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ABSTRACT

In recent years, radiotherapy based only on Magnetic Resonance (MR) images has become a hot spot for
radiotherapy planning research in the current medical field. However, functional computed tomography (CT) is
still needed for dose calculation in the clinic. Recent deep-learning approaches to synthesized CT images from
MR images have raised much research interest, making radiotherapy based only on MR images possible. In this
paper, we proposed a novel unsupervised image synthesis framework with registration networks. This paper aims
to enforce the constraints between the reconstructed image and the input image by registering the reconstructed
image with the input image and registering the cycle-consistent image with the input image. Furthermore, this
paper added ConvNeXt blocks to the network and used large kernel convolutional layers to improve the network’s
ability to extract features. This research used the collected head and neck data of 180 patients with nasopharyngeal
carcinoma to experiment and evaluate the training model with four evaluation metrics. At the same time, this
research made a quantitative comparison of several commonly used model frameworks. We evaluate the model
performance in four evaluation metrics which achieve Mean Absolute Error (MAE), Root Mean Square Error
(RMSE), Peak Signal-to-Noise Ratio (PSNR), and Structural Similarity (SSIM) are 18.55 ± 1.44, 86.91 ± 4.31, 33.45
± 0.74 and 0.960 ± 0.005, respectively. Compared with other methods, MAE decreased by 2.17, RMSE decreased
by 7.82, PSNR increased by 0.76, and SSIM increased by 0.011. The results show that the model proposed in this
paper outperforms other methods in the quality of image synthesis. The work in this paper is of guiding significance
to the study of MR-only radiotherapy planning.
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1 Introduction

Cancer is often considered a threat to public health in recent years, and its incidence rate is
increasing yearly [1,2]. Among mainstream cancer treatment methods, radiation therapy [3] is the most
widely used method of treatment for cancer and is the earliest one. In modern clinical treatment, using
Magnetic Resonance (MR) and Computed Tomography (CT) images during radiation therapy are
unavoidable. Because MR images can provide high-quality contrast of soft tissues, it is very important
to determine the location and size of tumors. In addition, MR imaging has the advantage of being
free of ionizing radiation and multi-sequence imaging. However, it is very important for CT images
to provide electron density information for dose calculation during radiotherapy of cancer patients,
but this cannot be obtained from MR images. Although CT images can provide electronic density
information, this results in the patient being exposed to radiation with negative implications for the
patient’s health. As a result, both CT and MR images were obtained during radiation exposure in
both cases. Furthermore, MR images must be registered with CT images during radiation for further
treatment, but this registration can introduce some errors [4].

Given the above problems, some researchers have begun to study the method of generating CT
images from MR-only images [5,6]. It is challenging to achieve radiotherapy by MR alone. Researchers
have used MRI to synthesize CT (sCT) through various methods, which can be broadly classified into
three classes [7,8]. The first method is voxel-based research [9], which requires accurate segmentation
of MRI tissues, but this method takes a long time to complete. The second method is based on the
atlas [10], which mainly registers MR and CT to get the corresponding deformation field, which
can be used to register CT and MR in an atlas to get sCT. However, these methods all rely on
high-precision registration, and the registration method’s accuracy directly affects the synthetic sCT.
The third method is based on learning [11]. This method is based on existing image data. Based
on the two data distributions, a nonlinear mapping between the data is found, and the task of
synthesizing the sCT is realized using this nonlinear relationship. Among the many different methods,
deep learning-based techniques [12,13] have demonstrated their ability to produce high-quality sCT
images. Among the methods of synthesizing sCT by deep learning, the mainstream research methods
can be divided into supervised and unsupervised. The supervised methods require datasets to be
strictly aligned and paired. Researchers attempted to perform MR synthetic CT using paired data
using conditional Generative Adversarial Networks [14,15]. In the data preprocessing process, image
registration accuracy often significantly impacts the image quality generated by the network, so the
paired MR and CT images must be strictly registered. On the one hand, strictly aligned data are
challenging to obtain in practice, which undoubtedly increases the difficulty of the studies. To reduce
the difficulty of data acquisition, in another method based on unsupervised learning, MR synthetic
CT tasks can be performed from unpaired data. CycleGAN [16], a typically unsupervised learning
network, is currently widely used in the field of image synthesis. For example, Wolterink et al. [17]
used CycleGAN to perform brain MR to CT synthesis tasks. CycleGAN used a bidirectional
network structure to generate images from different directions. Moreover, to constrain the structural
consistency of the same mode, the cycle-consistency loss is added to the network. However, the
training of CycleGAN is extremely unstable, which can easily cause mode collapse, and the network
is often challenging to converge. The structural dissimilarity loss was added by Xiang et al. [18]
to strengthen the constraint between images by capturing anatomical structures and improving the
quality of synthetic dimensional CT. Yang et al. [19] introduced the modal neighborhood descriptors
to constrain the structural consistency of input and synthesized images.
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This research proposed a novel unsupervised image synthesis framework with registration net-
works for synthesizing MR images into CT images. Like other researchers, this research adopts a
bidirectional structure similar to CycleGAN. The primary contributions to this work are as follows:

