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ABSTRACT

Low-light image enhancement methods have limitations in addressing issues such as color distortion, lack of
vibrancy, and uneven light distribution and often require paired training data. To address these issues, we propose a
two-stage unsupervised low-light image enhancement algorithm called Retinex and Exposure Fusion Network (RF-
Net), which can overcome the problems of over-enhancement of the high dynamic range and under-enhancement
of the low dynamic range in existing enhancement algorithms. This algorithm can better manage the challenges
brought about by complex environments in real-world scenarios by training with unpaired low-light images and
regular-light images. In the first stage, we design a multi-scale feature extraction module based on Retinex theory,
capable of extracting details and structural information at different scales to generate high-quality illumination
and reflection images. In the second stage, an exposure image generator is designed through the camera response
mechanism function to acquire exposure images containing more dark features, and the generated images are fused
with the original input images to complete the low-light image enhancement. Experiments show the effectiveness
and rationality of each module designed in this paper. And the method reconstructs the details of contrast and
color distribution, outperforms the current state-of-the-art methods in both qualitative and quantitative metrics,
and shows excellent performance in the real world.
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1 Introduction

With the rapid development of artificial intelligence, low-light image-enhancement technology
has been widely applied for pre-processing in advanced visual tasks. However, low-light images often
suffer from detail degradation and color distortion due to the shooting environment and technical
limitations. Balancing the image-enhancement effect and maintaining image realism are challenging
problems in low-light image enhancement. These problems can significantly affect the performance of
advanced downstream vision tasks. Therefore, improving visual quality and recovering image details
have become important research topics.

In the process of image enhancement, it is important to strike a balance between preserving
image details and maintaining overall image quality. This requires preserving the original details in
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well-exposed areas, while appropriately brightening the underexposed areas to achieve a high-quality
image. In addition, attention must be paid to balancing the brightness and contrast of the image
during enhancement. If only the brightness is increased globally, the texture details in the image
may be lost. Therefore, both brightness and contrast changes must be considered when enhancing
an image to ensure its quality. Traditional methods [1–3] in the past often required a large amount
of manual parameter adjustment to improve image quality; however, this method has significant
limitations, as its effectiveness is largely based on assumptions regarding the threshold range. The use
of low-light/normal-light images in supervised deep model training has become the main approach
in algorithm research owing to advancements in deep learning. The accuracy of supervised learning
methods depends on paired training datasets. However, it is technically difficult to obtain paired
datasets from the same scene. In addition, the algorithm has poor generalization ability and cannot be
effectively applied to real-scene images. In recent years, unsupervised image enhancement algorithms
have emerged that eliminate reliance on paired datasets and achieve good enhancement results. For
example, Deep Light Enhancement without Paired Supervision (EnlightenGAN) [4] uses unpaired
datasets to train and implement low-light image enhancement techniques. Zero-Reference Deep Curve
Estimation (Zero-DCE) [5] achieves enhancement using scene images with different illumination
intensities. Although these methods eliminate the dependence of deep learning techniques on paired
datasets, the quality of enhancement remains a challenge. The EnlightenGAN [4] method may produce
artifacts, an overall uneven picture, and color-recovery errors when enhancing dark areas. Images
enhanced using the Zero-DCE [5] method may exhibit whitish tones and less vibrant colors. These
methods exhibit stronger generalization ability than supervised methods and reduce the requirements
for dataset collection.

To address these issues, we propose an unsupervised enhancement network called RF-Net, which
combines Retinex with exposure fusion. The network comprises two stages: image decomposition
and exposure fusion. In the first stage, to fully consider contextual and global information, we
employed the powerful image-generation capabilities of a generative adversarial network and designed
a multi-scale feature-extraction module to produce high-quality illumination and reflection images.
Specifically, our network uses a multi-scale feature extraction module to perceptively capture different-
scale features, preserve more detailed information, and avoid information loss between layers by
using residual connections to transmit information from the current layer to the next layer. Most
existing Retinex-based image enhancement methods obtain illumination and reflection component
information matrices and generate enhanced images through calculations, which not only involve high
computational complexity but also result in artifacts when processing shadow parts in dark areas.
After obtaining the illumination and reflection images, an exposure image generator with correction
coefficients was designed using the camera response function in the second stage to generate the
exposure image and fuse it with the original low-light image to complete low-light image enhancement.
The results obtained using the proposed method are shown in Fig. 1.

