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ABSTRACT

Increasing global energy consumption has become an urgent problem as natural energy sources such as oil, gas,
and uranium are rapidly running out. Research into renewable energy sources such as solar energy is being pursued
to counter this. Solar energy is one of the most promising renewable energy sources, as it has the potential to
meet the world’s energy needs indefinitely. This study aims to develop and evaluate artificial intelligence (AI)
models for predicting hourly global irradiation. The hyperparameters were optimized using the Broyden-Fletcher-
Goldfarb-Shanno (BFGS) quasi-Newton training algorithm and STATISTICA software. Data from two stations in
Algeria with different climatic zones were used to develop the model. Various error measurements were used to
determine the accuracy of the prediction models, including the correlation coefficient, the mean absolute error,
and the root mean square error (RMSE). The optimal support vector machine (SVM) model showed exceptional
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efficiency during the training phase, with a high correlation coefficient (R = 0.99) and a low mean absolute error
(MAE = 26.5741 Wh/m2), as well as an RMSE of 38.7045 Wh/m2 across all phases. Overall, this study highlights
the importance of accurate prediction models in the renewable energy, which can contribute to better energy
management and planning.

KEYWORDS
Renewable energy; energy prediction; global irradiation; artificial intelligence; BFGS quasi-Newton training
algorithm

1 Introduction

Increasing concern about the effects of climate change and the need to diversify energy sources
has led to a significant increase in the development of renewable energy sources. Among these, solar
energy has emerged as a viable option due to its abundance and potential to reduce carbon emissions.
Moreover, as oil and gas resources become less available, developing renewable energy sources is
becoming increasingly important for the country’s long-term energy security. According to the recent
the intergovermental panel on climate change (IPCC) report, solar energy has the potential to meet a
significant portion of the world’s energy needs, and Algeria is no exception [1].

Accurately estimating the amount of solar radiation hitting the Earth’s surface is critical for
various applications such as photovoltaic systems, heating, medical research, agriculture, and archi-
tecture. This is usually done with solar measurement devices such as solarimeters or pyranometers.
However, it is difficult to measure solar radiation in many places in Algeria because the meters are
too expensive, and the systems are very complex. Even if there are several meteorological stations in
different locations in Algeria, measurements may not always be available due to power outages or
limitations on the number of variables that can be recorded [2].

To address these challenges, researchers have developed models that use readily available mete-
orological data to predict global solar radiation (GSR) more accurately. These predictive models
are becoming more advanced daily, but results vary by location. Therefore, it is important to use
sophisticated GSR prediction techniques to improve solar energy potential prediction accuracy in
Algeria [3].

Many research efforts have been made to predict solar radiation (SR) in different areas of the
world using various techniques such as artificial intelligence and empirical methods. One popular
method is Multilayer Perceptron (ANN-MLP) artificial neural network technology. However, other
methods, such as decision tree models, support vector machines (SVMs), and feed-forward radial
basis functions (FF-RBFs), have also been used to estimate solar radiation. Researchers such as [4–
10] have used SVMs, and others have also used FF-RBF. Loutfi et al. [11] presented three different
Feed-Forward Neural Network (FFNN) model topologies for generating global, direct and diffuse
hourly solar radiation in Fez, Morocco. In order to perform a comparative study, different models
were implemented, including the decision tree model, random forest model, generalized linear models,
artificial neural network, linear regression model, and adaptive fuzzy neural interference system model
[12]. Bamisile et al. [13] developed and compared eight artificial intelligence models for solar radiation
prediction at different time intervals (hourly, every minute, and daily average) using datasets from 6
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African countries. They found that different AI models suited different solar radiation estimation
tasks. Extreme gradient boost algorithm (XG-Boost) boost was the best model for 10 of the 13
case studies considered in this work. They concluded that hourly solar irradiance prediction is more
accurate for the models than the daily average and minute time step.

Solar energy is a focus of Algeria’s ambitious energy policy, which allocates significant resources to
solar thermal and photovoltaic resources. Projections indicate that solar energy will account for more
than 37% of the country’s electricity generation by 2030 [14]. The annual sunshine duration in Algeria
is more than 3,900 h in the Sahara and 3,000 h on the plateaus. The daily energy gain on a horizontal
surface of 1 m2 averages 5 KWh [10], in most regions of the country [15]. Thus, solar energy is a
good basis to help the country meet its energy needs. However, accurate solar radiation estimates are
needed to exploit this potential fully. In this study, we use state-of-the-art machine learning techniques
to improve the predictability of solar energy potential in Algeria.