• In this paper, to complete the task of MRI-CT conversion, we propose an image generation
network based on the combination of variational self-encoder and generation adversarial
network. Among them, we add a registration network in two directions to strengthen the
structural consistency between the input image and the reconstructed image, as well as the input
image and the cycle-consistent image.

• This paper introduces a new correction loss function to strengthen constraints between images,
resulting in higher-quality synthetic images. The loss correction needs to be performed simulta-
neously with the registration network. Furthermore, we add ConvNeXt blocks to the network.
This new convolution block has been proven effective, and its performance exceeds some
Transformer blocks.

• Extensive experiments demonstrate our effectiveness. This research conducts extensive experi-
ments on several popular frameworks, and the method proposed in this study outperforms other
methods in modality conversion from MR to CT images. This research also conducts ablation
experiments at the same time to confirm the effectiveness of each component.

2 Methods and Materials
2.1 Model Architecture

The framework proposed in this paper is based on Variational Auto-Encoders (VAEs) [20–22]
and Generative Adversarial Networks (GANs) [23]. The network framework is shown in Fig. 1. The
network consists of eight sub-networks: two image encoders EMR and ECT , two image generators GMR

and GCT , two discriminators DMR and DCT , and two registration networks RMR and RCT for enhancing
cycle-constraints. Since the unpaired MR images are synthesized into the sCT images in this task, the
generated sCT images lacked genuine labels to constrain the pseudo-CT; this paper adopts the same
bidirectional structure as CycleGAN [16]. Namely, the synthesis direction from MR to CT and the
synthesis direction from CT to MR are included. Taking MR synthetic pseudo-CT as an example,
an XMR domain image is used as the input to the model, the image is encoded via the XMR domain
image encoder part of the model, and the obtained image code is input into the XCT domain image
generator to synthesize the target domain pseudo-CT. Similarly, the pseudo-CT is fed into the XCT

image encoder as the input from XCT to XMR to obtain image coding, and the image coding is fed into the
XMR domain image generator to be converted into the original MR image. Two discriminators are used
to evaluate the authenticity of images from different image domains and compete with the generator to
achieve the purpose of confrontation training. Finally, the registration network registers the original
MR and the reconstructed MR image. In addition, the registration network also registers the original
MR and the cycle-consistent MR image. The reconstructed MR image must be consistent with the
original MR image, and the cycle-consistent and original images are no exception. Create a nonlinear
mapping between unpaired image data. The network is trained through the above process, and the
transformation of each image domain includes the image encoder, image generator, discriminator,
and rigid registration network.

