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ABSTRACT

In recent years, Pix2Pix, a model within the domain of GANs, has found widespread application in the field
of image-to-image translation. However, traditional Pix2Pix models suffer from significant drawbacks in image
generation, such as the loss of important information features during the encoding and decoding processes, as
well as a lack of constraints during the training process. To address these issues and improve the quality of Pix2Pix-
generated images, this paper introduces two key enhancements. Firstly, to reduce information loss during encoding
and decoding, we utilize the U-Net++ network as the generator for the Pix2Pix model, incorporating denser
skip-connection to minimize information loss. Secondly, to enhance constraints during image generation, we
introduce a specialized discriminator designed to distinguish differential images, further enhancing the quality
of the generated images. We conducted experiments on the facades dataset and the sketch portrait dataset from
the Chinese University of Hong Kong to validate our proposed model. The experimental results demonstrate that
our improved Pix2Pix model significantly enhances image quality and outperforms other models in the selected
metrics. Notably, the Pix2Pix model incorporating the differential image discriminator exhibits the most substantial
improvements across all metrics. An analysis of the experimental results reveals that the use of the U-Net++
generator effectively reduces information feature loss, while the Pix2Pix model incorporating the differential image
discriminator enhances the supervision of the generator during training. Both of these enhancements collectively
improve the quality of Pix2Pix-generated images.
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1 Introduction

Image-to-image translation [1] is one of the most prominent tasks in the field of computer
vision, which has been widely applied in photography and engineering processing. The task aims
to establish a mapping function between the source domain image and the target domain image,
enabling the conversion between images, such as black-and-white photos to color photos, semantic
segmentation images to real-world images, realistic images to oil painting style images, etc. Common
image engineering tasks such as image denoising and image super-resolution reconstruction also
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belong to the image-to-image translation task. Therefore, researchers have proposed various deep-
learning models to accomplish the image translation task.

In 2017, Isola et al. proposed the Pix2Pix framework [1] based on conditional generative adver-
sarial networks [2], which are designed from the perspective of image-to-image translation tasks. It
is the first universal framework for image-to-image translation tasks and is almost compatible with
all single-domain image translation tasks. The Pix2Pix model has many advantages, such as a simpler
structure compared to other GANs, strong universality of the model, and a stable training process.
However, Pix2Pix also has some significant drawbacks. For example, the traditional Pix2Pix model is
prone to losing information features during the encoding and decoding process of image generation,
which results in poor-quality generated images. Moreover, during the image translation process, it is
easy to generate distorted images due to a lack of strong constraints.

Therefore, in this paper, we aim to address the above-mentioned shortcomings of the Pix2Pix
model and propose the following improvements:

(1) To reduce information loss, we use a more densely connected U-Net++ as the generator
instead of the original U-Net generator and improve the convolutional blocks of U-Net++ to make
it more suitable for image translation tasks.

(2) We add a special discriminator to the original Pix2Pix network framework to enhance the
constraints during the image translation process. This discriminator discriminates the different images
between the source domain and target domain images. We name it the Difference Image Discriminator.

2 Related Work
2.1 Early Image-to-Image Translation Models

Early image-to-image translation models required the establishment of different domain models
for different tasks. For example, in 2001, Efros proposed the Image Quilting model [3], which is suitable
for generating texture details on images, Chen et al. proposed the Sketch2Photo model in 2009 [4],
which can convert sketches into realistic images, and Laffont et al. proposed the Transient Attributes
model in 2014 [5], which can perform seasonal transformations on outdoor images. These models are
only suitable for specific tasks and specific datasets, which greatly hindered the development of image-
to-image translation. However, with the introduction of generative adversarial networks (GANs) by
Goodfellow et al. in 2014 [6], these obstacles were fundamentally alleviated.