In summary, the main contributions of this paper are as follows:

1. We devised a multi-scale feature-extraction module to produce high-quality illumination
and reflection images. We incorporated a Coordinate Attention (CA) module that includes
position-encoding information into the Markov discriminator. This module builds on channel
attention and pays closer attention to the location information of the generated image, allowing
for more accurate discrimination of texture details and improving the quality of the images
generated.

2. We improved the original Retinex formulation and designed an exposure image generator
module with correction coefficients by referring to the camera response mechanism function.
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This module can generate images with different exposure levels while fusing illumination and
reflection images.

3. We proposed a novel unsupervised image enhancement method called RF-Net, which exhibits
excellent performance in test results on several datasets and can be generalized to real-world
low-light conditions.

Figure 1: Representative enhancement results of RF-Net. Which can improve over-enhancement in the
high dynamic range and under-enhancement in the low dynamic range

2 Related Work

In this section, we review research on low-light image enhancement using traditional and deep
learning methods.

2.1 Traditional Methods

Histogram equalization is a classical image-enhancement method that enhances the contrast of
an image by adjusting its brightness distribution. However, histogram equalization tends to cause
image noise and over-enhancement problems. Some methods further increase the enhancement effect
by setting a threshold to divide the image blocks [6], dividing the clipping points into chunks for
processing [7], and combining them with adaptive gamma correction [8] to obtain a more reasonable
S-shaped mapping function. However, these methods lead to problems of over-enhancement and
amplification artifacts. The contrast was enhanced to an extent, but the details were lost. Retinex
theory [9] posits that an image’s brightness is composed of two parts, reflection, and illumination,
which enhance the image quality by separating these two parts. However, this approach is ineffective
for images that are too dark or bright. Accordingly, researchers have proposed various improvement
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schemes [1–3], etc. This presupposes that spatial illumination changes slowly during implementation,
but the processing is prone to halation and inaccurate color recovery. To reduce the computational
cost in Retinex theory, researchers have proposed Low-Light Image Enhancement via Illumination
Map Estimation (LIME) [10], the local illumination distribution of the image obtained by analyzing
the local information. The local illumination distribution is applied to the reflection component to
obtain the enhanced image. Compared with the Retinex method, LIME reduces the occurrence of halo
artifacts during processing. However, LIME has a limited ability to distinguish between the foreground
and background of an image, which can result in over-enhancement of the foreground and noise in
the background.

2.2 Deep Learning Methods

Researchers have widely employed deep learning for image enhancement over the past decade,
achieving promising results. In the following section, we review the current state of research on fully
supervised, semi-supervised, and unsupervised approaches.

