1400 training data into 7 copies using 7-fold cross-
validation experiments. Suitable optimizers, learning rates, batch sizes, and weight recessions are used
in our method. More detailed settings of the hyperparameters can be found in Table 2.

4.3 Experimental Results

4.3.1 Evaluations of Event Type Recognition Approaches

We use a fusion of event multi-label classification and trigger word extraction models for event
type identification. Tables 3 and 4 show the experimental results for the event multi-label classification
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task and the trigger word extraction task on the CCKS 2022 dataset, respectively. We can see from
Table 3 that the BERT model improves the overall performance of the event multi-label classification
task compared to other pre-trained language models. On the contrary, it is clear from Table 4 that the
ERNIE model is better for the trigger word extraction task. This is because the trigger word extraction
task requires more semantic information, and the ERNIR model can learn more semantic knowledge
compared to other pre-trained models.

Table 2: Hyperparameters in the model

Hyperparameters Multi-tag
classification

Event trigger
word extraction

Event argument
extraction

Argument
recognition

Object
detection

Model BERT ERNIE ERNIE BERT YOLOv5
Batch size 8 16 16 32 16
Epoch 15 50 50 25 70
Learning rate 2e-5 2e-5 2e-5 3e-5 1e-5
Dropout 0.1 0.1 0.1 0.1 N/A
Weight decay 0.01 0.01 0.01 0.01 0.001
Sequence length 256 300 300 42 640 × 640
Optimizer Adam Adam Adam Adam SGD

Table 3: Performance comparisons of multi-label classification algorithms

Multi-label classification Precision (%) Recall (%) F1 (%)

Xlnet-Base-Chinese [33] 82.02 73.91 77.75
Bert-Base-Chinese [13] 85.07 74.31 79.32
Ernie-3.0-Base-Zh [14] 83.71 73.12 78.06
RocBert-Base-Zh [34] 81.17 76.68 78.86

Table 4: Performance comparisons of trigger words extraction algorithms

Trigger words extraction Precision (%) Recall (%) F1 (%)

Xlnet-Base-Chinese [33] 83.69 70.36 76.56
Bert-Base-Chinese [13] 81.17 76.68 78.86
Ernie-3.0-Base-Zh [14] 84.12 77.47 80.66
RocBert-Base-Zh [34] 82.63 75.08 78.67

4.3.2 Evaluations of Event Argument Extraction Approaches

Tables 5 and 6 show the experimental results of the event argument extraction task on the CCKS
2022 dataset, respectively. From Table 5, we can see that the ERNIE model slightly outperforms
the other pre-trained models for the event argument extraction task. This is because ERNIE uses a
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knowledge masking strategy in the pre-training phase, which adopts three different granularity spans
of token, phrase, and entity for masking in stages to learn semantic association information and entity
boundary information. Therefore ERNIR has better performance in event argument extraction tasks.

Table 5: Performance comparisons of event argument extraction algorithms

Event argument extraction Precision (%) Recall (%) F1 (%)

Xlnet-Base-Chinese [33] 52.33 61.53 56.56
Bert-Base-Chinese [13] 53.96 64.83 58.90
Ernie-3.0-Base-Zh [14] 54.60 66.44 59.91
RocBert-Base-Zh [34] 53.12 63.77 57.95

Table 6: Performance comparison of algorithms under different optimization strategies

Event argument extraction Model optimization strategy F1 (%)

Baseline 59.91
+FGM 60.33
+Add BIGRU and CRF Layer 61.75

Ernie-3.0-Base-Zh [14] +Data enhancement 62.17
+Trigger word splicing 64.12
+Event type splicing 64.79
+All 65.74

Table 6 shows our improved performance using the model optimization method. We use FGM to
do perturbation on embedding to further improve the model performance. The BIGRU + CRF model
based on pre-trained ERNIE shows improvement in evaluation metrics compared to the pre-trained
ERNIE model. This is because BIGRU can fuse deeper semantic information, and then compute
probabilistic maximum label sequences by CRF, which solves the annotation bias problem. We use an
argument-based full-domain random replacement data augmentation method to improve the category
imbalance and improve the model performance. We constructed an a priori template based on event
type + trigger word to solve the problem of overlapping parameters, thus effectively improving the F1
value of the evaluation metric. The trigger words we used are shown in Table 1. The magnitude of the
loss value indicates the convergence of the model during the training process. Fig. 5 shows that the loss
value of the event argument extraction model consistently remains at a low and stable level, indicating
the model’s excellent convergence performance on this dataset.