2.2 The Development of GANs in the Field of General Image-to-Image Translation

In 2017, Isola et al. proposed a general framework for image-to-image translation called Pix2Pix
[1]. Pix2Pix has shown superior performance on multiple image-to-image translation tasks, and its
model structure is simpler than other image-to-image translation models, with stronger training
reliability. The original Pix2Pix model was improved based on conditional GANs, and the overall
framework still consists of a generator and a discriminator. The network architecture of Pix2Pix is
shown in the following diagram.

Fig. 1 is drawn based on an image-to-image translation task of converting sketch portraits
to realistic portraits. As shown in Fig. 1, the generator part consists of a U-Net [7], with feature
fusion performed using Skip-Connect from ResNet in the intermediate layers. The discriminator
part is composed of a Markov discriminator, which is different from the discriminator in other
generative adversarial networks in that the typical discriminator outputs a single value (real or fake)
to discriminate the entire input image, while the Markov discriminator segments the whole image into
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several patches and discriminates the authenticity of each patch, outputting multiple values, each of
which evaluates the authenticity of the corresponding patch.

Figure 1: The structure diagram of the Pix2Pix

The optimization function of the Pix2Pix model is as follows:

G∗ = arg min
G

max
D

LcGAN (G, D) + λLL1 (G) (1)

where LcGAN (G, D) is the loss function of the conditional GANs, and LL1 (G) is the added L1 norm to
enhance the convergence of the objective function, improve the quality of images generated by Pix2Pix,
and speed up the convergence rate. The specific expression is as follows:

LcGAN (G, D) = Ex,y [log D (x, y)] + Ex [log (1 − D (x, G (x)))] (2)

LL1 (G) = Ex,y [||y − G (x) ||1] (3)

Although the Pix2Pix model has shown significant progress compared to previous models in the
field of image-to-image translation, there is still significant room for improvement in terms of the
quality of generated images.

After the proposal of the Pix2Pix model, GANs quickly advanced in the domain of image trans-
lation tasks. CycleGAN, introduced by Zhu et al. in 2017 [8], is a model capable of performing image-
to-image translation without paired data. CycleGAN consists of two separate generative adversarial
networks that respectively translate images from one domain to another. To enhance the accuracy of
the translations, CycleGAN incorporates a cycle consistency loss into the objective function, ensuring
the consistency of the transformations. The introduction of CycleGAN has significantly alleviated the
challenge of acquiring paired datasets.

In 2017, Liu et al. proposed the Unsupervised Image-to-Image Translation Network (UNIT) [9].
UNIT assumes the existence of a latent factor space, where input images are encoded into latent factors
and subsequently decoded into target domain images during the image-to-image translation process.
Multiple cycle-consistency losses are incorporated into the objective function of the UNIT to improve
the stability of the training process and enhance the quality of the generated images.

In 2018, Huang et al. proposed the Multimodal Unsupervised Image-to-Image Translation
(MUNIT) [10], which enables translation across multiple target domains, whereas traditional image-
to-image translation models only cater to single-modal image-to-image translation tasks. MUNIT
assumes the existence of two distinct factor spaces: a content factor space and a style factor space. The
content factor space is shared across different domains, while the style factor space is domain-specific
and non-shareable. By combining a content factor with different style factors and going through the
decoding process, images from different target domains can be translated.
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Starting in 2018, the development of GANs in the domain of general image-to-image translation
has slowed down. However, with the emergence of new models like GPT by OpenAI and Segment
Anything by Meta in 2022, researchers have intensified their efforts in the study of Artificial General
Intelligence (AGI). Consequently, we believe that further innovation and improvement in GANs for
general image-to-image translation are highly meaningful in the current context.

2.3 The Development of GANs in the Field of Specific Image-to-Image Translation

Since 2018, GANs have exhibited remarkable progress in specific image translation tasks. Among
these, StarGAN [11] stands out as a model specialized in facial transformation, facilitating translations
across multiple target domains. StarGAN successfully overcomes the previous limitations of facial
transformation models, which were confined to binary domain conversions, thereby enhancing the
flexibility of translations to other domains. In 2019, StarGAN-V2 [12] was introduced, incorporating
the concepts of style diversity and domain diversity to further enhance the quality of transformations.