2.2.1 Fully Supervised Methods

The use of paired datasets to train network models has been widely adopted because of the one-
to-one correspondence between the training data. RetinexNet [11], for the first time, combines Retinex
theory with Convolutional Neural Networks to implement the low-illumination image enhancement
problem by designing a decomposition module, and enhancement module. The feasibility of the
Retinex application in deep learning was demonstrated for the first time. Kindling the Darkness
(KinD) [12] designed global and local enhancement modules, where the global module extracts global
luminance based on Retinex decomposition, and the local module enhances the image texture details.
The global and local modules interacted through an adaptive mechanism, and the difference between
the image generated by the global enhancement branch and the original image was used to calculate
the weight of each pixel. These weights were then passed to the local enhancement branch to achieve
contrast enhancement. KinD++ [13] is based on KinD and improves the training speed and accuracy
of the model by designing group learning and back-propagation mechanisms. GLobal Illumination-
aware and Detail preserving Network (GLADNet) [14] generates a global before light by designing
a global illumination estimation module that is then combined with the original input image to
produce an enhanced image. Low-Light Image Enhancement with Normalizing Flow (LLFlow) [15]
uses adaptive weights to control the effects of optical flow and global constraints; it also uses a deep
learning model to learn the optical flow and the image to obtain an enhanced image. Self-Calibrated
Illumination (SCI) [16] reduces computational costs by designing an adaptive correction illumination
module that ensures the convergence of the results of each training phase to the final one. The literature
[17] designs a generative adversarial network containing dual attention units that can effectively inhibit
the artifacts and color reproduction bias generated during the enhancement. Transformer Photo
Enhancement (TPE) [18] uses a pure transformer architecture to implement image enhancement
based on multi-stage curve adjustment. Retinex based deep unfolding network (URetinex-Net) [19]
decomposes the input image by designing a continuous optimization model with mutual feedback.
To optimize the decomposition results, an implicit a priori regularization model was used, and a data
initialization module, specific illumination intensity module, and denoising detail retention module
were designed. Illumination Adaptive Transformer (IAT) [20] implements low-light enhancement by
designing a lightweight transformer model that uses attention-query techniques to represent and adjust
the parameters associated with the image signal processor (ISP).
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2.2.2 Semi-Supervised Methods

These methods can learn better feature representations using both paired and unpaired data. First,
researchers use paired datasets to train and obtain prior knowledge, and then they use the trained
model as pre-training weights for unpaired data training. Based on this subdivision, Deep Recursive
Band Network (DRBN) [21] introduces a recursive network architecture that uses the information of
the highlight and shadow regions of the image and constructs a low-rank matrix and a sparse matrix to
represent the brightness and structural information of the image, then inputs the two matrices into two
branches of the network for feature extraction, and finally merges them to obtain an enhanced image.
DRBN [22] utilizes a “band representation” technique to enhance low-light images. This method
decomposes a low-light image into multiple bands using band representation and trains a neural
network with a small amount of labeled data to learn how to enhance each band. Thus, this method
retains the detail and texture information of a low-light image, thereby enhancing its quality.

2.2.3 Unsupervised Methods

Obtaining paired datasets can be difficult and using unsupervised methods has become the
main approach for accomplishing image-enhancement tasks. This approach improves generality and
applicability to many real-world scenarios. Exposure Correction Network (ExCNet) [23] is the first
unsupervised enhancement method that uses the powerful learning ability of neural networks to
estimate the most suitable “S” curve for low-light images and uses this curve directly to enhance the
image. low-light image enhancement network (LEGAN) [24] is enhanced by a cleverly designed light
perception module and a loss function that solves the overexposure problem. The EnlightenGAN [4]
completed its first unsupervised image enhancement using unpaired datasets. This design overcomes
the previous reliance on paired datasets by establishing unpaired mappings between low-light and non-
matching images and employing global-local discriminators and feature retention losses to constrain
the feature distance between the enhanced and origin images for enhancement. Zero-DCE [5] uses a
neural network to match a brightness mapping curve and then generates an enhanced image based on
the curve. Unsupervised low-light image enhancement was achieved by designing a multi-stage high-
order curve with a pixel-level dynamic range adjustment. Based on this, a lightweight version, Zero-
DCE++ [25], was developed. Generative adversarial network and Retinex (RetinexGAN) [26] uses
a generative adversarial network based on Retinex to design a decomposition network with a simple
two-layer convolution and achieve low-light image enhancement through image fusion. Restoration
of Underexposed Images via Robust Retinex Decomposition (RRDNet) [27] achieves enhancement
by designing a three-branch decomposition network and iterative loss functions to decompose the
three components of reflection, illumination, and noise module. Retinex-inspired Unrolling with
Architecture Search (RUAS) [28] used neural structure search to find an effective and lightweight set of
networks for low-light enhancement. Retinex Deep Image Prior (RetinexDIP) [29] proposes a Retinex-
based generation strategy that reduces the coupling between two components in the decomposition,
making it easier to adjust the estimated illumination to perform an enhancement.