2.2 Generators and Discriminator

Among the models proposed in this paper, both the encoder for encoding images and the generator
for synthesizing images adopt the ConvNeXt [24] module as the main structure of the model. The
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ConvNeXt module draws lessons from the successful experience use of the Vision Transformer (ViT)
[25,26] and convolutional neural networks. It builds a pure convolutional network whose performance
surpasses the advanced model based on Transformer. ConvNeXt adopts the standard neural network
ResNet-50 [27] and modernizes it to make the design closer to ViT. In the module, depthwise separable
convolutions with a kernel size of seven are used to improve the perceptual field of the model and
extract deeper information from the images. Using depthwise separable convolutions can effectively
solve the computationally expensive problem caused by large convolution kernels.

Figure 1: Flowchart of network framework of synthetic sCT based on VAE and CycleGAN. The
black line represents the circular process in which the CT image domain participates, and the blue
line represents the circular process in which the MR image domain participates

In this paper, the two image encoders EMR and ECT include three downsampling convolutional
layers and an inverted bottleneck layer composed of six ConvNeXt modules. Each layer of down-
sampled convolutions contains the convolutions, the instance normalized (IN) leaky rectified linear
unit (LReLU) operation, and the SAME padding. The first convolution layer has a convolution
kernel size of 7 × 7, and the next two convolutions have a convolution kernel size of 4 × 4. Both
image generators GMR and GCT contain an inverse bottleneck layer consisting of six ConNeXt blocks
and three upsampling convolutional layers. This sets the sample size in the first two upsampling
convolutional layers to 2, an IN, LReLU operation, and the SAME padding. The activation function
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of the sampling layer in the last layer is Tanh. The specific network structure of the encoder, generator,
and discriminator is shown in Fig. 2.

Figure 2: The concrete realization flow chart of the encoder, generator, and discriminator model
architecture. The encoder and generator are symmetrical structures. Multi-scale discriminators and
generators are used for confrontation training

Most discriminators in Generative Adversarial Networks use PatchGAN [28]. That is, feature
extraction from images through convolutional networks, and the matrix with the final output is output
to evaluate the image’s authenticity. The head of the image often contains complex texture information,
while the texture information of the shoulder is relatively less. However, the N × N patch output in
PatchGAN is fixed. If the image is divided into large patches for calculation, it will lead to the loss of
detailed information, and small patches will lead to high computational costs. The discriminator used
in this paper is a multi-scale discriminator, which enables the discriminator to learn information from
different scales simultaneously.

The discriminator consists of three convolution blocks, wherein each convolution block comprises
five layers of convolution and an average pooling operation; the first four convolution layers comprise
a convolution operation and LReLU with the convolution kernel size of 4 and strides being 2; finally, a
convolutional layer with a convolution kernel size of 1 is used to output an N × N matrix, and the final
evaluation result is obtained through the average pooling operation. The multi-scale discriminator
outputs evaluation matrices corresponding to different scales for loss calculation after the three
convolution blocks are finished. It is ensured that the discriminator can learn image features from
different scales. In this paper, two multi-scale discriminators DCT and DMR are used in the network.

The registration network used in this research is consistent with RegGAN [29]. There are seven
downsampling layers composed of residual blocks in the registration network, and the convolution
kernel size in each residual block is 3, and the stride is 1. The bottleneck layer uses three residual
blocks. The upsampling layer also consists of seven residual modules. Finally, use the convolutional
layer to output the registration result. The specific network structure of the registration network is
shown in Fig. 3.
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Figure 3: The structure of the registration network uses the ResUnet network structure

2.3 Loss Functions

This paper designs the complex loss functions, which include encoding loss, generator loss,
discriminator loss, and smoothing and correction loss functions in the registration network. The
network architecture of the generation model in this paper has a symmetrical structure, and the model
structure of two different synthesis directions is the same. For the convenience of the expression, this
paper use XCT and XMR to represent the images from the CT domain and the MR domain, Xrec and
Xcyc to represent the reconstructed and the cycle-consistent images, and c to represent the image code
output by the encoder.