PSGAN, introduced in 2021 [13], represents the pioneering attempt to employ GANs for gener-
ating high-quality pan-sharpened images. PSGAN accepts panchromatic and multispectral images as
input and maps them to the desired high-resolution images while selecting the optimal solution from
various architectures and designs.

In 2022, Amirkolaee et al. proposed a specialized GAN model for medical image translation at
the image level. This model effectively combines local and global features, resulting in commendable
performance [14].

2.4 The Development of GANs in the Field of Multimodal Image-to-Image Translation

Since 2019, multimodal tasks have become a mainstream direction in the development of deep
learning models [15–18]. As a result, there have been several multimodal models [19–23] in image-to-
image translation. For example, in 2019, Park et al. proposed GauGAN [19], which transforms an
image by inputting a semantic mask and its corresponding real image, producing impressive results.
In 2022, Yan et al. proposed MMTrans [20], which is based on the Swin Transformer and GAN for
medical image translation.

Since 2022, large-scale models based on diffusion models [24–26] and CLIP [27] technology have
gained significant attention in the field of text-to-image and image translation, causing a global
sensation in AI art with generated images surpassing those generated by GANs in terms of image
quality. However, in practical commercial applications, generative adversarial networks have matured
significantly, and it is expected that they will remain one of the main models in the field of image
generation for a considerable period. Therefore, researching generative adversarial networks in the
field of image translation is still of great significance in the present and future.

3 Models and Methods
3.1 U-Net++ Generator

The original Pix2Pix uses a U-Net network as the generator to generate images. The U-Net
network was proposed by Ronneberger in 2015 and plays a crucial role in medical image and semantic
segmentation fields. As shown in Fig. 2, the U-Net network consists of two parts. The first part is
the encoder, which is composed of multiple downsampling layers. The input image is encoded by the
encoder to extract deep information. The second part is the decoder, which is composed of multiple
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upsampling layers. The deep information extracted by the encoder is decoded by the decoder. To reduce
information loss in this process, skip connections from ResNet are used.

Figure 2: The structure diagram of the U-Net

Although the U-Net network performs remarkably well in image-to-image translation tasks such
as medical image segmentation, it has some significant drawbacks. For instance, researchers cannot
determine the optimal depth of the network, and the addition of skip connections for feature fusion
in U-Net imposes an unnecessary constraint by only allowing skip connections between feature
maps of the same scale. Due to this constraint, U-Net’s feature fusion significantly affects the image
quality generated by the network, leading to some unnecessary information loss. Therefore, if Pix2Pix
continues to use U-Net as its generator, the quality of the generated images will inevitably be affected
for the same reasons. Fortunately, effective solutions have been proposed to address these drawbacks.

In 2020, Zhou et al. proposed the U-Net++ [28], which is a very powerful model that improves
upon the U-Net. It effectively overcomes the shortcomings of the original U-Net. As shown in Fig. 3
[28], the U-Net++ network uses denser and more clever skip connections, allowing for feature fusion
of information extracted at different scales and depths. Multiple decoders can share or partially share
the same encoder, which largely avoids unnecessary information loss.

Our improved Pix2Pix model, in terms of the generator, abandons the traditional U-Net and
adopts the U-Net++ for image generation. However, during the initial experimental verification, it
was found that a large amount of noise interference appeared in the generated images after adversarial
training using the original U-Net++ generator. After analysis and consideration, it was believed
that this was because U-Net++ was proposed for the special task of medical image segmentation,
which can also be seen as a classification problem. Therefore, the U-Net++ used VGG block, which
is suitable for classification tasks, but not for other image-to-image translation tasks. To make the
generator more adaptable to a wider range of image-to-image translation tasks, the block used in
this paper’s U-Net++ consists of a stridden convolution layer, a channel normalization layer, and a
Dropout layer, which performs better than the VGG block on non-image-segmentation-tasks.