3 Proposed Method

In this section, the first module introduces the overall structure of the RF-Net network and
provides a hierarchical representation of the first- and second-stage exposure-generation fusion
networks. The second module describes the designed exposure image generator, and the third module
describes the loss function.
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3.1 Network Architecture Design

The proposed RF-Net is a two-stage network with the overall structure shown in Fig. 2. In the
first stage, two coupled-generator frameworks were used. The R network generates reflection images,
whereas the L network generates illumination images. First, by cascading the maximum, minimum,
and mean values of each channel of the original low-light image as inputs to the network, a multi-scale
feature extraction module was designed to maintain the global consistency of good illumination and
contextual information. After basic feature extraction, the resulting features are concatenated and
mapped to high-dimensional information before being reduced in dimension through convolution,
thereby improving image quality while learning complex features. For the discriminator, we used
a VGG-based network structure in which the original Markov discriminator maps the input to an
N × N matrix, such that each point in the matrix corresponds to the evaluation value of each region. To
enhance the decomposition effect and discrimination accuracy of the network, we incorporated a CA
attention mechanism with positional information [30]. This further enhances the network’s ability to
perceive and understand images and spatial information, learn useful features, and suppress irrelevant
features, thereby improving the discriminator’s ability to accurately judge texture details.

Figure 2: Overview of RF-Net. First, the low-light image and the corresponding maximum, minimum,
and average grayscale images are input. The R and L have the same structure and are used to acquire
the illumination and reflection components, respectively. Then the exposure image is acquired by the
exposure generator. Finally, the low-light image is fused with the exposure image

The second stage also consists of two coupled networks that use the original input image and the
output of the first-stage network as inputs. At this stage, the output information from the first stage
is processed by the exposure image generator module to create the initial exposure image. The details
of this module are discussed in Section 2. The exposed image and original input image were then
separately fed into two-branch networks [31]. The two branches consist of a feature extraction module
(FE), a super-resolution module (SR), and a feature fusion module (CF). The FE module consists of
two convolution layers: SR uses the Convolutional Networks for Biomedical Image Segmentation
(U-net) structure to learn more advanced features, and the first two modules are used to extract
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advanced features from the input low-dynamic-range images. RE was employed for super-resolution
of the original input image before fusion to ensure the accurate extraction of high-level image features.
The final module is the image fusion module that combines the super-resolution outputs of the two
coupled networks and generates the output by weighting the super-resolution of the original image
and the outputs of the two coupled blocks.

3.2 Exposure Generation Module Design

We employed a design that combines Retinex with the camera response mechanism to create an
exposure image generator. In the original Retinex theory, the input image Soutput is represented as the
element-wise product of the illumination and reflectance components, which is expressed as Eq. (1):

Soutput = R × L (1)

The input image is denoted as S, the reflected image as R, the illuminated image as L, and
R × L denotes pixel-wise multiplication. However, numerous experiments have shown that the results
obtained from the original Retinex equation are over-enhanced and lose detail owing to noise
and uneven illumination. Therefore, we improved the original formula by first inverting the source
illumination image using Eq. (2) to better utilize the content in the relatively overexposed region.

Iinv = 1 − L (2)

The improved Retinex formula is represented by Eq. (3).

Sou = R + L + e9(1−α) × Iinv × Sin (3)

where L and R denote the illuminated and reflected images, respectively, S denotes the original input
low-light image, and Sou denotes the output result of the improved Retinex formula.

To maintain a balance between brightness and contrast, we re-designed the improved Retinex
formula using a camera response mechanism and proposed an exposure image generator. Here, we
refer to the camera response function described in [32], where the model parameters of the camera
response mechanism are determined by the camera’s parameters α, β and k. Parameter k is a correction
factor that can be adjusted to obtain images with different exposure levels. As the k value increases,
a brighter exposed image is acquired, and the details in the low-light areas become more significant;
however, when the k value is too large, more detailed information is lost because of an exposure level
that is too high. Therefore, we limited the value of k to a range of 2–6. The equation for generating the
initial exposure image by combining the improved Retinex and camera response functions is expressed
as Eq. (4).