2.3.1 Encoder Loss

In the part of encoder loss, similar to Liu et al. [22], this paper punishes the deviation of potential
coding distribution from prior distribution by calculating encoder loss. The concrete implementation
is as follows:

LE = λ1

N

N∑
k=1

(
(EMR (XMR))

2 + (ECT (XCT))
2
)

(1)

where the value of λ1 is 0.01 and N is the dimension of image coding.

2.3.2 Adversarial Loss

The generator primarily synthesizes the corresponding image via the input image encoding,
matching the original image as closely as possible. At the same time, the synthesized images cheat
the discriminator as much as possible. The generator’s total loss of the generator is as follows:

LG = (DCT (GCT (EMR (XMR))) − 1)
2 + (DMR (GMR (ECT (XCT))) − 1)

2 (2)
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In addition, the discriminator judges the authenticity of the input image, minimizing the loss of
the real image and maximizing the loss for the image synthesized by the generator. This paper has a
corresponding discriminator in each of the synthesis directions. The total loss of discriminator is as
follows:

LD = (DCT (GCT (EMR (XMR))) − 1)
2 + (DCT (XCT))

2 + (DMR (GMR (ECT (XCT))) − 1)
2 + (DMR (XMR))

2 (3)

2.3.3 Reconstruction Loss

The reconstruction loss primarily includes the cycle-consistency loss of the model and the
reconstruction loss of the same modal image. The cycle-consistent loss function is as follows:

Lcycle = λ2 ‖GMR (ECT (GCT (EMR (XMR)))) − XMR‖1 + λ1 ‖|GCT (EMR (GMR (ECT (XCT)))) − XCT |‖1 (4)

where λ2 is the loss weight ratio, and its value is 10.

Image reconstruction loss means the image is encoded by the encoder output image, which is then
input to the generator, which will reconstruct the image according to the same modality as the original
input image. This loss function is comparable to the identity loss in CycleGAN. The loss function is
calculated as follows:

Lrec = λ2 ‖GMR (EMR (XMR)) − XMR‖1 + λ1 ‖GCT (ECT (XCT)) − XCT‖1 (5)

2.3.4 Registration Loss

Then, the original image is taken as a fixed image, and the reconstructed or circularly consistent
image is taken as a floating image. The reconstructed or cycle-consistent image is registered with
the original image through the registration network R to obtain the registration field T . Then the
reconstructed or cycle-consistent image is deformed by the registration field T , and then the correction
loss between them is calculated. The loss function is:

Lc = λ3 ‖T1 (Xrec) − Xreal_1‖1 + λ2

∥∥T2

(
Xcyc

) − Xreal_2

∥∥
1

(6)

where images Xreal_1 and Xreal_2 represent real images in the same modality as Xrec and Xcyc, respectively.
T1 and T2 represent different deformation fields. The λ3 is the loss weight ratio, and its value is 20.

At the same time, This work smoothes the deformation field, and designs a loss function to
minimize the deformation field’s gradient in order to assess the smoothness of the deformation field.
The smoothing loss of the field is consistent with RegGAN [29], so the loss function can be expressed
by the Jacobian determinant as below:

Ls = J (m, n) = λ4

∣∣∣∣∣∣∣∣

∂m
∂x

∂n
∂y

∂m
∂y

∂n
∂y

∣∣∣∣∣∣∣∣
(7)

wherein each score represents the partial derivative of the point (m, n) in the image with respect to the
direction of the image (x, y), and J (m, n) represents the value of the Jacobian determinant of the point
(m, n) in the image. The λ4 is the loss weight ratio, and its value is 10.

In summary, this paper overall optimization goals are as follows:

LTotal = LE + LG + LD + Lcyc + Lrec + Lc + Ls (8)
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2.4 Evaluation Criterion

In this research, four widely used evaluation metrics are used as benchmarks to test the quality of
sCT generated by the proposed model in order to quantitatively evaluate its quality: Mean Absolute
Error (MAE), Root Mean Square Error (RMSE), Peak Signal-to-Noise Ratio (PSNR) and Structural
Similarity (SSIM).