It is evident from Fig. 4 that the face generated by the U-Net++ before improvement has some
facial features that are not only more blurred but also have some light blue noise interference. The
improved U-Net++ generates higher-quality images in the task of generating facial images, resulting
in more natural and brighter facial expressions with no noise interference on the face.
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Figure 3: The structure diagram of the U-Net++

Figure 4: Comparison of generated images before and after improvement of U-Net++. (a) Images
generated by the original U-Net++ generator. (b) Images generated by the improved U-Net++
generator

3.2 Differential Image Discriminator

To further strengthen the constraints on the generated images, we have added a differential image
discriminator to the traditional Pix2Pix network structure. As shown in Fig. 5, the differential image
here is obtained by taking the difference between the target domain image and the source domain
image. This discriminator only discriminates between the two types of differential images generated.
If the discriminator receives the differential image between the GroundTruth in the target domain and
the input of the generator, it is judged as true; if it receives the differential image between the fake
target domain image generated by the generator and its input, it is judged as false.

The network structure of Pix2Pix with the addition of a differential image discriminator is shown
in the following Fig. 6.
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Figure 5: Example of differential image. (a) Real target domain images. (b) Source domain image
inputted to the generator. (c) The difference image is obtained by subtracting the source domain image
from the target domain image

Figure 6: The network structure of the Pix2Pix with differential image discriminator

If we consider the image generation process of the generator in the Pix2Pix network as a simple
addition model:

x + ĝ = G (x) (4)

In this context, x represents the input image to the generator, G (x) is the output image generated
by the generator, and ĝ is the additional data that the generator needs to simulate. The differential
image discriminator proposed in this article is used to discriminate between the generated additional
data ĝ and the real additional data g, thereby providing stronger guidance to the generator during the
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training process. Correspondingly, the optimization function used during the training of the Pix2Pix
network has also changed. The optimization function of the Pix2Pix network in this article is:

G∗ = arg min
G

max
D,Ddiffer

LcGAN

(
G, D, Ddiffer, ĝ, g

) + λLL1 (G) (5)

The specific formula for LcGAN

(
G, D, Ddiffer, ĝ, g

)
and LL1 (G)is:

LcGAN

(
G, D, Ddiffer, ĝ, g

) = Ex,y [log D (x, y)] + Ex [log (1 − D (x, G (x)))]

+ Ex,g

[
log Ddiffer (x, g)

] + Ex,ĝ

[
log

(
1 − Ddiffer

(
x, ĝ

))]
(6)

LL1 (G) = Ex,y,z [y − G (x)] (7)

In this case, G represents the generator, D represents the regular discriminator, Ddiffer represents
the differential image discriminator proposed in this chapter. x is the input source domain image, y
is the real target domain image, G(x) is the fake target domain image generated by the generator, g is
the differential image between the real target domain image and the source domain image and ĝ is the
differential image between the fake target domain image and the source domain image.

From the above formula, it can be seen that the objective optimization function of Pix2Pix based
on the differential image discriminator has a significant change compared to the original Pix2Pix
objective optimization function at Eq. (1). This can be considered in adding a strong constraint to
the entire Pix2Pix network on the original basis, which can more effectively guide the training of the
generator, allowing the generator to more smoothly generate the required additional data.

4 Results
4.1 Experimental Environment and Model Training Steps

We selected the open-source facades dataset and the CUHK Sketch Portrait Dataset for model
training and validation. As shown in Table 1, the former consists of 606 images of buildings and
their corresponding label maps, with 400 images used for training, 100 images used for testing, and
106 images used for validation. The latter consists of 188 facial images of CUHK students and their
corresponding face sketch images, with 168 images used for training, 10 images used for testing, and
10 images used for validation.

Table 1: Dataset distribution

Dataset Training dataset Testing dataset Validation dataset

Facades 400 100 106
CUHK 168 10 10

The model was trained on a Linux system with a 4-core Intel(R) Xeon(R) Gold 6330 CPU and
one NVIDIA GeForce RTX 3090 GPU. The programming language used was Python 3.8, and the
deep learning framework employed was PyTorch 1.8 with CUDA version 11.1. The training process
consisted of 100 epochs with a batch size of 8.

