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ABSTRACT

Cyber Threat Intelligence (CTI) is a valuable resource for cybersecurity defense, but it also poses challenges due to
its multi-source and heterogeneous nature. Security personnel may be unable to use CTI effectively to understand
the condition and trend of a cyberattack and respond promptly. To address these challenges, we propose a novel
approach that consists of three steps. First, we construct the attack and defense analysis of the cybersecurity
ontology (ADACO) model by integrating multiple cybersecurity databases. Second, we develop the threat evolution
prediction algorithm (TEPA), which can automatically detect threats at device nodes, correlate and map multi-
source threat information, and dynamically infer the threat evolution process. TEPA leverages knowledge graphs to
represent comprehensive threat scenarios and achieves better performance in simulated experiments by combining
structural and textual features of entities. Third, we design the intelligent defense decision algorithm (IDDA), which
can provide intelligent recommendations for security personnel regarding the most suitable defense techniques.
IDDA outperforms the baseline methods in the comparative experiment.

KEYWORDS
Multi-source data fusion; threat modeling; threat propagation path; knowledge graph; intelligent defense decision-
making

1 Introduction

The progressive expansion of the Internet into various areas, including e-commerce, education,
and online media, has resulted in a sharp rise in threat events. A critical resource for comprehending
threats is Cyber Threat Intelligence (CTI). However, due to the multi-source and heterogeneous
characteristics of CTI, it is highly fragmented and requires much time for manual interpretation.
Moreover, a single CTI cannot capture the whole picture of the threat. Since a single data source can
only obtain part of the information segment of the object, the information from multiple data sources
can perfectly and accurately reflect the general information of the object after fusion [1]. Therefore, to
improve efficacy, thoroughly examine the system’s security, and offer more precise decision assistance,
this paper fuses data from multi-source CTI. However, since CTI resides in disparate, heterogeneous
knowledge bases and the data inside is semantically heterogeneous, it is challenging to fuse the data.
In this paper, we thoroughly examine cybersecurity knowledge bases and build the attack and defense
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analysis of the cybersecurity ontology (ADACO) model to fuse multi-source heterogeneous data.
As a result, the pertinent information can be accessed quickly and precisely. ADACO broadens the
modeling dimension in cybersecurity compared to earlier ontology models and incorporates attack
and defense information to handle security events in an automated or semi-automated way.

Currently, classic passive defense technologies are no longer sufficient to meet today’s security
requirements in the face of emerging advanced persistent threat attacks. Attack path prediction is a
powerful proactive security strategy against advanced persistent threats. However, it is challenging
to adjust to quick changes in the network attack and defense posture using current approaches for
attack path prediction because they have poor accuracy, difficult-to-understand outputs, and cannot
integrate multi-source information properly [2]. To address the above problems, this paper combines
multi-source threat information based on ADACO, creates attack scenarios, and predicts attack paths
utilizing the logical linkages between each assault step. The proposed threat evolution prediction
algorithm (TEPA) can present the current attack scenarios and correctly anticipate the attack paths
because we fully consider the actual network environment from the attacker’s point of view.

Moreover, targeted defense techniques must be quickly implemented while predicting the attack
path. At present, network attacks are getting more automated and intelligent. However, the deploy-
ment of defense resources and security policies on most networks remain static, making it challenging
to successfully counteract today’s highly intelligent attacks. As a result, to accomplish intelligent
network defense, the system should automatically derive security defense tactics. Currently, game
theory is the most prevalent method for research on network security defense decisions. Game theory
often assumes that attackers are rational and fully informed. However, in real offensive and defensive
conflicts, these assumptions are not valid, contributing to some limitations of game theory-based
defense decision approaches. Therefore, to circumvent the drawbacks of employing game theory and
provide more precise and intelligent recommendations for defense techniques, this study proposed the
intelligent defense decision algorithm (IDDA) based on the defense technique knowledge base.

As mentioned above, to effectively fuse heterogeneous and fragmented multi-source knowledge,
this work investigates multiple security knowledge bases to create the ontology model ADACO, which
addresses the issue of semantic heterogeneity among knowledge. Additionally, this study suggests the
algorithm TEPA based on ADACO, which can quickly predict the direction in which threats will
propagate and map out the pertinent attack and defense information. The proposed algorithm IDDA
offers intelligent recommendations for defensive measures. The major contributions of this paper are
as follows:

1) We conduct research and analysis across multiple cybersecurity knowledge bases to integrate
heterogeneous multi-source knowledge into uniformly structured and interconnected threat
information. Then, we propose the attack and defense analysis of the cybersecurity ontology
model, based on which we construct a cybersecurity knowledge graph to actualize the associ-
ation between heterogeneous cybersecurity knowledge bases.

2) Aiming at the weak ability of the previous model to deduce and visualize the threat situation,
and the inability to quickly grasp the complete picture of the threat and defense measures while
predicting the attack path, we propose a threat evolution prediction algorithm to realize the
association of threat information while predicting the path and enhance the visibility of the
threat evolution path based on the knowledge graph.

3) In response to the inability to make defense decisions quickly and accurately for current attacks,
this paper proposes an intelligent defense decision algorithm based on the defense technique
knowledge base, which automatically ranks and intelligently recommends multiple defense
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technologies to help security personnel quickly find the optimal defense measures to contain
the spread of threats.

The workflow of this paper is shown in Fig. 1. Firstly, security knowledge is extracted from the
cybersecurity knowledge bases to construct the ADACO. We simultaneously gather the topological
structure and device configuration of the target network to extract the initial information. The
inference rules are then loaded into the ADACO with the extracted data. Secondly, executing the
TEPA, the inference results, including threat elements and their linkages, are utilized to build the threat
propagation path in the knowledge graph. Finally, IDDA is used to provide a recommended list of the
multiple defense techniques that have been reasoned.

Cyberecurity Knowledge 

Bases

CVE CWE

CAPEC ATT&CK

D3FEND

Extracting safety 

knowledge
ADACO

Topology 

of the 

target 

network

Configura

tion of 

target 

network 

devices

Extracting initial 

information

Relationshi

ps between 

devices

Core 

asset in 

network

Properties 

of device 

entities

Initial 

attacked 

device

Inference 

rules

Threat Evolution

Predict Algorithm

Intelligent Defense 

Decision

Algorithm

Optimal 

defense 

measures

Threat elements

Engage

Inference 

engine

Figure 1: Workflow of the system

2 Related Work

Multi-source data fusion technology is widely used in many fields, such as the Maritime Internet of
Things, remote sensing monitoring, medical diagnosis, electronic commerce, wireless communication,
and fault diagnosis [3]. Liu et al. [4] developed an Augmented Reality-enabled maritime navigation
system by fully integrating the visual information provided by the cameras and the positioning
information provided by the automatic identification system equipment to enhance sea state awareness
and vessel traffic safety. Wan et al. [5] proposed a signal-sorting method based on deep transfer
learning by fusing the information data collected from multiple regions by a swarm of unmanned
aerial vehicles to improve the signal-sorting accuracy of the target region. Wang et al. [6] proposed
a fire station spatial layout planning method by fusing high-precision building, population space,
and multi-type higher-precision Point of Interest data. Wang et al. [7] fused data from multiple
sensors to provide information support for the modernization of agricultural management through
environmental monitoring and automated decision-making systems. In this paper, multi-source data
fusion technology is applied to network security. The current focus of multi-source data fusion
applications in cybersecurity is threat modeling, where heterogeneous information in CTI is integrated
into an ontology model, and correlations are extracted to analyze potential threats better and
understand the cybersecurity situation to provide decision support. There have been several previous
studies on ontology construction in the cybersecurity domain, as shown in Table 1.
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Table 1: Ontology models in the field of cybersecurity

Ontology model Ontology modeling object Disadvantage

Attack analysis graphs
ontology [8]

Asset, vulnerability, attack The lack of defense techniques
resulted in an inadequate definition
of classes in his ontology.