The main objective of this research is to develop a method to optimize the hyperparameters of
traditional machine learning using the multilayer perceptron (MLP) and support vector machines,
thus increasing the reliability of hourly predictions of global irradiance. We used the FNN-MLP and
SVM models to produce a reliable forecast of global solar irradiance at one-hour intervals at stations
with different climates in Algeria. The following overview provides the framework for this research
work: the materials and processes are discussed in Section 2, while the construction of the model is
covered in Section 3, and the results and discussion are presented in Section 4. The paper concluded
with a conclusion.

2 Materials and Methods
2.1 Studied Region and Database Collection

In this investigation, two radiometric stations were used to compile the database. The first
station, “Shems”, located in Bouzareah in Algeria, recorded experimental data using Kipp and Zonen
pyranometers to measure the global horizontal irradiation (GHI). The second station, located in
Tamanrasset in the Sahara Desert in southern Algeria, is equipped with an Eppley PSP pyranometer
and has the highest solar energy resources in an arid desert environment. Table 1 presents compre-
hensive information on the two stations used for training and testing purposes, including station ID,
station name, latitude, longitude, elevation, climate zone, and data periods. The table indicates that
the training station, Bouzareah (BOU), is located in the Mediterranean climate zone and covers the
period between January 01, 2014, and December 31, 2014. In contrast, the testing station, Tamanrasset
(TAM), is in the hot desert climate zone and covers the period from July 01, 2019, to December 17,
2020. The information in the table is crucial for understanding the data used in the investigation and
interpreting the results obtained.

Table 2 provides statistical analysis results for the input and output variables of solar radiation
prediction at the BOU and TAM stations for temperature (TMP), humidity (HUM), wind speed
(WSP), and global horizontal irradiance at the BOU and TAM stations. The BOU station has a
maximum temperature of 44.11°C, a minimum humidity of 8.28%, a mean wind speed of 4.62 m/s,
and a mean GHI of 517.88 Wh/m2. The TAM station has a maximum temperature of 38.5°C, a
minimum humidity of 2%, a mean wind speed of 5.19 m/s, and a mean GHI of 678.76 Wh/m2. The
correlation between these variables and solar radiation is further explored in Table 3. The results show
that temperature positively correlates with solar radiation at both stations, with humidity having a
negative correlation at BOU and a weak negative correlation at TAM. Wind speed has a weak negative
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correlation at BOU and a positive correlation at TAM. These correlations can be useful for developing
accurate solar irradiance prediction models and designing effective solar energy systems.

Table 1: Geographical region and period covered by stations in this investigation

Purpose Station
ID

Station name Latitude
(°)

Longitude
(°)

Elevation
(m)

Climate zone Data and
periods

Training BOU Bouzareah 36.80 3.17 357 Mediterranean
climate

January 01,
14–December
31, 14

Testing TAM Tamanrasset 22,78 5,51 1378 Hot desert July 01,
19–December
17, 20

Table 2: Statistical analysis of input and output variables for solar irradiance prediction at two stations

#Station Statistic TMP (°C) HUM (%) WSP (m/s) GHI (Wh/m2)

BOU Max. 44.11 92.21 14.24 1027.00
Min. 5.56 8.28 0.10 120.25
Mean. 24.67 40.55 4.63 517.89
SD. 7.79 16.61 2.39 244.72

TAM Max. 38.50 99.00 13.90 1293.54
Min. 1.50 2.00 0.00 35.50
Mean. 26.86 19.70 5.19 678.76
SD. 7.65 10.06 2.71 300.83

Table 3: Climatic-output correlations for solar irradiance prediction at two stations

#Station TMP (°C) HUM (%) WSP (m/s) WID (°) PRE (mbar)

BOU 0.512 −0.559 −0.093 0.129 −0.1567
TAM 0.448 −0.298 0.163 – –

Fig. 1 displays the frequency counts of GHI between the two stations, BOU and TAM, at different
bin center intervals. The plot reveals that TAM has higher frequency counts of GHI than BOU at all
bin center intervals. The highest frequency counts for TAM are at the bin centers of 250, 350, and
450 Wh/m2, with 508, 254, and 192 counts, respectively. In contrast, BOU has its highest frequency
counts at the bin centers of 250, 450, and 550 Wh/m2, with 508, 490, and 458 counts, respectively. These
results indicate that TAM receives more GHI than BOU due to their different geographic locations and
climatic conditions. Such analysis is valuable for understanding the variability of GHI and designing
solar energy systems.
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Figure 1: Graphical depiction of the GHI as a function of the relative frequency of each station