The pseudo-codes for training the original Pix2Pix and the Pix2Pix with the U-Net++ generator
are shown below:
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Algorithm 1: Pix2Pix training algorithm
Input: y ∼ Pdata (y) , x ∼ Pdata(x)

Output: G (x) , D(y, x)

1: for 100 do
2: Sampling from the distribution of input images, with a sample size of 10, results in the set

X = (x1, x2, x3, . . . , x10).
3: Sampling from the distribution of target domain images, with a sample size of 10, results in the

set Y = (y1, y2, y3, . . . , y10).
4: To update the parameter weights of the discriminator using the following gradient:

∇θd

1
10

10∑
i=1

[log D (yi, xi) + log (1 − D (G (xi) , xi))]

5: To update the parameter weights of the generator using the following gradient:

∇θg

1
10

10∑
i=1

[log (1 − D (G (xi) , xi)) + ‖ yi − G (xi) ‖1]

6: end for
7: return G (x) , D(y, x)

The pseudo-code for training our joint model is presented as follows:

Algorithm 2: Our joint model training algorithm
Input: y ∼ Pdata (y) , x ∼ Pdata(x)

Output: G (x) , D (y, x) , Dd(g, x)

1: for 100 do
2: Sampling from the distribution of input images, with a sample size of 10, results in the set

X = (x1, x2, x3, . . . , x10).
3: Sampling from the distribution of target domain images, with a sample size of 10, results in

the set Y = (y1, y2, y3, . . . , y10).
4: Obtaining two types of differential image samples: g = (

g1, g2, g3, . . . , g10
)

,
ĝ = (ĝ1, ĝ2, ĝ3, . . . , ĝ10).

5: Updating the parameter weights of the regular discriminator using the following gradient:

∇θd

1
10

10∑
i=1

[log D (yi, xi) + log (1 − D (G (xi) , xi))]

6: Updating the parameter weights of the differential image discriminator using the following
gradient:

∇θd

1
10

10∑
i=1

[
log Dd (gi, xi) + log

(
1 − Dd

(
ĝi, xi

))]
7: To update the parameter weights of the generator using the following gradient:

∇θg

1
10

10∑
i=1

[
log (1 − D (G (xi) , xi)) + log

(
1 − Dd

(
ĝi, xi

))+ ‖ yi − G (xi) ‖1

]
8: end for
9: return G (x) , D (y, x) , Dd(g, x)

4.2 Evaluation Metrics

In terms of selecting evaluation metrics, the quality of the images generated by the image
generation model was evaluated. Besides directly showing the generated images, there are no very
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comprehensive objective metrics both domestically and abroad. Metrics such as peak signal-to-noise
ratio (PSNR) and mean squared error (MSE) only calculate the pixel value differences between the
real image and the generated image, and cannot reasonably compare the overall structure, texture,
brightness, color, and other features between the images. Therefore, for the images generated by
generative adversarial networks, researchers generally use the Inception Score (IS) [29] and Fréchet
Inception Distance (FID) [30] to evaluate the generated images, which simulate subjective evaluation
by the human eye. Therefore, this paper selects Inception Score, Fréchet Inception Distance, and
Structural Similarity (SSIM) [31] as evaluation metrics.

The formula for the Inception Score is as follows:

IS (G) = exp
(
Ex∼pg DKL (p (y|x) ||p (y))

)
(8)

where x is the generated image, p (y|x) is the class probability distribution obtained by inputting x
into the Inception V3 classification neural network, and p (y) is the marginal distribution probability
obtained by averaging the predicted class probabilities for each generated image. DKL is the KL
divergence from p (y|x) to p (y). From Eq. (8), it can be seen that IS only measures the distance between
input images and the ImageNet dataset.