Seo = eb(1−kα) ∗ Sou
(kα) (4)

where α and β are fixed parameters suitable for most cameras, with α set to −0.3293 and β set to
1.1258. Seo represents the output exposure image, and different values of k directly affect the resulting
output of Seo.

3.3 Loss Function

Adversarial loss: In [11,12], by decomposing a low-light image into illumination and reflection
components, the illumination components are approximately the same as those decomposed in a
normally exposed image. With only differences in brightness, the reflection component is the same as
the reflection component decomposed from the normal exposure image, which can be decomposed
into high-quality reflection components by noise reduction. This means that the distribution of
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normally exposed images is very similar to that of the original images based on Retinex decomposition.
Therefore, the original function [33] was used as an adversarial loss function to train the generator.
In practical applications, the generated fake and real input samples are encoded as zero and one,
respectively. Discriminators for the illumination and reflection maps were trained using squared error
as the objective function. Our adversarial losses are defined by Eqs. (5)–(8).
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where gL and gR denote the reflected and illuminated images, respectively, y3
mean denotes the average

grey scale value of each channel. y represents the ground-truth reflection map DL and DR represent
the discriminators for the illumination and reflection maps, respectively.

Perceptual loss: Using non-matching images for unsupervised image enhancement implies that
the pixels in the training images are not one-to-one. The same pixel may have different semantics in
different images. Therefore, we need a loss function to address the issue of non-corresponding pixel
positions, and the perceptual loss function serves this purpose. This function is typically defined in
the activation layer of a pre-trained network. By computing the distance between the activation layer
features, it can effectively quantify the fundamental attributes of an image as well as the differences
between its detailed features and high-level semantic information. This lays the foundation for
generating high-quality images. Unlike common perceptual losses, this study adopted the concept of
perceptual loss from [31]. This implementation not only maintains the luminance consistency between
the original and reference images but also recovers the details better. The perceptual loss function used
in this paper is given by Eq. (9).

�p = 1
CiHiWi

‖φi (y) − φi (g)‖2
2 (9)

where denotes the features extracted by the predefined network VGG19. CiHiWi denotes the number
of channels and the height and width of the feature map in layer i. y denotes the unpaired real image
information learned by the discriminator, g denotes the image generated by the generator.

The total loss function of the network is shown in Eq. (10).
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4 Experiment
4.1 Experimental Details

We trained the RF-Net model on 914 randomly selected pairs of asymmetric datasets using the
datasets provided in [4] and tested it on various datasets, including NPE [34], DICM [35], LIME [10],
MEF [36], and VV. These datasets contain various low-light and unevenly exposed images from both
indoor and outdoor settings. To demonstrate the performance of the enhancement algorithm better, we
selected images with significant exposure differences from each test set as test set, which made the test
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more challenging. The deep learning framework used was PyTorch, and the hardware configuration
was Tesla A100.

To ensure that the training of the network could fully utilize the computing and storage resources
of the computer and obtain better training results, the size of the training image was 640 × 400, and we
randomly cropped the training data into a face slice of size 300 × 300. The batch size was set to one.
To increase the data diversity, data expansion was performed, including random flipping, rotation,
and cropping. This allowed the network to adapt better to various image scenes. The Adam optimizer
was used to optimize the network, and the learning rate was set to 1e-4. Our network achieved better
enhancement results with no more than 50 training iterations.

4.2 Performance Evaluation

To demonstrate the advantages of our proposed RF-Net, we compared our method with 10 other
advanced methods: RetinexNet [11], EnlightenGAN [4], KinD [12], KinD++ [13] RUAS [28], Zero-
DCE [5], LLFlow [15], SCI [16], IAT [20], and GLADNet [14]. Among these, RetinexNet, KinD,
KinD++, RUAS, LLFlow, SCI, IAT, and GLADNet are supervised enhancement methods, whereas
[4] and [5] are unsupervised enhancement methods. To ensure fairness, tests were conducted using
the network parameters recommended in each study. Because we were unable to train the supervised
models on unpaired datasets, we evaluated them using pre-trained models saved in the original papers.
For unsupervised methods, if the original study used unpaired datasets for training, we used the
datasets provided by [4]. If the method used images with different exposures for training, we used
the datasets provided by [5]. Finally, the optimal model was selected for testing. These comparisons
enabled us to evaluate the performance of the RF-Net method and demonstrate its competitiveness in
image enhancement.