The MAE metric is able to reflect the actual occurrence of voxel error between real CT and sCT.
It can circumvent the problem of error cancellation and so accurately reflect the model’s prediction
error. Optimizing the value of MAE to the minimum can make the performance of the model stronger.
The objective optimization formula of MAE is as follows:

MAE (CT , sCT) = 1
N

N∑
k=1

|XCT (k) − GCT (EMR (XMR (k)))| (9)

which XCT (k) and XMR (k) represent the kth set of test data.

The RMSE measures the standard deviation between images, consistent with MAE. Optimizing
the value of RMSE to a minimum can make the model perform better. Its calculation formula is as
follows:

RMSE (CT , sCT) =
√√√√ 1

N

N∑
k=1

(XCT (k) − GCT (EMR (XMR (k))))
2 (10)

The PSNR is an objective standard for evaluating images. The PSNR is optimized to the
maximum, which proves that the image synthesized by the model is less distorted. Its calculation
formula is as follows:

PSNR (CT , sCT) = 20 × log10

(
HU_MAX

RMSE (CT , sCT)

)
(11)

which HU_MAX represents the maximum intensity of CT and pseudo-CT images.

Usually, the SSIM metric can reflect the similarity between two images and mainly measure the
correlation between the adjacent HU values of the images. Optimizing SSIM to the maximum proves
that the images synthesized by the model are more similar. The calculation formula is as follows:

SSIM (CT , sCT) = (2μCTμsCT + k1)
(
2σCT ,sCT + k2

)
(
μ

2
CT + μ

2
sCT + k1

) (
σ 2

CT + σ 2
sCT + k2

) (12)

where μCT represents the average value of CT and μsCT represents the average value of sCT. The
standard deviations for CT and sCT are σCT and σsCT , respectively. σCT ,sCT is the covariance of CT and
pseudo-CT. Here, two constants k1 = (m1L)

2 and k2 = (m2L)
2 are used to maintain stability, where

m1 = 0.01 and m2 = 0.03. L is the dynamic adjustment range of CT value.

3 Data Acquisition and Processing

This paper obtained CT and MR image data from 180 patients with nasopharyngeal carcinoma.
We get MR and CT images scanning the patients in regular clinical treatment. These 180 patients
served as the model’s training and testing data. Among them, the Siemens scanner was used to obtain
the CT images with an image size of 512 × 512. T1-weighted MR images were obtained in the MR
simulator of Philips Medical System with a magnetic field intensity of 3.0 T, and its size was 720 × 720.
The project was approved by the Ethics Committee of Sun Yat-sen University Cancer Center, which
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gave up informed consent. This research uses the volume surface contour data in the radiotherapy
(RT) structure to construct an image mask, retain the images, and delete invalid information outside
the mask. The specific image processing process is shown in Fig. 4. This research aligned the relevant
CT and MR images for each patient using affine and deformable registration in the open-access
medical image registration library (ANTS). For best network training results, this research cropped
the original image to 256 × 384. Since the trainable information from head and neck data occupies
a small proportion of the image, to further accelerate the training of the network, the image size is
finally cropped to 256 × 256. This research splices the overlapped parts of the two shoulder images for
shoulder images by calculating the average value during the test. Based on the data set information,
the Hounsfield Unint (HU) range of CT was [−1024, 3072]. This research normalizes it to [−1, 1]
during training to speed up the model’s training. The dataset is roughly divided according to the ratio
of 6:3:3, 110 cases of data are randomly selected as the training set, and 35 cases of data are randomly
selected as the evaluation set and test set.

Figure 4: Implementation of specific operations for image preprocessing

4 Experiment and Result
4.1 Training Details

All models in this study are built in the Pytorch framework. Among them, the Pytorch version
is 1.8.1, and the Python version is 3.8. The experiments and experimental results mentioned in this
paper are all trained on RTX 2080 Ti, and the memory size of the GPU is 11 G. The optimizer of the
training model in the experiment is the Adam optimizer, and the learning rate set in the experiment
is 1e−4 and (β1, β2) = (0.5, 0.999), and that training is iterated through 80 epochs with the batch size
of 1.