CRATELO [9] Threat, vulnerability, asset,
attack, countermeasure

In CRATELO, the relationships
between the classes were not
sufficiently established.

Cyber ontology [10] Time, geospatial, person, event,
network operation

Because the entities remained
separate, it was unable to define
semantics well enough to query for
entities and inter-entity
relationships.

SEPSES [11] Vulnerability, weakness, attack
pattern

SEPSES was unable to create
inference rules, which prevented it
from mining potential data.

UCO [12] Means, consequence, attack,
attacker, attack pattern,
vulnerability, exploit target

With the knowledge bases being
updated continuously, UCO was
unable to update itself.

To address the shortcomings of previous works, ADACO is built from multiple angles by drawing
data from various knowledge bases. As a result of the data from different knowledge bases being
linked, semantic heterogeneity can be removed, allowing for the construction of inference rules that
helps security personnel accurately query the available knowledge and infer potential knowledge.

Our work is based on identifying attack techniques from CTI and mapping them to ADACO.
However, the inevitable redundant information in CTI makes it challenging to identify attack
techniques. Numerous studies and applications have been made for feature selection, which can be
used to cope with redundant information. In the context of situational element gathering and fusion,
Chang et al. [13] employed rough sets for attribute reduction of the original data to eliminate redundant
attributes. Wu et al. [14–16] addressed the phenomenon called PCMasking and improved the accuracy
and speed of Markov boundary discovery; they investigated the multi-label feature selection problem
from the causal perspective and proposed the first multi-label causal feature selection algorithm; they
developed a Common and Target-specific Markov boundary variable discovery (CTMB) algorithm,
used it for feature selection, and proposed a novel CTMB-driven multi-label feature selection algo-
rithm, which achieved the maximum relevance and minimum redundancy. Liu et al. [17] proposed
a lightweight Internet of Things (IoT) intrusion detection model based on feature selection, using
optimized machine learning methods to detect network attacks in IoT networks effectively. Usually, a
CTI describing an attack event contains multiple attack techniques, and the challenge of identifying
attack techniques can be handled by recasting it as a feature selection problem with multi-label
classification. Therefore, to accurately identify attack techniques in CTI, this paper applies the idea of
feature selection to handle redundant information.
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The threat propagation path refers to a series of sequential attacks launched by an attacker to
achieve his attack goal by exploiting the vulnerabilities in the target network. An important area
of study in cyberspace security defense is the precise and efficient prediction of threat propagation
paths [18]. Attack graphs were utilized by Chen et al. [19] to predict the attack paths. However, the
coefficient values for certain crucial factors were unduly reliant on expert knowledge, making the
study conclusions somewhat subjective. By simply concatenating the detected assaults, Gong et al. [20]
created a threat view without considering the pre-post relationship between devices and single-step
attacks, which could only predict the attack paths in straightforward scenarios. Wang et al. [2]
considered the attack success probability, but the setting of attackers’ capability level lacked objective
calculation, so the prediction outcomes were affected. Yang et al. [21] proposed the principle of
privilege promotion. However, the algorithm did not consider the impact of social engineering
attacks on the threat propagation path. Although Sun et al.’s [22] threat prediction analysis method
was able to anticipate the threat propagation paths with accuracy, it was unable to provide timely
countermeasures. GhasemiGol et al. [23] dealt with the uncertainty of attack probability in their
algorithm. Yuan et al. [24] used the breadth-first traversal algorithm in the threat path generation
method. Jajodia et al. [25] constructed the topological vulnerability analysis model, which identified
different attack paths starting from the initial state of the attacker. All threat paths were generated
using the three algorithmic models mentioned above, which led to path redundancy. Zhang et al. [18]
added a loop elimination algorithm, which could effectively avoid path redundancy and improve the
efficiency of threat path generation. Still, the proposed ontology was only based on the search function
of the graph database, and no inference rules were designed to explore the implicit knowledge.

The threat evolution prediction algorithm proposed in this paper takes the attacker’s perspective,
which considers both the probability of success in using social engineering attacks and vulnerability
exploit attacks, as well as the degree of threat each device poses to core assets in the event of an attack.
Additionally, it combines pre- and post-permissions to determine whether the device will likely be
compromised.

3 Multi-Source Knowledge Fusion

Today, detailed information on threat events is released on different security knowledge platforms,
substantially fragmenting the available information. Therefore, fragmented security knowledge needs
to be fused and reconstructed to facilitate utilization.

3.1 Security Knowledge Data Sources

Among the significant cybersecurity knowledge bases, the public security knowledge bases
maintained by the cybersecurity firm MITRE are widely accepted by security personnel. These
knowledge bases use standardized and normalized descriptive language to represent and distribute
the cybersecurity information discovered by CTI. The following are the knowledge bases consulted
for this paper:

� Common Platform Enumeration (CPE) [26]
� Common Vulnerabilities and Exposures (CVE) [27]
� National Vulnerability Database (NVD) [28]
� Common Weakness Enumeration (CWE) [29]
� Common Attack Pattern Enumeration and Classification (CAPEC) [30]
� Adversarial Tactics, Techniques, and Common Knowledge Matrix (ATT&CK) [31]
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� Detection, Denial, and Disruption Framework Empowering Network Defense (D3FEND) [32]
� Engage [33]

3.2 Multi-Source Knowledge Relationship Linking and Mapping

This paper implements links among the knowledge bases: CPE, CVE, NVD, CWE, CAPEC,
ATT&CK, D3FEND, and Engage. Among them, the attack techniques in ATT&CK are mapped
to the defense techniques in D3FEND by digital artifacts, and there is also a mapping relationship
between ATT&CK and Engage. The attack patterns highlighted by CAPEC link the attack tactics
and techniques in ATT&CK with the weaknesses in CWE. Weaknesses in CWE can be related to
vulnerabilities in CVE, which also can be linked to NVD to view the specific description of the
vulnerability entries and the Common Vulnerability Scoring System (CVSS) scores [34]. Moreover,
NVD links the platforms and assets in the CPE that are affected by vulnerabilities. In conclusion, CPE,
CVE, NVD, and CWE portray the affected platforms, vulnerabilities, and weaknesses the attacker
exploits. CAPEC summarizes the attack patterns formed by the weaknesses that an attacker may
exploit. ATT&CK provides the attack tactics and techniques. D3FEND gives defense techniques to
counter these attacks. Engage offers counteracting activities to defend against these attacks actively.