The specific formula for Fréchet Inception Distance (FID) is as follows:

FID (y, x) = ||μy − μx||2
2 + Tr

(∑
x
+

∑
y
−2

(∑
x

∑
y

) 1
2
)

(9)

where x represents the generated image, y represents the real image, and assuming that both follow
high-dimensional distributions, the statistics are denoted as (μx,

∑
x) and (μy,

∑
y). From the above

formula, it can be seen that FID measures the distance between two distributions. Therefore, the
smaller the value of FID, the closer the generated image data distribution is to the real image data
distribution. In addition, because FID is calculated based on the features that appear in the image, it
cannot calculate the spatial position relationship between features, so FID has some controversy.

The specific formula for Structural Similarity (SSIM) is as follows:

SSIM (x, y) =
(
2μxμy + c1

) (
2Σxy + c2

)
(
μx

2 + μy
2 + c1

) (
Σx

2 + Σy
2 + c2

) (10)

Here, x and y represent individual sampled images from the generated and real images, respec-
tively, μx and μy are the estimated pixel value means for x and y, Σx and Σy are the estimated variances,
c1 = (k1L)

2, c2 = (k2L)
2, where L is the range of pixel values, k1 = 0.01, k2 = 0.03. Therefore, the SSIM

metric can only measure a single sampled image at a time. In this paper, the SSIM was computed for
100 generated and corresponding real images, and the mean value was taken.

4.3 Experimental Analysis

4.3.1 Optimal Depth Exploration of U-Net++ Generator

U-Net++ performs well when the depth is constrained. For example, for a certain task, the
optimal depth of the U-Net model is L4, but even when the depth of the U-Net++ model exceeds
4 (such as L6 or L8), its performance can still be comparable to or even better than the U-Net model
at L4. However, when the optimal depth of the U-Net model is greater than the maximum depth of the
U-Net++ model, the performance of U-Net++ will be worse than that of U-Net. Therefore, before
conducting empirical analysis based on the U-Net++ generator in Pix2Pix, it is necessary to explore
the maximum depth of U-Net++. We conduct exploration experiments using the facades datasets.
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Based on Fig. 7, it can be visually perceived that as the depth of the U-Net++ generator increases,
the quality of the generated images gradually improves. Among them, it is difficult to conclude the
quality of the images generated by the U-Net++ generator with a depth of 6 and the one with a depth
of 8, but it can be observed that the difference between them is very small and the improvement range
is also very small.

Figure 7: Empirical results of Pix2Pix with U-Net++ generators at different depths. (a) Real target
domain images. (b) Images generated by U-Net++ generator with a depth of 2 in Pix2Pix. (c) Images
generated by U-Net++ generator with a depth of 4 in Pix2Pix. (d) Images generated by U-Net++
generator with a depth of 6 in Pix2Pix. (e) Images generated by U-Net++ generator with a depth of 8
in Pix2Pix

Based on Table 2, it can be seen that the three selected evaluation metrics generally improve
with the increase of U-Net++ generator depth. Among them, the images generated by the U-Net++
generator with a depth of 8 achieved the best performance in the IS and SSIM evaluation metrics, while
the images generated by the U-Net++ generator with a depth of 6 achieved the best performance in
the FID evaluation metric.

Table 2: Performance metrics of U-Net++ at different depths

Model FLOPS IS↑ FID↓ SSIM↑
L2 11.21 G 1.315 231.4476 0.16713
L4 19.89 G 1.611 220.1723 0.19332
L6 28.12 G 1.729 200.1185 0.20892
L8 36.37 G 1.747 201.0625 0.20989

In addition, by observing the changes in the indicator data in the table, it can be understood that
the greatest improvement in each indicator occurred when the depth increased from 2 to 6, while the
improvement in each indicator was very small when the depth increased from 6 to 8, and entered a
stagnant state. The U-Net++ generators with depths of 6 and 8 are very close in all three evaluation
metrics. Therefore, considering all the evaluation metrics, this study determined the depth of the
U-Net++ generator to be 8.
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4.3.2 Experimental Results

For the task of semantic label-to-building image translation on the facades dataset, we select
CycleGAN and the original Pix2Pix as the base models and compare them with Pix2Pix using only
U-Net++ as the generator, Pix2Pix with only the differential image discriminator added, and Pix2Pix
using both U-Net++ generator and differential image discriminator. The comparison results are
shown in Fig. 8.