4.2 Compare the Quality of Synthesized sCT by Different Methods

Table 1 compares three conventional commonly used frameworks with the techniques presented in
this study, such as CycleGAN [16], UNIT [22], MUNIT [30], and the latest RegGAN [29] framework.
The experimental finding in Table 1 shows that the method proposed in this research has the best
performance among the four evaluation metrics and is superior to the other four frameworks. The
MAE score is 18.55 ± 1.44, decreased by 2.17. The RMSE score is 86.91 ± 4.31, decreased by 7.82.
The PSNR score is 33.45 ± 0.74, increased by 0.76. Furthermore, the SSIM score is 0.960 ± 0.005,
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increased by 0.011. It can be concluded from the evaluation indexes that the quality of sCT synthesized
by the proposed method is superior to that of other methods. In addition, the p-value in the student
t-test between different indicators is also calculated. The p-value indicates significant improvement by
paired t-test (p < 0.05).

Table 1: Through four evaluation metrics, sCT generated by different methods is compared

MAE (HU) RMSE (HU) PSNR (dB) SSIM p-value (Proposed
model vs. all)

CycleGAN 22.85 ± 1.84 105.33 ± 6.03 31.96 ± 0.78 0.944 ± 0.006 p < 0.05
UNIT 20.72 ± 1.69 94.73 ± 6.75 32.69 ± 0.70 0.949 ± 0.006 p < 0.05
MUNIT 23.17 ± 1.67 107.30 ± 5.57 31.75 ± 0.65 0.938 ± 0.006 p < 0.05
RegGAN 22.45 ± 1.83 103.23 ± 6.01 32.34 ± 0.79 0.945 ± 0.006 p < 0.05
Ours 18.55 ± 1.44 86.91 ± 4.31 33.45 ± 0.74 0.960 ± 0.005 –

Fig. 5 shows the comparison between the above four frameworks and the proposed method for
synthesizing the anatomical structure of head slices. This paper reduces the error’s HU value between
genuine CT and sCT to [−400, 400]. The results show that the proposed method has the smallest error
between the synthetic head sCT slice and the original CT and the highest similarity with the original
CT in anatomical structure. The synthesized sCT in this paper is more similar to genuine CT in the area
with complex head texture. In Fig. 6, the performance of the five models on the test set is demonstrated
by violin and box diagram. The violin plot shows that the evaluation metric of the sCT synthesized
by this model for each patient is concentrated on the better side. Fig. 6 is drawn using Hiplot [31]
platform.

Figure 5: The concrete realization of HU differences between sCT and genuine CT predicted by five
different methods ranging from [−400, 400]
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Figure 6: Box plot gives the median and quartile ranges of four evaluation metrics of five models on
the test set. Violin plots show the distribution and density of the predicted data of the five models on
the test set

Through qualitative comparison, it is further illustrated that the anatomical structure of the sCT
synthesized by this method is more similar to the genuine CT. In Fig. 7, the real CT and corresponding
sCT images randomly selected by the proposed model are shown. In the figure, the areas marked
by the blue and red boxes are enlarged, which are located in the upper right corner and the lower
right corner of the image, respectively. In the figure, this research visually compares the synthetic
quality of sCT images of bones. In the comparison of three sets of images, the proposed method
outperforms the other four methods in terms of the quality of synthetic images in bone tissues. At
the same time, it has advantages in synthesizing some texture details, such as the red-marked area of
the first group of images. This shows that the proposed method can transform MR image mode into
its sCT corresponding mode more effectively.