4.2.1 Qualitative Comparison

Figs. 3–5 show a visual comparison of the different algorithms for several special scenes. These
source images contain information on well-characterized scenes. However, the results of other com-
peting methods, particularly supervised methods, tend to lose the consistency of global information
after enhancement, resulting in over-enhancement. For example, in Fig. 3, we highlight the regions of
low-light and partial exposure. The results show that, in (b), the restoration of a person’s face produces
severe color deviation, whereas in (e), there are obvious artifacts on the face. Some task faces in (f), (i),
(j), and (k) are moderately enhanced, but details in a few of the exposed regions are completely lost. In
the other partially exposed image regions, the results were normal, but the enhancement was weak in
the low-light regions. In (c) and (g), the enhancement results are good, but artifacts appear on the face
of the person in (c), and the task face in (g) appears overexposed and has unsaturated colors. In Figs. 4f,
4i, and 4j, the sky details are severely lost, and the enhancement is not evident for the dark areas. In
contrast, (d), (e), and (h) managed to enhance the dark areas, but the noise in these areas was also
amplified. Several artifacts were produced; in (b), the image color was restored accurately, but there was
significant noise when zoomed in. For the unsupervised methods, Fig. 4c also exhibited a significant
color deviation, while (g) produced good results. In Fig. 5, the sky information was lost entirely in (f),
(i), and (j), and the color restoration was inaccurate in (h) and (k). In a comprehensive comparison, our
enhancement results successfully eliminated artifacts, enhanced the details, and achieved more natural
illumination and dark tones.
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Figure 3: Qualitative comparison of RF-Net with other advanced algorithms. See the patch area for
more detailed information

Figure 4: (Continued)
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Figure 4: Qualitative comparison of RF-Net with other advanced algorithms. See the patch area for
more detailed information

Figure 5: (Continued)
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Figure 5: Qualitative comparison of RF-Net with other advanced algorithms. See the patch area for
more detailed information

4.2.2 Quantitative Comparison

The subjective evaluation may not be sufficient for determining the degree of detail retention
during image enhancement. To demonstrate the feasibility of the proposed method further, we
conducted quantitative comparisons. As we used unsupervised methods for model training, we could
not evaluate the Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity (SSIM) of the enhanced
images to the ground truth, as with other supervised methods. Therefore, we used a non-referenced
image quality assessment metric to compare the RF-Net method with other competitors. The metrics
evaluated were Natural Image Quality Evaluator (NIQE) [37] and Blind/Referenceless Image Spatial
QUality Evaluator (BRISQUE) [38]. NIQE is a natural-image-based evaluation metric that compares
algorithm processing results with a model calculated based on natural scenes. BRISQUE is an
image-based no-reference quality score that is calculated based on natural scene images with similar
distortions. The metrics used to evaluate the performance of RF-Net compared with the other
algorithms are listed in Table 1. Based on the qualitative evaluation, the following issues were observed:
RetinexNet [11] resulted in inaccurate color restoration with color bias; KinD [12] did not significantly
enhance dark areas; KinD++ [13] introduced artifacts while enhancing dark areas; RUAS [28] over-
enhanced the image, causing loss of information; LLFlow [15] produced incorrect color restoration;
SCI [16] and IAT [20] over-enhanced the image and had insignificant enhancement in dark areas; Zero-
DCE [5] had lower metrics compared to other unsupervised methods, possibly due to the whitish image
produced by its enhancement results, as noted in the qualitative analysis. As shown in the graphs, the
enhancement results of RF-Net validated this. In summary, because both NIQE and BRISQUE are
methods based on local image statistical information, the impact of different algorithms on the small
differences in the achieved metrics after image enhancement is better illustrated in the quantitative
evaluation.