Figure 8: The validation results for the facades dataset. (a) GroudTruth: Real target domain images.
(b) Validation results generated by CycleGAN. (c) Validation results generated by Pix2Pix. (d) U-
Net++P2P: Validation results generated by Pix2Pix using U-Net++ generator. (e) Validation results
generated by Pix2Pix using differential image discriminator. (f) Validation results generated by Pix2Pix
using both U-Net++ generator and differential image discriminator

As shown in Fig. 8, compared with CycleGAN and the original Pix2Pix, the improved model
in this paper generates images with significant improvements in terms of image quality and clarity,
whether it is Pix2Pix using only U-Net++ as the generator (d), Pix2Pix with only the differential image
discriminator added (e), or the joint model in this paper. Among them, the results of the CycleGAN
network are the worst, which is because CycleGAN is an unsupervised model. In terms of image details,
the images generated by Pix2Pix using only U-Net++ as the generator and the joint model in this paper
have more delicate and clear details.

In the image-to-image translation task of transforming sketches into realistic portraits on the
Sketch Portrait Dataset at the Chinese University of Hong Kong, the same base models were selected
as in the previous experiment, and they were compared with the improved Pix2Pix model.

Based on the results shown in Fig. 9, on the sketch portrait dataset, the unsupervised CycleGAN
model performs the worst, with significant color differences and uneven color distribution compared
to the real images. Meanwhile, compared to the face images generated by the original Pix2Pix, the face
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images generated by the proposed model in this paper are closer to real images in terms of skin color
and facial pose. The generated face images are also brighter and more realistic.

Figure 9: The validation results for the Sketch Portrait Dataset at the Chinese University of Hong
Kong

Using the two datasets, validation images were generated for each model, and corresponding
evaluation metrics were selected for evaluation.

According to Table 3, Our improved Pix2Pix models outperformed the original model. The
Pix2Pix model with only U-Net++ as the generator had the largest improvement in the FID metric,
decreasing by 43 points, but had a smaller improvement in the IS and SSIM metrics. The Pix2Pix model
with only the differential image discriminator had the largest improvement in the IS and SSIM metrics,
increasing by 17.1% and 3.9%, respectively, but had a smaller improvement in the FID metric. The joint
model had the most evenly distributed improvement in all three metrics, with the largest improvement
in the FID and SSIM metrics, decreasing by 38 points and increasing by 2.5%, respectively.

Table 3: The index of each model on facades

Models FLOPS IS↑ FID↓ SSIM↑
CycleGAN 68.73 G 1.112 262.6379 0.03346
Pix2Pix 19.07 G 1.714 244.3743 0.19911
U-Net++P2P 36.37 G 1.747 201.0652 0.20989
Differ P2P 20.79 G 1.885 244.3423 0.238559
Joint model 38.09 G 1.737 206.3197 0.224668

In terms of computational complexity, the CycleGAN model has the highest complexity, reaching
68.73 G, due to its complex architecture consisting of two generators and two discriminators. The next
highest complexity is found in our proposed joint model, which reaches 38.09 G. This increase is mainly
attributed to the utilization of the U-Net++ generator. Both the Pix2Pix model with the differential
image discriminator and the original Pix2Pix model have relatively lower computational complexities,
with only a minor difference between them.
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According to Table 4, we can see that the three improved Pix2Pix models have all shown
improvements over the original model in both evaluation metrics. Among them, using only U-Net++
as the generator in Pix2Pix has shown the greatest improvement in the IS metric, with an increase of
28.3%. In the SSIM metric, the joint model has shown the greatest improvement, with an increase of
3.84%. In the comparison between U-Net++ Pix2Pix, Differ Pix2Pix, and the joint model, it can be
seen that the joint model has shown the most balanced improvement in both metrics.