In addition, as shown in Fig. 8, sagittal images of three patients were randomly selected for this
research. It is evident by comparing sagittal images of patients that the proposed method outperforms
the other four methods in terms of synthesis quality. The head and neck bones are more like genuine
CT images. In addition, the texture synthesized by the proposed method is clearer and more delicate,
and the similarity with the actual CT is higher in the complex texture area of the head cavity.
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Figure 7: From left to right, there are genuine CT, sCT synthesized by CycleGAN, sCT synthesized
by UNIT, sCT synthesized by MUNIT, sCT synthesized by RegGAN, and sCT synthesized by the
proposed method. The upper right corner of the image is a locally enlarged image of bones or tissues
in a blue frame, and the lower right corner o is a locally enlarged image of bones or tissues in a red
frame

Figure 8: Sagittal view of the image. From left to right are real CT, sCT synthesized by CycleGAN,
sCT synthesized by UNIT, sCT synthesized by MUNIT, sCT synthesized by RegGAN, and sCT
synthesized by the method proposed in this paper

4.3 Ablation Study

The data set used in the ablation experiment is the same as the above experiment. This research
performs ablation experiments on the essential parts of the proposed method, respectively, demonstrat-
ing the effectiveness of some critical parts of the proposed method: adding ConvNeXt blocks, adding
an additional registration network, and calculating the registered images and ground truth correction
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loss between images to constrain the structural similarity between genuine and reconstructed images
along with between genuine and cycle-consistent images. The experimental findings following each
part’s ablation are shown in Table 2. Based on UNIT [22], this study adds different components to
UNIT and carries out four groups of experiments.

Table 2: Ablation study: Each component improves the model

MAE (HU) RMSE (HU) PSNR (dB) SSIM

UNIT 20.72 ± 1.69 94.73 ± 6.75 32.69 ± 0.70 0.949 ± 0.006
UNIT with
ConvNeXt

19.56 ± 2.04 90.13 ± 7.77 32.96 ± 0.89 0.954 ± 0.005

UNIT with R 19.22 ± 1.87 88.49 ± 6.81 33.12 ± 0.92 0.958 ± 0.004
Ours 18.55 ± 1.44 86.91 ± 4.31 33.45 ± 0.74 0.960 ± 0.005

The experimental findings in Table 2 show that the components of the proposed method are
effective in the task of synthesizing sCT from MR images. In this paper, the ConvNeXt block is added
to the large kernel convolution to improve the receptive field, extract more detailed image features and
enhance the network’s processing of image details and textures. The proposed registration network
method combined with loss correction significantly improves the task of synthesizing sCT images
from MR images in four evaluation indexes. Finally, the evaluation index obtained by combining all
methods is the best.

The experimental findings in Table 2 show that the components of the proposed method are
effective in the task of synthesizing sCT from MR images. In this paper, the ConvNeXt block is added
to the large kernel convolution to improve the receptive field, extract more detailed image features and
enhance the network’s processing of image details and textures. The proposed registration network
method combined with loss correction significantly improves the task of synthesizing sCT images
from MR images in four evaluation indexes. Finally, the evaluation index obtained by combining all
methods is the best.

5 Discussion

This research proposes a new unsupervised image synthesis framework with registration networks
to solve the task from magnetic resonance image synthesis to CT image. It is used to train unpaired
head and neck data to avoid the effects of a severe shortage of paired data. The experimental results
in Table 1 show that the proposed method has obvious performance advantages. Specifically, the pro-
posed method outperforms the current mainstream frameworks significantly when the performance of
the model surpasses the benchmark network UNIT selected in this paper, in which MAE is increased
from 20.72 to 18.55, RMSE from 94.73 to 86.91, PSNR from 32.69 to 33.45, SSIM from 0.949 to
0.960. The proposed method adds a simple and effective module ConvNeXt block to expand the
perceptual field of the model and obtain deeper image features. In addition, this study introduces
a registration network and an image rectification loss in the method to strengthen the constraints
between the reconstructed image and the input image, as well as between the cycle-consistent image
and the input image, and enhance the control ability of the model generation domain.