From the mentioned knowledge bases, we extract multi-source cybersecurity knowledge and store
the knowledge in a graph database. Specifically, the entries in each knowledge base act as nodes in the
graph database, while the relational links between knowledge bases act as edges in the graph database.
These edges are not bidirectional between the above knowledge bases. However, they can be traversed
bidirectionally when the data is integrated into the graph structure so that data in any knowledge base
can be queried by any node. Fig. 2 illustrates the relationship links among the above knowledge bases.
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Figure 2: Schematic of relationship links

Only a few attack techniques in ATT&CK are provided with mitigations. And the rest of the
attack techniques are based on the abuse of system features, making it difficult to neutralize them with
preventative controls quickly. So, there are no equivalent mitigation measures in ATT&CK. Attack
technique T1547.001 is shown as an example. To ultimately get higher-level privileges, the attacker
causes harm by adding the malicious software to the starting folder or referencing it via the registry
run key. No mitigations are offered in ATT&CK since T1547.001 is based on the abuse of system
features. As seen in this example, the attack techniques of this type make security personnel cannot
quickly find the mitigations they need in ATT&CK.

To address this problem, MITRE adds a brand-new “Digital Artifact” notion in the D3FEND. A
digital object becomes a digital artifact when the network actor (either defensive or offensive) interacts
with it in any way. The attack techniques in the ATT&CK can be linked and mapped to the defense
techniques in the D3FEND thanks to the digital artifacts that operate as a bridge, which enables
attack techniques based on abuse of system features to find defense techniques. For example, the
corresponding digital artifacts and defense techniques in the D3FEND can be mapped by querying
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the attack technique entry T1547.001. When attacked by someone using T1547.001, the attack can be
countered using the relevant defense techniques in Fig. 3.
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Figure 3: T1547.001 maps defense techniques in D3FEND

Using digital artifacts as a bridge, we design inference rules to make defense techniques auto-
matically associated with attack techniques, which helps security personnel find the countermeasures
quickly. Taking the attack technique T1556 as an example, the inference rules use digital artifacts
as a bridge to reason out the implied relational links between the attack and defense techniques.
Then, put all of them into the graph database Neo4j, as shown in Fig. 4. The red circle represents
the attack technique T1556; the orange circles represent the digital artifacts associated with T1556;
and the blue circles represent the defense techniques that can be used. In Fig. 4, a relationship called
“hasDefend” exists between the attack technique T1556 and the defense techniques. It shows that
the defense techniques can be obtained directly based on the attack techniques using inference rules
without the digital artifacts.

4 Ontology Modeling and Knowledge Reasoning

Ontology can express multiple information on cyber threats as concepts with formal descriptions
[20], which solves the problem that knowledge fragmentation in CTI is not conducive to expression.
This paper uses a more expressive modeling language, Web Ontology Language (OWL), to construct
the ontology, which provides fast and flexible data modeling capabilities and efficient automatic
reasoning capabilities [35]. Then, we combine OWL ontology with the Semantic Web Rule Language
(SWRL) to form inference rules [36]. We use the semantic query-enhanced web rule language
(SQWRL) language to implement queries and support SWRL rules for querying and extracting
knowledge after inference integration.
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Figure 4: Mapping of attack techniques to defense techniques

In the previous sections, we effectively link multiple source knowledge bases and integrate the
data from them as a source of security knowledge for building our ontology model. At the same time,
we refer to several cybersecurity models and propose the attack and defense analysis of cybersecurity
ontology (ADACO). We collectively refer to the data in the multi-source knowledge base, such as
vulnerabilities, weaknesses, attack techniques, and defense techniques, as threat elements. ADACO
uses a standard language to define classes, attributes, entities, and inter-entity relationships for threat
elements to enable sharing and reuse of data. Based on ADACO, multiple inference rules are designed
in this paper. The inference engine in Protégé supports the implementation of sequential multi-step
inference for reasoning about the facts of threat events and underlying knowledge.

4.1 Classes and Attributes of the Ontology

ADACO contains four top-level classes, ten second-level subclasses, and several third-level
subclasses. The top-level classes include: Defend, Attack, Attacker, and Device. Table 2 shows the
details of the classes.

Table 2: The details of the classes

Top-level class Second-level subclass Attribute Source of knowledge

Defend D3FEND_Thing,
Engage

hasArtifact, beAgainst,
hasMitigation, exploit,
beResisted

D3FEND, Engage

(Continued)
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Table 2 (continued)

Top-level class Second-level subclass Attribute Source of knowledge

Attack ATTCK_Thing,
AttackPattern,
Weakness, Vulnerability

hasArtifact, beAffected,
beExploited, beUsed,
belong_to, hasCVSS,
hasVulnerability, hasLevel,
useATechnology, beResisted

ATT&CK, CAPEC,
CWE, CVE

Attacker Attacker_Name,
Attacker_Vulnerability

useATechnology, beAgainst,
hasAccess, hasVulnerability,
hasCompromised, exploit

ATT&CK, Engage

Device Device_Name, Asset beAffected, hasAsset,
hasAccess, hasPreRoute,
hasCompromised

CPE

The inclusion relationships among classes are shown in Fig. 5a, while the logical links among the
second-level subclasses are shown in Fig. 5b.
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Figure 5: (a) The inclusion relationships among classes; (b) The logical links among the second-level
subclasses

4.2 Design of the Inference Rules

Using inference rules allows us to reason about potential knowledge based on known knowledge,
which helps us to explore new implicit relationships among threat elements. In this paper, we have
designed nine inference rules to perform different functions, as shown in Tables 3 to 11.
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Table 3: Inference rule 1

Subclasses ATTCK_Thing, D3FEND_Thing

Linkages ATT&CK → D3FEND

Inference rule ATechnique(?t) ∧ hasArtifact(?t, ?a) ∧ Artifact(?a) ∧ hasMitigation(?a, ?d) →
hasDefend(?t, ?d)

Semantic and usage The attack technique is associated with the affected digital artifact. Then,
the digital artifact is linked to the corresponding defense technique.
Ultimately, the mapping from the attack technique to the defense technique
is achieved. If the security personnel know the attack technique used by the
attacker, they can directly get the defense technique that corresponds to it.

Table 4: Inference rule 2

Subclasses D3FEND_Thing

Linkages D3FENDArtifact → D3FENDDTechnique

Inference rule Artifact(?f) ∧ DTechnique(?d) ∧ hasMitigation(?f, ?d) ∧ sameAs(?f,
IntranetNetworkTraffic) → sqwrl:select(?f, ?d)

Semantic and usage The digital artifact is associated with its corresponding defense technique,
different digital artifacts may be at different levels of risk, and security
personnel can select the most vulnerable digital artifacts in preference to
query defense techniques.