Table 4: The index of each model on the Sketch Portrait Dataset

Models IS↑ SSIM↑
CycleGAN 1.2379 0.1947
Pix2Pix 1.3223 0.6190
U-Net++P2P 1.6036 0.6476
Differ P2P 1.4225 0.6374
Joint model 1.5700 0.6574

4.3.3 Experimental Comparison of Two Types of Discriminators

From Section 3.2, it can be seen that the differential image discriminator does indeed improve the
performance of Pix2Pix. However, empirical analysis in Section 3.2 alone is not sufficient to determine
whether the differential image works as expected. If an ordinary discriminator is added to the original
Pix2Pix network framework, can it also achieve the same level of performance improvement as the
differential image discriminator-based Pix2Pix?

To verify this issue, we set up an additional Pix2Pix model with a regular discriminator called the
dual-discriminator Pix2Pix, and compared it with the Pix2Pix model based on the differential image
discriminator and the original Pix2Pix.

Fig. 10 shows the results of the discriminator comparison experiments on the facades dataset and
the sketch-to-portrait dataset. It can be seen intuitively that the dual-discriminator Pix2Pix has indeed
improved the quality of the generated images to some extent compared to the original Pix2Pix, and
the images are also clearer, but the improvement is limited. The Pix2Pix based on the differential
image discriminator generates the best image quality. Compared with the images generated by the
dual-discriminator Pix2Pix, the brightness and darkness distribution of the images are more uniform,
and the picture is also more delicate.

Figure 10: (Continued)
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Figure 10: Example of verification results for comparative experiments. (a) GroudTruth: Real target
domain images. (b) Validation results generated by Pix2Pix. (c) DDPix2Pix: dual-discriminator
Pix2Pix. (d) Validation results generated by Pix2Pix using differential image discriminators

According to Table 5, based on the IS and SSIM metrics, the performance of the Pix2Pix model
with a differential image discriminator exceeds that of the original Pix2Pix and the dual-discriminator
Pix2Pix, achieving the best performance among the three. While the dual-discriminator Pix2Pix also
outperforms the original Pix2Pix in all aspects, the improvement is significantly less than that of
the differential image discriminator-based Pix2Pix. For example, on the facades dataset, compared
to the original Pix2Pix, the dual-discriminator Pix2Pix improves by only 3.3% on the IS metric, far
less than the 9.9% improvement of the differential image discriminator-based Pix2Pix. Similarly, on
the SSIM metric, the dual-discriminator Pix2Pix improves by only 5.5%, which is also smaller than
the 19.8% improvement of the differential image discriminator-based Pix2Pix. Therefore, it can be
concluded that the performance gain brought by adding a differential image discriminator far exceeds
that brought by adding a conventional discriminator. Based on the additive model assumption in
Section 2.3, differential images play a critical role in guiding the discriminator to identify the generated
content in the Pix2Pix model with a differential image discriminator.
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Table 5: The index of comparative experiments

Models Datasets IS↑ FID↓ SSIM

Pix2Pix facades 1.714 244.3743 0.19911
DD Pix2Pix facades 1.772 244.3516 0.21011
DifferPix2Pix facades 1.885 244.3423 0.23856
Pix2Pix sketch2portrait 1.3223 / 0.6190
DD Pix2Pix sketch2portrait 1.3913 / 0.6210
DifferPix2Pix sketch2portrait 1.4225 / 0.6374

5 Conclusion

The structure of the original Pix2Pix model was improved to address some limitations in
image-to-image translation tasks. The U-Net++ was adopted as the generator, and a differential
image discriminator was added. Experimental results demonstrated that the proposed improvements
effectively enhanced the image generation quality of the Pix2Pix model, resulting in clearer and more
detailed facial features. Furthermore, the experiments confirmed the crucial role of the differential
image in the performance improvement of the differential image discriminator. However, our proposed
joint model did not outperform the models with a single improvement in certain metrics, which may be
attributed to unknown interactions introduced by the combination of the two improvements. There-
fore, investigating how to mitigate these unknown effects can be considered in future research work.
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