4.3.3 Evaluations of Multi-Modal Knowledge Fusion Approaches

In the multi-modal knowledge fusion stage, two datasets were constructed for model evaluation
based on the CCKS 2022 dataset. The first dataset includes the text of six “parent types” of argument
entities. It comprises 1468 annotated argument entities as the training set, and 203 unannotated
argument entities as the test set to evaluate the performance of the argument entity recognition
approach. The second dataset consists of equipment images from the CCKS 2022 dataset. It includes
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1400 images annotated with 2024 bounding boxes as the training set, and 200 images annotated with
318 bounding boxes as the test set for evaluating the performance of the object detection approach.

Figure 5: Change curve of loss value

(1) Argument Recognition. In this set of experiments, we used the first dataset containing the
argument entities to train and evaluate the performance of the model using a 7-fold cross-validation
approach. We use four pre-trained models, including BERT, XLNET, ERNIE, and RocBert, to
identify six types of argument entities. The experimental results are shown in Table 7, where the BERT
model obtained the best performance for P, R, and F1. This model accuracy can be used as a basis for
label mapping in the multi-modal knowledge fusion phase.

Table 7: Performance comparisons of argument recognition algorithms

Argument recognition Precision (%) Recall (%) F1 (%)

Xlnet-Base-Chinese [33] 93.42 93.70 93.56
Bert-Base-Chinese [13] 96.53 94.65 95.58
Ernie-3.0-Base-Zh [14] 95.51 93.43 94.45
RocBert-Base-Zh [34] 95.73 94.87 95.29

(2) Object Detection and Recognition. This experiment evaluates the object detection method on
a second dataset consisting of object detection images. In this experiment, we used the YOLOv5 model
for object detection and recognition. The model was fine-tuned using the equipment images, and the
metric F1 value was evaluated, resulting in 0.753.

(3) Multi-modal Label Mapping. We evaluated the proposed multi-modal knowledge fusion
approach using the CCKS 2022 dataset. This method fuses the text extracted from events and the
images detected by the object. The final evaluation metric F1 value was 0.53403, obtaining competitive
results on the CCKS 2022 dataset.
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4.3.4 Performance Analysis of Model Usage Memory

During the training process, we observed that the proposed model can have significant memory
requirements, especially when working with larger datasets. These memory limitations can present
challenges in real-world applications, particularly when deploying pre-trained models on devices
with limited memory. To address potential memory issues in real-world scenarios, we explore several
strategies. First, hardware accelerators like GPUs can be employed. For instance, we used a GeForce
RTX 3090 in our implementation, which greatly improves memory utilization and accelerates model
training. Additionally, techniques such as gradient checkpointing, gradient accumulation, and batch
size reduction can be utilized to alleviate memory constraints. When optimizing memory usage,
achieving the appropriate balance is crucial to ensure that the model’s predictive ability is not
compromised.

5 Conclusions

In this paper, we propose a multi-modal event extraction method based on knowledge fusion, to
address the challenges of multi-modal event elements in the military domain. The method consists of
three subtasks: event type recognition, event argument extraction, and multi-modal knowledge fusion.
We first use a multi-label classification BERT model and a trigger word extraction ERNIE model to
jointly recognize event types. Then the ERNIE-BIGRU-CRF model is used to extract event arguments.
Finally, we use the BERT model to recognize argument entities and the YOLOv5 model to detect
and recognize image objects for multi-modal knowledge fusion of images and text. In addition, we
use a full-domain random substitution data enhancement method based on arguments to overcome
the problem of insufficient labeled data in the military domain. We construct an a priori template
of event types + trigger words to solve the argument overlap problem. The aforementioned methods
demonstrate the ability to effectively extract event types and event elements from extensive multi-
modal military data. This process enables the rapid extraction of valuable information, which holds
great significance in enhancing the efficiency of military resource utilization and facilitating applied
research on military knowledge.

The experimental results on the CCKS 2022 dataset demonstrate the effectiveness of the proposed
method and yield competitive results. The extracted multi-modal event elements can be effectively used
to support the informational analysis of military equipment. However, our proposed multi-modal
knowledge fusion method suffers from propagation errors. Therefore, in the future, we will investigate
fusing textual knowledge and image information in the feature space under small sample conditions
to further improve the proposed multi-modal event element extraction method.
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