Table 5: Inference rule 3

Subclasses Vulnerability, Asset

Linkages CPE → CVE

Inference rule Asset(?p) ∧ beAffected(?p, ?v) ∧ CVE_ID(?v) ∧ hasCVSS(?v, ?s) ∧ CVSS(?s) ∧

hasLevel(?s, ?l) ∧ VulnerableLevel(?l) → hasSeverityLevel(?p, ?l)

Semantic and usage The asset has a vulnerability. Different vulnerabilities are classified into
different severity levels, and the vulnerability level of an asset is inferred
based on the severity level of the vulnerability. The severity of vulnerabilities
is quantitatively assessed in the form of CVSS scores, which classify the
severity of vulnerabilities into five levels: “Critical”, “High”, “Low”,
“Medium”, and “None”. The inference rule automatically corresponds
“Critical” and “High” to the asset’s high vulnerability level “HighLevel”;
“Medium” to the asset’s medium vulnerability level “MediumLevel”; “Low”
and “None” to the asset’s low vulnerability level “LowLevel”.
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Table 6: Inference rule 4

Subclasses Asset

Linkages CPEasset → CPEVulnerableLevel

Inference rule Asset(?p) ∧ VulnerableLevel(?l) ∧ hasSeverityLevel(?p, ?l) ∧

sameAs(?l,HighLevel) → sqwrl:select(?p,?l)

Semantic and usage The asset has a vulnerability, executing the query will return the asset which
has a high vulnerability level. The asset with a high vulnerability level should
have a higher priority for maintenance. Security personnel can quickly query
and locate the asset with a high vulnerability level to prioritize maintenance.

Table 7: Inference rule 5

Subclasses Asset, Vulnerability, Weakness, AttackPattern, ATTCK_Thing

Linkages CPE → CVE → CWE → CAPEC → ATT&CK

Inference rule Asset(?p) ∧ beAffected(?p, ?v) ∧ Vulnerability(?v) ∧ beExploited(?v,?w) ∧

Weakness(?w) ∧ sameAs(?w, Insufficiently Protected Credentials) ∧

AttackPattern(?a) ∧beUsed(?w, ?a) ∧ belong_to(?a, ?t) ∧ ATechnique(?t) ∧

sameAs(?t, Remote Email Collection) → sqwrl:select (?p, ?t)

Semantic and usage The asset’s vulnerability is associated with a specific weakness, the weakness
is associated with the attack pattern, and the attack pattern is associated
with a specific attack technique, Executing the query will return the asset
which has the specific weakness and is affected by the specific attack
technique. Security personnel can isolate devices that have specific
weaknesses and are compromised by specific attack techniques.

Table 8: Inference rule 6

Subclasses Device, Asset, Vulnerability, Weakness, AttackPattern,
ATTCK_Thing, D3FEND_Thing, Engage

Linkages CPE → CVE → CWE → CAPEC → ATT&CK → D3FEND, Engage
Inference rule Device(?d) ∧hasAsset(?d,?p) ∧Asset(?p) ∧beAffected(?p,?v) ∧Vulnerability(?v)

∧beExploited(?v, ?w) ∧ Weakness(?w) ∧ beUsed(?w, ?t) ∧ AttackPattern(?t) ∧

belong_to(?t, ?a) ∧ ATechnique(?a) ∧ hasArtifact(?a, ?r) ∧ Artifact(?r) ∧

hasMitigation(?r, ?f) ∧hasEngage(?a,?e) ∧Activity(?e)
→ sqwrl:select(?d, ?p, ?v, ?w, ?t, ?a, ?r, ?f, ?e)

Semantic and usage The device sequentially deduces the asset, vulnerability, weakness, attack
pattern, attack technique, counteracting activity, digital artifact, and defense
technique associated with it. Executing the query will return the information
of all threat elements. Security personnel can query all or specific results of
the inference to combat threats.



360 CMC, 2023, vol.77, no.1

Table 9: Inference rule 7

Subclasses Attacker_Name, Device_Name, Asset, Vulnerability

Linkages CPE → CVE

Inference rule Attacker(?a) ∧ Device(?d) ∧ Asset(?p) ∧ hasAsset(?d, ?p) ∧ Vulnerability(?v) ∧

beAffected(?p, ?v) ∧ sameAs(?v, CVE-2021-31645) ∧ hasPreRoute(?p,
Workstation2) → hasCompromised(?a, ?p) ∧ hasAccess(?a, ?d)

Semantic and usage An attacker attacks a device, the device owns an asset, the asset has a
vulnerability and there is a device access path between the asset and the
previous neighboring device. Then, it is reasoned that the attacker can
compromise the device and damage the asset. At the same time, inference
rule 7 can be combined with inference rule 6 to correlate the corresponding
vulnerability, weakness, attack pattern, attack technique, defense measure,
and confrontation activity of the compromised device promptly.

Table 10: Inference rule 8

Subclasses ATTCK_Thing, Engage, Attacker_Vulnerability

Linkages ATT&CK → Engage

Inference rule ATechnique(?a) ∧ hasEngage(?a, ?c) ∧ Activity(?c) ∧ exploit(?c, ?v) ∧

Attacker_Vulnerability(?v) → hasVulnerability(?a, ?v)

Semantic and usage The attack technique is associated with a counteracting activity that can
exploit certain vulnerabilities, leading to the inference that the attack
technique has those vulnerabilities. Security personnel can find out the
vulnerabilities of the attack technique.

Table 11: Inference rule 9

Subclasses ATTCK_Thing, Engage, Attacker_Name, Attacker_Vulnerability

Linkages ATT&CK → Engage

Inference rule Attacker_Name(?a) ∧ useATechnique(?a, ?t) ∧ ATechnique(?t)
hasVulnerability(?t, ?v) ∧ Attacker_Vulnerability(?v) ∧ Activity(?c)∧

exploit(?c, ?v) → hasVulnerability(?a, ?v) ∧ beAgainst(?a, ?c)

Semantic and usage The attacker uses the attack technique, which has the vulnerability. And
counteracting activity exploits the vulnerability. The above information
leads to reasoning about the vulnerability of the attacker and the
counteracting activity that can curb the attacker. Security personnel can
identify the vulnerability of the attack technique and the counteracting
activity that deters the attacker.
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4.3 Application of the Inference Rules

This section gives several examples of applying inference rules to demonstrate how security
personnel can use them to counter threats. Two application scenarios are given below:

1) Determine the vulnerability level of the asset and whether the asset will be conquered

The email server holds the asset “arch_newsworld”, which contains the vulnerability “CVE-2005-
3435” with a severity level of “High”. As shown in Fig. 6, the green box illustrates the security officer
executing inference rule 3 to deduce that the vulnerability level of arch_newsworld is “HighLevel”.
At the same time, he can use the inference rule 7 to infer whether the asset will be conquered by an
attacker. The red box illustrates the reasoning result that the attacker can gain complete control of the
email server and compromise its asset “arch_newsworld”.