4.2.3 Subjective Evaluation of People

We also conducted a human subjective visual evaluation to further quantify the subjective quality
of RF-Net compared to the other methods. We randomly selected 20 original low-light images from
the test set (NPE [34], DICM [35], LIME [10], MEF [36], and VV) and applied four state-of-the-art
methods (EnlightenGAN [4], Zero-DCE [5], SCI [16], and IAT [20]) to each image separately. We
invited twelve reviewers to independently score the results of the five algorithms, including RF-Net.
The reviewers primarily observed the following aspects: 1. Whether the results contained artifacts in
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the over- or under-enhanced areas; 2. Whether the color restoration in the results was accurate (e.g.,
whether the colors were distorted); and 3. Whether the noise in dark areas was amplified, and whether
there was an obvious loss of texture details in the results. As can be observed from the statistics in
Fig. 6, RF-Net achieved a higher subjective evaluation score for the reviewed images.

Table 1: The NIQE (↓) and BRISQUE (↓) scores are shown, with lower scores indicating better image
quality and richer information contained. The averages of the test image metrics are taken for each of
the five datasets, and the five averages are eventually averaged again. The best result is shown in red
and the second-ranked result is shown in blue

Method DICM LIME MEF NPE VV Average

RetinexNet 4.31/26.50 4.83/24.33 4.90/26.04 4.14/29.23 2.90/23.38 4.21/25.89
EnGAN 2.79/23.71 3.49/23.03 3.01/25.69 3.00/24.88 2.25/23.04 2.90/24.01
KinD 3.45/30.60 2.91/26.72 3.37/30.43 3.13/23.73 2.67/27.79 3.10/27.85
KinD++ 3.42/28.10 3.55/27.49 3.48/30.03 3.36/25.42 2.74/24.89 3.31/27.19
RUAS 4.56/36.63 4.26/30.76 4.08/33.92 4.42/36.32 4.29/31.78 4.32/33.88
DCE-Net 3.26/31.40 4.10/23.60 3.31/25.48 3.22/24.58 2.66/18.97 3.31/24.86
LLFlow 3.10/27.91 4.04/26.68 3.52/27.07 3.29/27.84 2.80/24.98 3.35/26.88
SCI 3.70/32.58 4.26/22.74 3.43/26.48 3.42/30.38 3.01/21.36 3.56/26.71
IAT 3.29/35.91 3.47/35.14 3.04/33.83 3.22/32.59 2.86/35.68 3.17/34.63
GLADNet 3.28/28.23 3.01/23.88 3.17/22.91 2.95/25.63 2.51/23.40 2.98/24.81
Our 2.98/27.88 2.91/20.72 2.69/27.37 3.00/26.49 2.23/21.08 2.77/24.68

Figure 6: Overview of people’s objective evaluation, in each graph, the x-axis indicates the observed
quality of the five algorithms (1 for the best and 5 for the worst) and the y-axis indicates the number
of good and bad images corresponding to m each algorithm. RF-Net shows the best performance

4.3 Ablation Study

To demonstrate the effectiveness of the modules used, the following ablation studies were
conducted separately: three studies were designed in terms of CA removal, separation of inception
[39] from residual connectivity [40], and direct fusion of illuminated and reflected components.
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In Ablation Study 1, we experimented with the multiscale module, residual connection, and CA
attention separately, as shown in Fig. 7, we can observe from the visual results that zooming in on
the person above the house in the first image reveals that using only inception and the Markov
discriminator leads to a blurred task, whereas using both inception and residual linking with a Markov
discriminator produces more vivid colors and preserves more detailed information owing to residual
linking. Furthermore, using inception, residual linking, and an improved Markov discriminator leads
to a more realistic restoration of texture details, because the Markov discriminator has a clearer ability
to distinguish true from false. The reddish hue in our image is due to the reflected image generated by
the first stage of the network, which does not include knowledge of the illumination image or fusion
module.