2.2 Feedforward Neural Networks Multi-Layer Perceptron (FNN-MLP)

Feedforward Neural Networks’ multilayer perceptron, also known as FNN-MLP, is modeled
on the human brain’s information processing. Their known ability to learn from their environment
makes them ideal for nonlinear modeling systems that are difficult to characterize analytically. Even
though the architecture allows for arbitrarily small approximation errors with related weight values,
there is still an obstacle to their efficiency in some form of training. The multilayer perceptron, whose
architecture defines multiple layers of neurons, is today’s most widely used supervised neural network
for approximation problems.

The “FNN-MLP” consists of three layers: an input layer, a hidden layer, and an output layer. Each
of these layers hides information from the other two layers. Synaptic weights, W ij. connect the neurons
in a layer to the neurons below it. These weights determine the relative importance of each input to the
output of each neuron. An activation function ensures that each neuron picks up all the information
transmitted by the neurons that preceded it in the layered structure. After this step, an output signal
is generated, ready for transmission to the neurons in the subsequent layer [11,16]. An “FNN-MLP”
with three layers is shown in Fig. 2 and is used to predict GHI.

wI , and wh: connection weights (input-hidden, hidden-output)

bh, and bo: columns vector of neuron bias hidden and output, respectively.

The following Eqs. (4) and (5) represent the assimilation of the GHI in an accurate model that
includes all inputs xi.

The instance outputs Zj of the hidden layer:

Zj = fH
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The following mathematical formula, which accounts for all inputs and represents the global solar
radiation, is produced when Eqs. (1) and (2) are combined.

GSR =
23∑
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The “FNN-MLP” framework was optimized for GHI prediction using MATLAB 2020b. The
methods, database distribution, layer depth, neuron count, and activation functions are all included.
Table 4 displays the optimized FNN-MLP model’s structure.

Figure 2: Three-layer feed-forward neural network multilayer perceptron

Table 4: Structure of the improved “FNN-MLP” model

Training algorithm Input layer Hidden layer Output layer

BFGS quasi-Newton
(trainbfg)

Neurons
number

Number of
neurons

Activation function Number of
neurons

Activation
function

08 23 The hyperbolic
tangent sigmoid
transfer function
(tansig)

1 The linear
transfer
function
(identity)

2.3 Support Vector Machines (SVM)

The Support Vector Machine, commonly known as SVM, is a supervised learning method
that has gained significant popularity recently for its ability to predict meteorological data such as
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temperature [17] and wind speed [18]. The ease of use and adaptability of the SVM method makes it
suitable for a wide range of classification and regression problems across various sectors, including
mechanical engineering, energy, finance [19], and more. Despite its potential use in studies with
small sample sets, the SVM method has been shown to provide balanced predicted performance due
to its unique characteristics [20]. In an SVM model, the regression function can model nonlinear
relationships between input and output. The output of an SVM model can be determined by solving
a specific equation [21]:

f (xi) = ωT
∅ (xi) + b, i = 1, 2, . . . , n (4)

f (xi) : The predicted data.

∅ (xi): The implicitly constructed nonlinear function.

ω: The SVM model’s weight vector.

b: The SVM model’s bias.

The dataset has a D-dimensional input vector xi ∈ RD and a scalar output yi ∈ R.

The following equations provide the SVM optimization model (for the training set):⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

min R (w, ξ, ξ∗, ε) = 1
2
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C: The factor that balances model complexity with empirical risk ‖w‖2

ξ∗
i : The slack variable to represent the sample’s distance from the -tube

The problem above can be solved in the same manner as a standard nonlinear restricted
optimization problem by utilizing the concepts of Lagrange multipliers to generate a dual optimization
problem:⎧⎪⎪⎪⎨
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K(xi, xj): Mercer’s condition-satisfying kernel function.

ai and a∗
i : The non negative Lagrange multipliers.

