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ABSTRACT

Rapid advancement of intelligent transportation systems (ITS) and autonomous driving (AD) have shown the
importance of accurate and efficient detection of traffic signs. However, certain drawbacks, such as balancing
accuracy and real-time performance, hinder the deployment of traffic sign detection algorithms in ITS and AD
domains. In this study, a novel traffic sign detection algorithm was proposed based on the bidirectional Res2Net
architecture to achieve an improved balance between accuracy and speed. An enhanced backbone network module,
called C2Net, which uses an upgraded bidirectional Res2Net, was introduced to mitigate information loss in the
feature extraction process and to achieve information complementarity. Furthermore, a squeeze-and-excitation
attention mechanism was incorporated within the channel attention of the architecture to perform channel-level
feature correction on the input feature map, which effectively retains valuable features while removing non-essential
features. A series of ablation experiments were conducted to validate the efficacy of the proposed methodology.
The performance was evaluated using two distinct datasets: the Tsinghua-Tencent 100K and the CSUST Chinese
traffic sign detection benchmark 2021. On the TT100K dataset, the method achieves precision, recall, and Map0.5
scores of 83.3%, 79.3%, and 84.2%, respectively. Similarly, on the CCTSDB 2021 dataset, the method achieves
precision, recall, and Map0.5 scores of 91.49%, 73.79%, and 81.03%, respectively. Experimental results revealed
that the proposed method had superior performance compared to conventional models, which includes the faster
region-based convolutional neural network, single shot multibox detector, and you only look once version 5.
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1 Introduction

Traffic signs serve as important instructions and warnings on roads, guiding drivers to adhere to
traffic rules and prevent accidents. The precise detection and identification of these signs are essential
in assisted and autonomous driving systems. However, traffic sign detection faces two main challenges:
first, the existing traffic sign detection algorithms usually require a substantial number of parameters
and operations to achieve satisfactory results, making real-time performance unattainable; second,
traffic sign detection algorithms encounter difficulties extracting sufficient features from the model.
To address these challenges, this study proposes the C2Net-YOLOv5 model.

https://www.techscience.com/journal/CMC
https://www.techscience.com/
http://dx.doi.org/10.32604/cmc.2023.042224
https://www.techscience.com/doi/10.32604/cmc.2023.042224
mailto:tianyiqi@emails.bjut.edu.cn


1950 CMC, 2023, vol.77, no.2

The you only look once version 5 (YOLOv5) model stands out as a lightweight, high-performance
object detection framework. It combines the advantages of single-stage detection with improved
network architecture and can detect objects in images in real-time scenes quickly and accurately.
To maintain a comparable detection speed as the one-stage detector, the model uses the one-stage
detector YOLOv5 as the basic model architecture. Furthermore, a bidirectional Res2Net [1] module
is incorporated into the model’s backbone for feature extraction, intended to solve the problem of
inadequate extraction of features.

In this study, the designs are inspired by the human brain. While the convolutional neural networks
(CNNs) are inspired by the human brain vision system, they do not precisely simulate the operational
mode of the human brain. The human visual system entails complex multi-level processing within the
cerebral cortex, hierarchical extraction of different features, and fine-grained information processing.
Although CNNs draw on some characteristics of the human visual system, it is still a highly simplified
and abstract model.

Similarly, the designs draw insights from features of the human brain system. The human brain
exhibits a degree of symmetry, with two cerebral hemispheres on the left and right sides. These
hemispheres serve different roles in processing visual information: the left brain is more inclined
towards logical, analytical, and sequential processing, while the right brain specializes in spatial
perception and positioning. Although the brain’s hemispheres are functionally interconnected, they
communicate and integrate information through the corpus callosum to ensure the implementation of
comprehensive cognition and behavior. Therefore, the design adopts a symmetrical Res2Net structure
to jointly integrate different information from both sides, complemented by attention mechanisms to
filter features.

Unlike the existing YOLOv5 model, this model has been improved on the current version
to mitigate the impact of scale invariance. Features of traffic signs within images are enhanced
and extraneous background information is suppressed, rendering the model more resilient to the
environment.

The method is tested using the Tsinghua-Tencent 100K (TT100K) and the CSUST Chinese
traffic sign detection benchmark (CCTSDB) 2021 datasets, and the results demonstrated the method’s
validity. On the TT100K dataset, the method achieves precision, recall, and Map0.5 scores of
83.3%, 79.3%, and 84.2%, respectively. Similarly, on the CCTSDB 2021 dataset, the method achieves
precision, recall, and Map0.5 scores of 91.49%, 73.79%, and 81.03%, respectively.

2 Related Work

This section presents a summary of existing research on traffic sign detection.

2.1 Traditional Traffic Sign Detection

Traditional traffic sign detection involves three key steps: region selection, feature extraction, and
classification regression [2]. Li et al. [3] introduced a method for road recognition by combining color-
invariant-based image segmentation. Maldonado-Bascón et al. [4] presented an automatic road-sign
detection and recognition system based on support vector machines (SVMs) which is able to detect and
recognize circular, rectangular, triangular, and octagonal signs and, hence, covers all existing Spanish
traffic-sign shapes. However, traditional target detection algorithms face two main challenges. First,
the sliding window-based region selection method lacks precision, consumes excessive time, and the
window is redundant. Second, manually extracted features are unstable in a dynamically changing
environment.
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2.2 Traffic Sign Detection Based on Deep Learning

Recently, the application of deep learning in traffic sign detection has gained significant traction.
Notably, there are two distinctive methods: the two-stage and one-level traffic sign detection methods.