To intuitively show the advantages of the method proposed within that study for the problem of
sCT synthesis, this research shows the error diagrams between the sCT from different methods and the
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genuine CT. The error diagram between sCT and genuine CT has shown in Fig. 5, which shows that
the proposed method is more similar to the original CT in the texture details of the synthesized sCT.
The partial enlargement in Fig. 6 shows that the method is superior to other methods in synthesizing
sCT bones and some texture details. In addition, the sagittal diagram shown in Fig. 8 shows that the
CT synthesized by this method performs better in the sagittal plane than the other four methods. The
bone and texture regions are more continuous, indicating that the model has information related to
two adjacent slices when synthesizing CT. Compared with other networks, the proposed method adds
ConvNeXt blocks to the network, effectively improving the model’s receptive field and establishing
a long-term relationship with the network. In addition, the added registration network and image
correction loss can strengthen the constraints between the reconstructed and the genuine image and
between the cyclic-consistent and the genuine image and enhance the model’s ability to control its own
domain patterns.

Table 2 shows the ablation experiments’ results on the proposed method’s components. The
experimental findings in Table 2 demonstrate that each component of the proposed method can
improve the performance of the network. In particular, the correction loss proposed in this study can
significantly improve the network’s performance. At the same time, the performance of the network
receptive field optimization model can be enhanced by adding ConvNeXt blocks. The results show that
the proposed method significantly enhances the image constraints. The registration network registers
both the reconstructed and cycle-consistent images with the original images, correcting the genuine
and registered images by a correction loss, thereby reducing the uncertainty of the generator.

In this paper, we proposed the 2D model framework for synthesizing MR images to CT images.
However, there are still some areas that need improvement. Although the method proposed in this
paper can be used to synthesize unpaired images, 2D slice data will lose context information, resulting
in a lack of correlation between adjacent slice data. We will build a 3D model based on the proposed
method to solve the above problems, improve the accuracy of model synthesis and apply it to
radiotherapy planning.

6 Conclusion

This paper proposes a novel method of synthetic CT images from MR images primarily based on
Variational Auto-Encoders and Generative Adversarial Networks. We conduct experiments using head
and neck data from patients with nasopharyngeal carcinoma and evaluate them using four metrics. The
experimental results in Table 1 and the error plot of sCT vs. genuine CT shown in Fig. 5 demonstrate
that the proposed method outperforms the current four popular generation methods regarding visual
effects and objective metrics, with minimal error to genuine CT. In Fig. 7, the CT synthesized by
the proposed method is superior to other methods in details of the bone region. Fig. 8 shows that
the proposed method shows better coherence on the sagittal plane. In the ablation study part, the
effectiveness of some components in the proposed method is proved, and the advantages of this method
in unsupervised medical image synthesis are demonstrated. The network architecture proposed in this
paper adds registration networks in two directions to strengthen the structural consistency between the
input image and the reconstructed image as well as the input image and the cycle-consistent image, and
ensure the stability of network training. ConvNeXt module enhances the network feature processing
ability, which is clearer in the synthesis of bone and soft tissue regions and has less error with real
CT. At the same time, this paper introduces a new correction loss function combined with registration
networks to strengthen the constraints between images, avoid the offset phenomenon of synthesized
images, and obtain higher-quality synthesized images. To sum up, the method proposed in this paper
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shows the best effect in the task of MR synthetic CT. Through the quantitative and qualitative
evaluation of synthetic images, it shows the advantages of this method in many aspects. Although
adding ConvNeXt blocks to the model can expand its receptive field and improve its performance,
doing so slows down the model’s training because ConvNeXt blocks use large kernel convolutions.
We will address this in the future. In addition, the 2D model framework has certain limitations, and
it is easy to lose contextual information. We plan to extend the model frame to the 3D model frame
to solve the discontinuity of the 2D model on the Z axis for patients. We will use a 3D network to
generate a more accurate sCT, which can be used to sketch the lesion site more accurately in the field of
image segmentation so as to carry out radiotherapy more accurately. At the same time, the ConvNeXt
block will be extended to 3D, and the large convolution kernel will be abandoned to improve the
training speed. The results of this study have guiding significance for the research based on a magnetic
resonance-only radiotherapy plan.
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