Figure 6: The result of determining the vulnerability level of the asset and whether the asset will be
conquered

2) Search for information on attack and defense

When the system is under threat, the security officer can use the inference rule 6 to look up
all entries of devices, assets, vulnerabilities, weaknesses, attack patterns, attack techniques, digital
artifacts, defense techniques, vulnerabilities of the attack techniques, and counteracting activities. As
shown in Fig. 7, the results of executing inference rule 6 are shown in the yellow box. When the system
is attacked by T1114.002, the security officer can use inference rules 8 and 9 to quickly reason out the
vulnerabilities of T1114.002 and the counteracting activities that can curb it. The result is shown in
the red box, where the EAV entries represent the vulnerabilities of the attack technique and the EAC
entries represent the counteracting activities. The security officer can also use the inference rule 1 to
search for defense techniques. The green box shows the defense techniques corresponding to the two
digital artifacts “ProcessCodeSegment” and “StackFrame” of T1211.
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Activity(?c) ^ Attacker_Vulnerability(?v) 
^Attacker_Name(?a)^exploit(?c,?v)^ATec
hnology(?t)^hasVulnerability(?t,?v)
^useATechnology(?a,?t) 
�beAgainst(?a,?c) 

ATechnology(?t) ^sameAs(?t,T1211) 
^Artifact(?a) ^hasArtifact(?t,?a) 
^hasMitigation(?a,?d) �
sqwrl:select(?t,?a,?d) 

Decive(?d) ^hasAsset(?d,?p) ^Asset(?p) ^beAffected(?p,?v) ^Vulnerability(?v)
^beExploited(?v,?w) ^Weakness(?w) ^ beUsed(?w,?t) ^AttackPattern(?t) 
^belong_to(?t,?a) ^ATechnology(?a) ^hasArtifact(?a,?r) ^Artifact(?r) 
^hasMitigation(?r,?f) ^hasEngage(?a,?e) �sqwrl:select(?d,?p,?v,?w,?t,?a,?r,?f,?e)

Figure 7: The result of searching for information on attack and defense

5 Main Algorithms
5.1 Meta-Path Based Threat Evolution Prediction and Correlation Response

When a threat is detected in the system, the first task is to respond to it on time and contain
its spread. Therefore, it is imperative to assess and predict the development trend of the threat. The
attacker will exploit vulnerabilities in the target network to launch a series of sequential attacks to
achieve his attack purpose, and this set of attack sequences is defined as a meta-path by TEPA.
We model the concept of “attack” as a relationship between attacker entities and device entities in
a knowledge graph, thus transforming the attack prediction problem into the link prediction problem
of the knowledge graph. Similarly, we link multiple threat elements into meta-paths and make all
attacked device nodes connect with the corresponding threat element meta-paths. Eventually, we use
the knowledge graph to show the threat evolution graph. The relevant definitions for TEPA are given
below:

• Meta-path: Meta-paths are paths defined on the knowledge graph architecture layer.

PR1◦R2◦···◦Rk
= τ (O0)

R1→ τ (O1)
R2→ τ (O2)

R3→ · · · Rk→ τ (Ok) presents one path in knowledge graph.
τ (Ok) is the entity type of Ok, and Rk denotes a type of relation. It describes a path between
two entity types τ(O0) and τ (Ok), which consists of a series of entity types τ(O0) · · · τ (Ok) and
a series of relation types R1 · · · Rk.

• Core asset (ASS): The asset that the attacker wants to conquer or destroy.
• Threat degree (TD): The threat degree to the core asset when the device is compromised. The

higher the threat degree, the more likely the attacker selects the device for the next attack,
causing the threat to propagate from this device to the core asset as a new starting point. td
∈ [0, 1].

• Layer of topology (LOT): The layer of the device in the system topology. The higher the layer
of the device, the closer it is to the core assets.

• Probability of success (POS): The probability of success of an attacker’s single-step attack.
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• Device set (Devices): The set includes all devices in the system.
• Business access relationship (BAR): The business access relationship between two devices di−1

and di is represented by bari, i∈[1, n]. The business access relationships from device d0 to device

dn are expressed as d0

bar1→ d1

bar2→ · · · barn→ dn. Moreover, the set of business access relationships is
denoted as Bar.

• Device access path (Dpath): It is an acyclic sequence of devices linked by business access
relationships, i.e., the specific device d0 is given, and the core asset is on device dn, dpath = {d0,d1,
. . . , dn} represents the device access path from the device d0 to dn.

• Threat propagation path (Tpath): It is the path made up of devices the attacker can conquer
with threatening means. It is an acyclic ordered sequence of interdependent single-step attacks.

• Origin device (origin): The device that the attacker first attacked.
• Pre-privilege: It is the pre-condition for an attacker to propagate a threat, i.e., a business access

relationship between device dt and the previous one dt−1. The pre-privilege is extracted from the
inference rule body.

• Post-privilege: It is the post-condition for an attacker to propagate a threat, i.e., an attacker
launches an attack that allows him to gain complete control of device dt. The post-privilege is
extracted from the inference rule header.

Most current attack prediction algorithms ignore the importance of the attacker’s psychology in
the threat evolution process. Since an attacker will always choose the most advantageous means to
attack the most vulnerable device, we combine the attack success probability and the threat degree of
the device for prediction. The formulas for both are given separately below.

(1) Calculation of the Attack Success Probability

The attack success probability refers to the probability that an attacker will successfully conquer a
device using attack means. Specifically, attack means include social engineering attacks and vulnerabil-
ity exploit attacks. Social engineering attacks can be easily avoided by professional security personnel,
so the attack success probability is set to 0.2. While the attack success probability of vulnerability
exploit attacks is quantified based on the CVSS score.

The base score (Base) of the CVSS score reflects the inherent characteristic of vulnerability, which
does not change with time and environment. The base score includes the Exploitability Subscore
(ESC) and the Impact Subscore (ISC). The ESC measures the ease of vulnerability exploitation in four
aspects: Attack Vector (AV), Attack Complexity (AC), Privilege Required (PR), and User Interaction
(UI). The ISC measures the harm of a vulnerability in terms of confidentiality impact (ImpactConf ),
integrity impact (ImpactInteg), and availability impact (ImpactAvail) [37]. The calculation formulae are
shown in Eqs. (1) and (2).

Base =
{

Roundup (Min [(ESC + ISC), 10]) , else
0, ISC � 0

(1)

{
ESC = 8.22 ∗ AV ∗ AC ∗ PR ∗ UI
ISC = 1 − [(

1 − ImpactConf

) × (
1 − ImpactInteg

) × (1 − ImpactAvail)
] (2)

The higher the maturity of the vulnerability code, the higher the probability that the vulnerability
will be successfully exploited. So, we multiply Base by the code maturity (ExploitCodeMaturity) as
the optimized score [22], multiplied by 0.1 to represent the attack success probability. The calculation
formula is shown in Eq. (3).
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pos = 0.1 ∗ Roundup [(Base ∗ ExploitCodeMaturity)] (3)

(2) Calculation of the Threat Degree

When device d0 in the device access path dpath is compromised, the threat degree to the core asset
is calculated as follows.

i. When dpath = {d0}, which indicates that the core asset exists in the first device of the path, and
the first device has been compromised. The threat degree is calculated as Eq. (4).

dtdpath (d0, ass) = 1 (4)

ii. When dpath �= {d0}, since the attacker propagates the threat from one device to the next by
performing an attack, the threat degree of the device can be calculated only if the threat propagation
path tpath exists on the device access path dpath. If the tpath does not exist on the dpath, it means that
the threat cannot be propagated to the core asset along the dpath by attack means. As a result, the
threat degree is 0.