ŷ = f (xi) =
∑N

i=1

(
ai − a∗

i

)
K (x − xi) + b, i = 1, 2, . . . , n (7)

2.4 Model Development

Two models were used to develop an accurate prediction of hourly global solar irradiance: The
FNN-MLP and the SVM. The process used to evaluate and improve the structure of the FNN-MLP
and SVM models is shown in detail in Fig. 3. The datasets were divided into different subsets for each
model. The FNN-MLP model’s datasets were divided into three subsets: The training, validation, and
testing phases. For the SVM model, on the other hand, the datasets were divided into two subsets, the
training phase, and the testing phase. Both subsets were created from the entire data set.
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Figure 3: Flow diagram for the two models (FNN-MLP) and (SVM) development

Several techniques were used to determine the most effective FNN-MLP model. The BFGS
quasi-Newton training algorithm (trainbfg) was used, four activation functions (log sigmoid, tangent
sigmoid, exponential, and sin) were used in the hidden layer, and a single transfer function (identity)
was used. Experiments were performed with different sizes for the hidden layers (from 3 to 25 neurons)
to obtain the most accurate model possible. An iterative testing process was performed to determine
the FNN-MLP model with the best performance. An optimal SVM model was developed using the
support vector machine learning strategy for the SVM technique. The selection of appropriate kernel
features is critical to the success of the SVM model. The STATISTICA software provides a wide
range of kernel functions for SVM models. The penalty term for the Gaussian radial basis function
parameters was set to nu = 1.0000, C = 10.0000, and Gamma = 13.93. This process determined the
optimal values for the target parameters of the SVM model.

2.5 Evaluation Criteria

In this study, various error measures were employed to determine the level of accuracy of the
prediction models. These error measures include the Correlation Coefficient (R), mean percentage
error (MPE), and Root Mean Squared Error (RMSE). These measures are mathematically represented
by Eqs. (8)–(10) as described in [22–32]. These error measures allow for a comprehensive evaluation
of the performance of the prediction models, providing a clear understanding of their strengths and
weaknesses.

R =
∑n

i=1

(
Yi,exp − Yi,exp

) (
Yi,cal − Yi,cal

)
√∑n

i=1

(
Yi,exp − Yi,exp

)2 ∑n

i=1

(
Yi,cal − Yi,cal

)2
(8)
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MPE = 100
n

n∑
i=1

∣∣Yi,cal − Yi,exp
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Yi,exp

(9)

RMSE =
√∑n

i=1

(
Yi,cal − Yi,exp

)2

n
(10)

n is the number of data points; Yi,exp and Yi,cal are the experimental and calculated data points

of global solar radiation, respectively; and Yi,exp is the mean experimental data.

3 Results and Discussion

This subsection presents the results of the models developed in the study to predict hourly global
irradiation. Initially, data collected from the Bouzareah station generated two models: The FNN-
MLP and SVM. The performance of these models was evaluated using three different data divisions
for training, validation, and testing. The results were visualized in Fig. 4, which depicts the correlation
coefficient (R) error values obtained for each division. It can be observed that division 3 outperforms
the other two divisions in terms of R-values for the testing phase, yielding R = 0.9567 for the
FNN-MLP model and R = 0.9715 for the SVM model. For the FNN-MLP model, division 3 consisted
of 60% of the data for training, 20% for validation, and 20% for testing. For the SVM model, division
3 had 60% of the data for training and 40% for testing. The results suggest that division 3 provides the
most accurate predictions, making it the optimal choice for testing the FNN-MLP and SVM models.

Figure 4: Effect of the division of the database in term coefficient correlation (R) for the testing phase

The performance statistics of the optimal FNN-MLP model for the training, validation, testing,
and overall phases in terms of R, MPE, and RMSE are presented in Table 5. The coefficient R-values
of 0.9543 or higher during the training phase indicate a strong agreement between the predicted and
experimental values. The testing phase’s correlation coefficient “R” measures the model’s ability to
interpolate the experimental data accurately. The correlation value of 0.9567 for the testing phase
demonstrates a high level of consistency between the experimental and predicted global solar radiation
values (see Fig. 5), indicating the effectiveness of the FNN-MLP model.
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Table 5: Statistical evaluation of FNN-MLP model performance on solar irradiation prediction

Stat. Training phase Validation phase Testing phase Total phases

R (–) 0.9543 0.9362 0.9567 0.9528
MPE (%) 13.6706 17.3840 14.1855 14.0925
RMSE (Wh/m2) 72.9729 86.9887 71.4774 74.3451

Figure 5: Comparison of predicted and experimental data in the testing phase

Table 6 evaluates several support vector machine (SVM) models utilizing various kernels, includ-
ing linear, polynomial, radial basis function (RBF), and sigmoid kernels. The performance of each
model is evaluated using the root mean square error (RMSE) and the correlation coefficient (R) in
different phases, including the training phase, testing phase, and total phase.