Figure 7: Ablation study for each module. (a) Input, (b) w/o Multiscale, (c) w/o Residual, (d) w/o CA

In Ablation Study 2, we compared our method with the direct integration of light and reflection
components, as shown in Fig. 8. The color of the sky in the second column of the first row was
inaccurately restored, and the face of the person in the second column of the second row was
overexposed. The proposed method in the third column performs significantly better than the direct
fusion method.

In Ablation Study 3, we tested the designed exposure generator module by adjusting the value of
k to obtain images with different exposure levels and achieved exposure fusion. As shown in Fig. 9,
for different input images, we acquired images with varying exposure levels for fusion, with the k
values set differently in different scenarios. For example, in images without exposed areas, k values are
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usually set between 4–6, while in images with exposed areas, k values are typically set between 2–4. This
approach achieved the best enhancement when the exposed images were fused with the original low-
light images. Finally, we conducted a quantitative evaluation of the three sets of ablation studies. The
results in Table 2 show that adding the residual block to the inception and residual block combinations
produced superior performance. In addition, exposure fusion in the second stage of RF-Net exhibited
advantages. A comparison of the second and fourth experimental rows demonstrates the effectiveness
of RF-Net.

Figure 8: Direct fusion of illuminated and reflected components with RF-Net ablation study

Figure 9: Image decomposition and exposure generation fusion ablation study
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Table 2: Quantitative review of ablation studies for each module

Inception Res CA I∗R Ex-Fusion NIQE BRISQUE
√ × √ √ × 3.21 27.68√ √ √ √ × 3.03 27.50√ × √ × √ 2.97 26.75√ √ √ × √ 2.77 24.68

In Ablation Study 4, we use the low-light image and its corresponding Red, Green, Blue (RGB)
channels with the maximum, minimum, and average values as inputs to our network. The final network
input consists of six channels, with the first three channels used to generate the reflection map and the
last three channels used to generate the illumination map. In the generated illumination images, the
method used in this paper retains more details in the final generated illumination map compared with
the input of only the original low illumination image. The qualitative comparison in Fig. 10 shows
that in the first column, there are artifacts near the shoulders of the person in the illumination map
generated by the network with only low illumination input. In the second column, there is a noticeable
loss of detail in the wall of the house on the right. In the third column, there are artifacts near the
candle flame, and the grayscale boundary near the cup in the upper left corner is not clear; In the
fourth column, there is an excessive amount of detail in the cave, while the detail in the trees outside
the cave is lacking or insufficient. In Fig. 11, the grayscale histogram results show that our method
can generate a light map with smoother contrast and luminance changes, making the light and dark
parts more visible and details more prominent.

Figure 10: Qualitative comparison of illuminated images. (a) Input, (b) Low-light images as input,
(c) Ours
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Figure 11: Grayscale histogram. (a) Low-light image grayscale histogram, (b) Grayscale histogram
after low-illumination image as network input, (c) Ours

5 Conclusion

In this study, we combined Retinex theory with exposure fusion for the first time to achieve
unpaired low-light image enhancement. In the first stage, we designed a multi-scale generator by
combining a residual network and inception. We also added a CA attention mechanism with position
information to the discriminator network to obtain high-quality illumination and reflection compo-
nents. By improving the original Retinex and camera response mechanism functions, we designed an
exposure image generator with correction coefficients to solve the problems of illumination, reflection
image fusion, and exposure image generation. Based on this, we realized low-light image enhancement
with second-stage exposure fusion and proved the superiority of our method by comparing it with
state-of-the-art methods. However, the algorithm has some limitations. On the one hand, it requires
manual adjustment of the correction parameters for the exposure image generator based on the
scene’s exposure level. On the other hand, Compared to other lightweight networks, RF-Net processes
640 × 400 images at a rate of 5 frames per second. In the future, our research will focus on light-
weight the network structure and developing an adaptive low-light image enhancement method based
on negative feedback control to solve the manual tuning problem of existing methods. We also aim
to apply this model to enhance specific scenes, which will not only improve the generalization of the
algorithm but also enhance the accuracy of other vision tasks.
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