The successful conquest of the high-topology layer device is based on the conquest of the low-
topology layer device. Take the ratio of the device dt and the core asset’s topological layer numbers
as the weight. The larger the value of this weight means that the device dt is closer to the core asset.
Furthermore, if the attacker wants to compromise device dt, he must conquer all the devices on the
threat propagation path before device dt. So, this weight is then multiplied by the multiplication of
the attack success probability of all devices on the threat propagation path passed from the starting
device d0 to device dt. In this case, the threat degree is calculated as Eq. (5).

dttpath(dt, ass) =
⎧⎨
⎩

lotdt

lotass

∗ (∏
dεtpath pos (d)

)
, tpath �= ∅

0, tpath = ∅

(5)

If there are multiple adjacent devices from device dt to core asset, and there is the threat
propagation path tpath on the dpath between device dt and each adjoining device. Then, the device
with the highest threat degree among the adjacent devices is taken as the next target to attack and
propagate the threat.

The core code of the algorithm proposed in this paper is as follows:

Input: Devices, Bar, ass, origin, ADACO

1) Initialize tpath, Privileges, AS; // Initialize threat propagation path “tpath”,
permission set “Privileges” and threat thing chain
set “AS”.

2) target = extractAss(ass, Devices); // Search for the device “target” where the core asset
“ass” is held in the device set “Devices”.

3) prePrivileges,
postPrivileges = attReason(origin,
Bar, ADACO);

// The inference engine performs multi-step
sequential reasoning. Extract the pre-privileges and
post-privileges from the inference results and place
them in the “prePrivileges” and “postPrivileges”,
respectively.

4) function Iteration(origin): // The function of the iterative attack.
5) tpath.append(origin);
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(continued)

6) Initialize degrees; // Initialize the set of threat degrees for all adjacent
devices at the next layer.

7) localDevices = findLocal(origin,
prePrivileges)

// Find all adjacent devices at the next layer based
on the “prePrivileges”.

8) for local in localDevices: // Find the next target device “local” in the adjacent
device set “localDevices”.

9) if extractPost(local,
postPrivileges) = = true:

// If the device’s post-privilege can be found in the
“postPrivileges”.

10) degree.append(calculateTd(local,
tpath, target))

// Calculate the threat degree of all adjacent devices.

11) end if;
12) else:
13) degree.append(0);
14) end else;
15) end for;
16) maxd = maxDevice(degree,

localDevices)
// Extract the device with the highest threat degree
among all adjacent devices to be the next target
device.

17) if maxd ! = target:
18) Iteration(maxd);
19) end if;
20) end;
21) Iteration(origin);
22) for device in tpath:
23) tpath.append(attScenario(device)); // Query the threat thing chain for all devices in

tpath.
24) end for;

Output: Threat propagation path “tpath”

The semantics of the above algorithm is: Step 1) inputs the business access relationships and
the initial attacked device. Step 2) scans all devices in the system to lock the location of the initial
attacked device and the device carrying the core asset, determining the starting and ending points
for constructing the device access path. Step 3) uses the inference engine to perform multi-step
attack inference to obtain the sets of pre-privilege and post-privilege from the inference results. Steps
4)∼21) are the core of the algorithm. Gaining complete control of the device requires both conditions
simultaneously: 1. There is a device access path between the device to be attacked and the adjacent
device that is currently under complete control of the attacker. 2. The device to be attacked has a
vulnerability. So, we first extract the pre-privileges to create the device access path, and then extract
the post-privileges to determine whether the threat propagation path exists between devices. If the
threat propagation path exists between the device and each adjacent device, the device with the highest
threat degree among the adjacent devices is taken as the next target to attack. Afterward, create the
directed edge to construct the complete threat propagation path. Steps 22)∼24) extract threat elements
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such as vulnerabilities, weaknesses, attack techniques, defense techniques, and counteracting activities
associated with each device in the propagation path and link them into a meta-path. Finally, import
the output into the knowledge graph Neo4j.

5.2 Intelligent Defense Decision-Making

When the network is under attack, the system will respond to the threat and automatically return
one or more defense techniques. However, security personnel may not know how to choose when faced
with multiple defense techniques. In this paper, we propose the IDDA, an intelligent defense decision
algorithm, to intelligently help security personnel make defense decisions.

IDDA quantitatively calculates multiple metrics from several dimensions to draw the list of
recommended optimal defense techniques for the attack techniques. The quantitative metrics involved
are shown below:

1) The probability of using each defense technique against the attack tactics

According to the hierarchical structure of the D3FEND, the defense tactics are divided into
different defense techniques. This paper presents statistics on the number of defense techniques
relevant to each attack tactic, which reflects the probability of using each defense technique against
the attack tactics.

2) The number of digital artifacts covered by the defense technique

An attack technique affects one or more digital artifacts, and a defense technique acts on one or
more digital artifacts, as shown in Fig. 3 in Section 3. So, the more digital artifacts involved in the
defense technique, the more comprehensive the defense.

3) The similarity of the textual description of defense techniques and attack techniques

Inspired by the work of Akbar et al. [38], we use Roberta to calculate the textual similarity between
the defense technique description and the attack technique description. The higher the similarity, the
more the defense technique fits the attack technique.

The weights, ranking, and scores of three quantitative metrics are shown in Table 12.

Table 12: Weights, ranking, and scores of three quantitative metrics

Quantitative metric Weight Ranking Score

The probability of using each defense technique
against the attack tactics

0.3 1 30
2 25
3 20

The number of digital artifacts covered by the
defense technique

4 15
5 and later 10

The similarity of the textual description of
defense techniques and attack techniques

0.4 1 40
2 35
3 30
4 25
5 and later 20
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6 Experiment

To verify the validity of our work, we construct an enterprise information system as the scenario
for the experiment. The instances in the scenario are mapped in the ADACO. Also, to verify the
feasibility of modeling with multi-source security knowledge as an ontology, this section first gives
a linking example, presented as a knowledge graph. Then, we use the TEPA for the experimental
scenario to predict the threat propagation path. Finally, we use the IDDA to rank the multiple defense
techniques associated with the devices in the path.

6.1 Scenario of the Experiment

The experiment scenario is shown in Fig. 8, where the system consists of four subnetworks. Subnet
1 deploys a firewall, a web server, and a file server. The file server stores critical office information
of the enterprise; Subnet 2 deploys a web server, an email server, and two administration stations.
The network lines of two administration stations are connected from the same router. Specifically,
administration station 1 only has access to web server 2, while administration station 2 only has access
to the email server; Subnet 3 deploys a workstation and a data server, and the data server stores
essential business data. Workstation 1 has the user account for the file server, and access to control the
data server; Subnet 4 is connected from Subnet 2. It deploys a workstation and a file transfer protocol
server (FTP server). Table 13 presents the CVE entries, threat degrees, and attack types corresponding
to the vulnerabilities of the devices in the system. Table 14 shows the business access relationships
between the devices.

Figure 8: Topology of the scenario
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6.2 Links of the Meta-Paths

This section provides an example to specify the linking relationships in the meta-paths between
different classes of ADACO. The illustration shows the linkages of the device “Administration Station
2 (AS_2)” with vulnerabilities, weaknesses, attack patterns, attack techniques, digital artifacts, defense
techniques, and counteracting activities. The entities in the example are listed in Table 15.