Table 6: Performance evaluation of SVM models with various kernels

Kernel functions SVM number Phase RMSE (Wh/m2) R (–)

Linear 362 Training 193.312 0.625
Testing 190.394 0.628
Total 192.150 0.626

Polynomial 474 Training 118.351 0.884
Testing 120.717 0.873
Total 119.303 0.880

Radial basis func 1163 Training 32.414 0.991
Testing 57.326 0.972
Total 38.704 0.988

Sigmoid 220 Training 229.925 0.414
Testing 223.432 0.434
Total 227.348 0.422
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The linear SVM model with C = 10 and E = 0.1 achieved an RMSE of 193.312 Wh/m2 and
R of 0.625 in the training phase, an RMSE of 190.394 Wh/m2 and R of 0.628 in the testing phase,
and an overall RMSE of 192.150 Wh/m2 and R of 0.626. The polynomial SVM model with C = 10,
nu = 1, Degree = 3, and Gamma = 0.125 achieved the lowest RMSE of 118.351 Wh/m2 and highest
R of 0.884 in the training phase, an RMSE of 120.717 Wh/m2 and R of 0.873 in the testing phase, and
an overall RMSE of 119.304 Wh/m2 and R of 0.880.

The RBF-SVM model with C = 10, nu = 1, and Gamma = 13.93 achieved the lowest RMSE of
32.414 Wh/m2 and highest R of 0.991 in the training phase but had a higher RMSE of 57.326 Wh/m2

and lower R of 0.972 in the testing phase, resulting in an overall RMSE of 38.706 Wh/m2 and R of
0.988. The sigmoid SVM model with C = 10, nu = 0.1, and Gamma = 0.125 had the highest RMSE
of 229.925 Wh/m2 and lowest R of 0.414 in the training phase, an RMSE of 223.432 Wh/m2 and R of
0.434 in the testing phase, and an overall RMSE of 227.348 Wh/m2 and R of 0.422.

Overall, the RBF-SVM model with C = 10, nu = 1, and Gamma = 13.93 outperformed the other
evaluated models, achieving the lowest RMSE and the highest R-value in the training phase, as well
as the second-lowest RMSE and the second-highest R-value in the testing phase. This resulted in
the lowest overall RMSE and the highest overall R-value. In comparison to the linear and sigmoid
SVM models, the RBF-SVM model demonstrated a substantial improvement in both RMSE and
R-values during the training and testing phases, indicating its efficacy in predicting hourly global
horizontal irradiation. Furthermore, Fig. 6 reveals a robust alignment between the predicted and
actual values gathered from the solar irradiation measurement station, further substantiating the
models’ dependability and precision in predicting global irradiation using the chosen input features.

Figure 6: Comparison of predicted and actual hourly global solar irradiation

Following a comprehensive verification process, we present the performance evaluation of the
FNN-MLP and RBF-SVM models for solar radiation prediction at BOU and TAM stations in
Table 7. The evaluation criteria include the R, MPE, and RMSE across the training, testing, and total
phases.

Both models demonstrated reasonable accuracy in predicting solar radiation. However, the SVM-
RBF model exhibited superior performance compared to the FNN-MLP model in terms of R and
RMSE values for both stations, particularly during the testing phase. During the training phase, the
FNN-MLP model achieved R values of 0.9544 and 0.9322 for the BOU and TAM stations, respectively.
In contrast, the SVM-RBF model achieved notably higher R-values of 0.9914 and 0.9204 for the same
stations.
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Table 7: Performance evaluation of developed models on solar irradiation prediction for BOU and
TAM stations

Model Phase Station R (−) MPE
(%)

RMSE
(Wh/m2)

Station R (−) MPE
(%)

RMSE
(Wh/m2)

FNN-MLP Training BOU 0.9544 13.6706 72.9729 TAM 0.9322 14.7679 109.1829
Testing 0.9568 14.1855 71.4774 0.9520 10.6584 87.2197
Total 0.9528 14.0925 74.3451 0.9313 14.9170 109.5552

SVM-RBF Training 0.9914 6.9987 32.4142 0.9204 17.7120 119.0809
Testing 0.9715 12.7947 57.3256 0.9351 13.8780 104.7578
Total 0.9876 8.1586 38.7045 0.9231 16.9452 116.3575

Moreover, incorporating additional inputs such as MON, PRE, and WID did not yield improve-
ments in the model’s performance. These findings indicate that the SVM-RBF model provides a more
accurate GHI prediction than the FNN-MLP model.