Table 13: Instances and their properties

Device Asset Vulnerability CVSS Attack Type

Web server 1 cloud_foundation CVE-2021-21972 9.8 Privilege escalation
Web server 2 mac_os_x CVE-2014-1266 5.8 Privilege escalation
Workstation 1 phpBB CVE-2005-0603 5.0 Discovery
Workstation 2 matrix_screen_saver CVE-1999-1454 4.6 Defense evasion
Router rv_110w CVE-2022-20923 9.8 Defense evasion
Firewall wordfence_security CVE-2022-3144 4.8 Script injection
Data server SQL CVE-2004-0366 7.5 SQL injection
FTP server glFTPd CVE-2021-31645 7.5 Excessive allocation
Admin station 1 google_chrome CVE-2018-6116 6.5 Code execution
Admin station 2 extcalendar CVE-2007-0681 7.5 Privilege escalation
Email server arch_newsworld CVE-2005-3435 7.5 Defense evasion
File server linux CVE-2009-1630 4.4 Defense evasion

Table 14: Business access relationships

From To Object properties

Web server 1 Router (rv_110w) hasRoute (Web_1, rv_110w)
Workstation 1 Data server (SQL) hasRoute (Work_1, SQL)
Workstation 2 FTP server (glFTPd) hasRoute (Work_2, glFTPd)
Firewall Web server 1 (cloud_foundation) hasRoute (FW, cloud_foundation)
Firewall File server (linux) hasRoute (FW, linux)
File server Workstation 1 (phpBB) hasRoute (FS, phpBB)
Router Admin station 1 (google_chrome) hasRoute (Router, google_chrome)
Router Admin station 2 (extcalendar) hasRoute (Router, extcalendar)
Admin station 1 Web server 2 (mac_os_x) hasRoute (AS_1, mac_os_x)
Admin station 2 Email server (arch_newsworld) hasRoute (AS_2, arch_newsworld)
Email server Workstation 2 (matrix_screen_saver) hasRoute (ES, matrix_screen_saver)

Inject AS_2 into the inference engine and import the inference results into the knowledge graph.
The linkages are shown in Fig. 9. And Table 16 illustrates the linkages between the above entities in
the form of meta-paths.
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Table 15: The entities in the example

Asset extCalendar Vulnerability CVE-2007-0681

Severity level High Weakness CWE-522

Vulnerability level HighLevel Attack pattern CAPEC-555

Attack technique T1021.006, T1114.002

Digital artifact Intranet network traffic, mail server

Defense technique Decoy network resource, remote terminal session detection, per host
download upload ratio analysis, network traffic community deviation,
connection attempt analysis, client-server payload profiling, user
geolocation logon pattern analysis, network traffic filtering

Vulnerability of the
attack technique

EAV0001, EAV0002, EAV0007, EAV0010, EAV0019, EAV0020

Counteracting activity EAC0002, EAC0006, EAC0016, EAC0019

Figure 9: The linkages in the example
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Table 16: Linkages in the meta-paths

P1: Device → Asset → Vulnerability → Severity level → Vulnerability level
P2: Device → Asset → Vulnerability → Weakness → Attack pattern → Attack technique →
Counteracting activity → Vulnerability of the attack technique
P3: Device → Asset → Vulnerability → Weakness → Attack pattern → Attack technique →
Digital artefact → Defense technique

6.3 Prediction of the Threat Evolution

This section verifies the validity of TEPA based on the scenario in Section 6.1. The initial
conditions for the experiment are given below:

(1) The attacker attacked the firewall, which suffered from a malicious script injection vulnerability
“CVE-2022-3144”.

(2) The firewall holds the business access relationships between both Web Server 1 and File Server.
(3) The core asset is hosted on the FTP Server.

Execute the TEPA to predict the devices most likely to be compromised by each attack step and
then link them as the meta-path. At the same time, the threat elements associated with these devices are
also linked to the path. The final results are imported into Knowledge Graph, as shown in Fig. 10. We
mark the threat propagation path with black arrows. Based on the predicted path, security personnel
can quickly get a picture of threats from the knowledge graph and take appropriate defensive measures
for each attack step to contain the spread of the threat. We have compiled the results of our experiment
and presented them in Table 17. For simplicity of expression, the devices in Table 17 are replaced by
abbreviations, e.g., the firewall is written as FW.

Based on the table, we analyze the attacker’s actions in this experiment as follows:

(1) The attacker attacked Firewall, which owned the software “Wordfence_Security”. And the
vulnerability in Wordfence_Security, CVE-2022-3144, caused it to under-translate stored
values, which allowed the attacker to inject malicious web scripts into the settings. When the
user visited the page affected by the setting, it was subject to cross-site scripting by the attacker,
resulting in the firewall being completely compromised.

(2) The attacker then attacked Web Server 1 (Web_1), which owned the software
“cloud_foundation”. The cloud_foundation contained a remote code execution vulnerability,
CVE-2021-21972, which allowed the attacker to execute commands with unrestricted privileges
and thus gain complete control of Web_1.

(3) There was a business access path between Web_1 and Router. The Router was configured with
hardware “rv_110w”. The rv_110w had the vulnerability “CVE-2022-20923”, which allowed
the unauthenticated attacker to bypass authentication and access the network.

(4) The attacker attacked Administration Station 2 (AS_2) along the network. AS_2 held the soft-
ware “extCalendar”, which had the vulnerability “CVE-2007-0681”. CVE-2007-0681 allowed
the attacker to steal the user’s password and gain complete control of AS_2.

(5) The attacker accessed the mail server (ES) via AS_2. ES contained the software
“arch_newsworld”, which suffered from the vulnerability “CVE-2005-3435”. The attacker
exploited CVE-2005-3435 to obtain the hash of the user’s password to bypass authentication
and gain complete control of the ES.
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(6) The attacker accessed Workstation 2 (Work_2) via ES. Work_2 held the screensaver
“matrix_screen_saver”, which had the elevation of privilege vulnerability “CVE-1999-1454”.
It allowed the attacker to bypass the password prompt by pressing the ESC key and gain
complete control of Work_2.

(7) Via Work_2, the attacker could access FTP Server. The software “glFTPd” in FTP Server had
the vulnerability “CVE-2021-31645”, which could enable the attacker to cause a threat event
of denial service by exceeding the connection limit.

Figure 10: The result of the threat propagation path

Through the above analysis, we can observe the attack steps and verify the validity of the
proposed methodological model in this paper. ADACO integrates the “defense”to extend the modeling
knowledge of the cybersecurity domain. Table 18 compares ADACO with other ontology models.

We compare TEPA with previous algorithms in Table 19. The comparison result shows that TEPA
is relatively improved, which takes the threat impact elements (probability of the successful attack,
threat degree) into account and avoids the problem of path redundancy. Moreover, only the work in this
paper can predict the threat propagation path while correlating the attacked devices in the path with
their threat elements, such as vulnerabilities, weaknesses, attack techniques, and defense techniques,
which enriches the prediction results.



372 CMC, 2023, vol.77, no.1

Table 17: The compiled information on the threat propagation path

Device Topology
layer

Threat
degree

Be the next
target device

The next target
device

The prediction of the threat
propagation path

FW 1 0.0686 — Web_1 FW→Web_1
Web_1 2 0.1344 Yes Router FW→Web_1→Router
FS 2 0.0603 No — —
Work_1 3 0.0453 No — —
DS 4 0.0453 No — —
Router 3 0.1976 Yes AS_2 FW→Web_1→Router→AS_2
AS_1 4 0.1712 No — —
Web_2 5 0.1241 No — —
AS_2 4 0.1976 Yes ES FW→Web_1→Router→AS_2

→ES
ES 5 0.1852 Yes Work_2 FW→Web_1→Router→AS_2

→ES→Work_2
Work_2 6 0.1022 Yes FTPS FW→Web_1→Router→AS_2

→ES→Work_2→FTPS

Table 18: Comparison among the cybersecurity ontology models

Ontology Asset Vulnerability Weakness Attack
pattern

Attack
technique

Defense
technique

Support
inference

Wu et al. [8] � � × × � × �
CRATELO [9] × � × × � � �
Kiesling et al. [11] � � � � × × ×
UCO [12] � � × � � × �
Zhang et al. [18] × � × × × × ×
Yang et al. [21] � � × × × × ×
Sun et al. [22] � � × × � × �
Yuan et al. [24] × � × × × × ×
TVA [25] × � × × � × ×
ADACO � � � � � � �

6.4 Implementation of Intelligent Defense Decision-Making

6.4.1 Contrast Analysis

TEPA has associated with several defense techniques in Section 6.3. And in this section, we use
the IDDA to rank and recommend them. The recommendation result is compared with the algorithm
of Akbar et al. [38] to demonstrate IDDA’s superiority. Akbar et al. [38] analyzed textual descriptions
of attack techniques and defense techniques using the standard model “Roberta”. Roberta offers
deep semantic knowledge to derive meaningful associations between attack techniques and defense
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techniques. They matched attack techniques to defense techniques and provided a ranked list of
defense techniques for each attack technique.

Table 19: Comparison among the threat propagation path prediction algorithms

Algorithm No redundant paths Take threat impact
elements into account

Correlate the threat
elements

Wang et al. [2] × � ×
Wu et al. [8] × × ×
Zhang et al. [18] × × ×
Chen et al. [19] � × ×
Yang et al. [21] × � ×
Sun et al. [22] � � ×
GhasemiGol et al. [23] × � ×
Yuan et al. [24] × × ×
TVA [25] × × ×
TEPA � � �

Taking the attack technique “T1547” as an example, IDDA and the algorithm of Akbar et al. are
executed, and the ranking results are given separately, as shown in Table 20.

Table 20: The ranking of defense techniques

Attack technique Ranking of defense
techniques

Ranking of IDDA Ranking of Akbar et al.’s
algorithm [38]

T1547 Local file permissions 1 3
File encryption 2 5
File analysis 3 4
Executable allowlisting 4 2
Dynamic analysis 5 1
Emulated file analysis 6 6
Decoy file 7 8
Asset vulnerability 8 11
Executable denylisting 9 9
Configuration inventory 10 10
System init config analysis 11 7

The analysis of the ranking results of both shows that IDDA gives approximately the same result
as Akbar et al.’s algorithm [38], which proves the effectiveness of IDDA. To further validate the
reasonableness and accuracy of our ranking result, we analyze the above eleven defense techniques
using expert knowledge and select the four most effective ones. In the list ranked by the IDDA, the
four most effective defense techniques selected overlap three of the top four in the list, while using the
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algorithm of Akbar et al. [38], the four most effective defense techniques selected only overlap two of
the top four, which shows that the IDDA is more accurate and reliable.

6.4.2 Statistical Analysis

The three indicators in Table 21 are used simultaneously by IDDA for calculation, while indicator
1 is the sole indication used by Akbar’s algorithm. The outcomes are contrasted for the four cases in
Table 21 to demonstrate the effectiveness of the remaining indicators used in IDDA:

Table 21: Indicators of recommendation and the four cases

Indicator 1 The similarity of the textual description of defense techniques and attack techniques
Indicator 2 The probability of using each defense technique against the attack tactics
Indicator 3 The number of digital artifacts covered by the defense technique
Case1 indicator 1 (Akbar’s algorithm)
Case2 indicator 1 + indicator 2
Case3 indicator 1 + indicator 3
Case4 indicator 1 + indicator 2 + indicator 3 (IDDA).

We randomly select one hundred attack techniques from the ATT&CK matrix and recommend
the relevant defense techniques in the above four cases, obtaining four hundred sets of ranking
results of defense techniques in total. In keeping with the principle of the prior experiment, we use
expert knowledge to examine all defense techniques in each group and select the four most effective
techniques. The top four in the ranked list are compared with the four most effective defense techniques
to calculate the number of overlaps between the top four and the most effective defense technique. We
counted the number of overlaps in these four cases and calculated their probabilities. The comparison
results are shown in Fig. 11.

Figure 11: Number of overlaps and overlap probability
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According to Fig. 11, Case 4 has the best overall performance since it has the highest probability
of overlapping four, and the total probability of overlapping four and overlapping three is the highest,
although the probability of overlapping three is just slightly lower than Case 3. Case 1 performed
poorly, with the lowest probability of overlapping four and overlapping three as well as the highest
probability of overlapping two and overlapping one. Case 3’s curve trend resembles Case 4, whereas
Case 2’s curve trend falls between Case 1 and Case 4. The probability of overlapping three decreases
when indicator 2 is added to Case 3, indicating that indicator 3 has a more favorable impact on the
calculation. Even though adding indication 2 somewhat reduces the probability of overlapping three,
it increases the overall overlapping probability. So far, the effectiveness and superiority of IDDA have
been confirmed by the above evaluations.

7 Conclusion

In this work, we employ several cybersecurity knowledge bases as sources of information, integrate
multi-source information on items like the asset, vulnerability, weakness, attack pattern, attack
technique, defense technique, and counteracting activity, and organize relationships between them.
Based on this, we build the ADACO model and map it to the knowledge graph, resolving the semantic
heterogeneity issue and laying the foundation for knowledge retrieval. Nine inference rules that may be
used in an actual Internet situation have been developed for ADACO. Additionally, when the system is
under attack, ADACO combines the TEPA for predicting the threat propagation path and links threat
information to each compromised device. Finally, the IDDA gives security professionals a practical
means of making the most effective decisions in the case of an assault.

For future work, firstly, the threat propagation path algorithm does not consider the case where
multiple post-permissions must be satisfied simultaneously to compromise a particular device. So, we
will further refine the classification of the types of vulnerabilities and the required permissions to
fill the gap. Secondly, we will provide ADACO with more threat elements on malicious families to
automate attack attribution. Finally, the experiment shows that the indicator “the number of digital
artifacts covered by the defense technique” plays a more positive role in the IDDA. As a result, we will
try to increase the weight of this indicator to improve the overall probability of overlapping, thereby
improving the accuracy of the defense technique recommendation.
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