The performance of the present work model in predicting hourly global solar radiation was
compared with different techniques used in previous studies. Table 8 compares different machine
learning models used in literature studies, providing insights into the effectiveness of the present
work model compared to other techniques. The RBF-SVM model used in the present work achieved
the highest prediction accuracy (R = 0.9876), outperforming other models such as random forest,
artificial multi-neural, and adaptive approach, which also achieved high prediction accuracies ranging
from R = 0.95 to R = 0.96. The K-means clustering-NAR model had the lowest prediction accuracy
(R = 0.93).

Table 8: Comparison of the present results with the literature studies in predicting hourly global solar
irradiance

Models Type of model Prediction error “R, R2.”

Present work RBF-SVM R = 0.9876
Al-rousan et al. [33] Random forest R2 = 0.9637
Benmouiza et al. [34] K-means clustering-NAR R = 0.93
Jallal et al. [35] Artificial multi-neural R = 0.9624
García-hinde et al. [36] SVR-PLS R = 0.94
Akarslan et al. [37] Adaptive approach R = 0.96
Guermoui et al. [38] Machine learning R2 = 96.68–98.52
Benali et al. [39] Random forest R = 0.95

The comparison results suggest that machine learning models have great potential in predicting
hourly global solar radiation. However, the performance of these models can vary based on various
factors, such as the quality and quantity of input data, feature selection, and the specific algorithm
used. Therefore, it is important to carefully consider and test different models to achieve the best
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results for a particular application. The high accuracy achieved by the present work using RBF-SVM
indicates that it could be a useful model for future predictions in this area.

4 Conclusion

This study aims to improve the accuracy of hourly global horizental irradiation prediction by
using advanced machine-learning techniques. The main objective is to develop a method that optimizes
the hyperparameters of conventional machine learning models, specifically multilayer Perceptron
Feedforward Neural Networks (FNN-MLP) and Support Vector Machines (SVM). To achieve this,
two models were used: the FNN-MLP and the SVM.

To create the most effective model FNN-MLP, the BFGS quasi-Newton method was used as
the training algorithm, four activation functions were tested in the hidden layer, and a single transfer
function was used. The dimensions of the hidden layers were also varied to obtain the most accurate
model possible. Regarding power and performance, the SVM model with the radial basis function
(RBF) kernel function gives significantly better results than the SVM models with other functions.
The RBF kernel function also shows a superior capacity in characterizing the SVM model’s hourly
global solar irradiance forecast.

The statistical error difference values between the RBF-SVM model and the FNN-MLP model
are significant, indicating the higher accuracy of the proposed RBF-SVM model in predicting global
solar irradiance compared to the FNN-MLP model. Moreover, all the machine learning methods
discussed in this study provide highly accurate predictions of global solar irradiance at different
temporal resolutions. However, our results show that the RBF-SVM model performs better than the
FNN-MLP-BFGS model in predicting hourly global solar irradiance, with an R-value of 0.99 and
an RMSE of 38.70 Wh/m2 over all phases. Moreover, this study also investigates the performance of
the proposed models in different climatic regions of Algeria, which is crucial for accurately predicting
solar radiation at a specific location. In this way, it could help in the design and installation of solar
energy systems as well as in the evaluation of thermal conditions in building studies.

In summary, this study provides a promising alternative to the traditional methods currently used
in Algeria to predict solar radiation. With its superior accuracy and performance, the RBF-SVM
model can be a valuable tool for predicting global solar irradiance at any location, thus supporting
the development and implementation of renewable energy sources in the country. In addition, the study
opens the possibility of using these techniques in other countries with similar climate and energy needs.
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based prediction of global solar radiation on a horizontal surface,” Energy Conversion and Management,
vol. 91, pp. 433–441, 2015.

[5] J. L. Chen and G. S. Li, “Evaluation of support vector machine for estimation of solar radiation from
measured meteorological variables,”Theoretical and Applied Climatology, vol. 115, no. 3, pp. 627–638, 2014.
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