The two-stage traffic sign detection method is recognized for its high accuracy but relatively
slower processing speed. In 2014, Girshick et al. introduced the region-based CNN (R-CNN) [5],
a pioneering success in applying the deep learning method to object recognition. Building on this
foundation, Fast R-CNN [6] was proposed in the subsequent year, aimed at enhancing the speed of R-
CNN by unifying category judgment and frame regression through CNN implementation without
requiring additional storage features. In 2017, Ren et al. proposed the Faster R-CNN [7], greatly
improving the comprehensive performance. Additionally, Lin et al. proposed the feature pyramid
network (FPN) [8], which uses feature maps of different resolutions to comprehend targets of different
sizes. This method combined output features with shallow visual and deep-level semantic features
through continuous upsampling and cross-layer fusion information. In 2018, Liu et al. proposed the
path aggregation network (PAN) [9]; the original FPN is a one-way fusion from deep to shallow, but
PAN is a bidirectional fusion from deep to shallow and vice versa. Additionally, Cai et al. introduced
the cascade R-CNN method [10]. In 2019, Han et al. [11] proposed a real-time small traffic sign
detection approach based on a revised Faster R-CNN, which uses a small region proposal generator to
extract the characteristics of small traffic signs and combine the revised architecture of Faster R-CNN
with online hard examples mining (OHEM) to make the system more robust to locate the region of
small traffic signs.

However, the one-level traffic sign detection method is faster and can achieve satisfactory accuracy.
Notable algorithms in this category include the YOLO series proposed by Redmon et al. [12] and the
single shot multiBox detector (SSD) proposed by Liu et al. [13]. In 2018, Redmon et al. [14] proposed
the YOLOv3, which integrates the ideas of current excellent detection frameworks, such as residual
networks and feature fusion. You et al. [15] proposed an end-to-end deep learning model for identifying
traffic signs in high-definition pictures, which contains fundamental feature extraction and multitask
learning. Kong et al. [16] collected traffic signs in South Korea. They proposed a lightweight traffic sign
detection method using cascaded CNN [17], which is hardware-friendly and reduces the computational
complexity compared with Agone’s proposed YOLOv2-tiny [18]. Yen et al. [19] proposed a CNN
configured with area masks to resolve the occlusion problem in traffic sign detection. The method
was highly effective in alleviating the occlusion problem. Siniosoglou et al. [20] proposed an auto-
encoder model, which showed high precision in recognizing fuzzy traffic signs. Franzen et al. [21] used
a neural network trained in the frequency domain to detect traffic signs, greatly reducing the number of
neurons compared to the traditional neural network. In 2020, Jocher et al. [22] proposed the YOLOv5,
a progressive addition to the YOLO family of algorithms. Until now, YOLOv5 continues to undergo
upgrades and iterations.

In 2021, Nagrath et al. [23] designed the SSDMNV2 approach; it uses SSD as a detector and
MobileNetV2 architecture as a framework for the classifier. This lightweight setup is suitable for real-
time mask detection, even on embedded devices. Additionally, Pooja et al. [24] proposed a detection
method that uses TensorFlow and OpenCV. At the same year, Du et al. [25] established a target object
grab setting model with the multi-target object and the anchor frame generation measurement strategy
overcoming external environmental interference factors such as mutual interference between objects
and changes in illumination. In 2022, Liu et al. [26] proposed a symmetrical traffic sign detection
algorithm M-YOLO, for complex scenes. The algorithm optimizes the delay by reducing network
computational overhead and speeding up feature extraction. Similarly, Loey et al. [27] proposed a
detection model consisting of two components. The first component is designed for feature extraction
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using ResNet50, while the second component is designed for the classification process of face masks
using decision trees, SVMs, and ensemble algorithm. Yun et al. [28] proposed a method of cluttering
pose detection based on convolutional neural network with multiple self-powered sensors information.
In 2023, Shi et al. [29] proposed the cross-stage attention network module to enhance the feature
extraction capability of the network. They used a dense neck structure for the comprehensive fusion
of detail and semantic information. Liu et al. [30] proposed a new key point assumption strategy based
on the basis of the PvNet model. Meanwhile, a fusion method of pixel-by-pixel key point voting and
depth image is applied to improve the performance of the model.

However, this study proposes the C2Net-YOLOv5 model for traffic sign detection based on the
YOLOv5 framework, offering enhanced speed and suitability in real-time applications. The YOLO
framework is developing rapidly; many have already found practical applications across various
domains.

3 Algorithms

The YOLOv5 method is the best one-stage target detection method, distinguished by its computa-
tional efficiency and fast processing speed. In this study, the C2Net-YOLOv5 model was constructed
based on the YOLOv5 framework, as shown in Fig. 1.

Figure 1: C2Net-YOLOv5 model
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In the Backbone segment of the C2Net-YOLOv5, the main features are extracted through
focus, convolution (Conv), C2Net, and spatial pyramid pooling. Focus is a special convolutional
structure designed by YOLOv5’s authors for multi-scale feature extraction in small target detection.
C2Net enhances the network’s ability to handle targets of varying scales, thereby improving detection
performance. Conv refers to the convolution layer responsible for constructing the backbone network,
feature extraction module, and classifier. It extracts features from the input feature graph and facilitates
information processing and transformation.

The Neck segment adopts the combination of FPN and PAN concepts. The FPN fuses features
from different scales and then performs prediction on the fused feature map. FPN is a feature pyramid
network structure for target detection and semantic segmentation tasks. It enables the construction
of a feature pyramid through a top-down feature propagation process and lateral connection. This
mitigates target scale changes and facilitates small target detection. However, the PAN combines
feature pyramids and path aggregation for comprehensive multi-scale information fusion. It leverages
the backbone network to construct a multi-layer feature pyramid on the feature graph extracted
at different stages of the backbone network. PAN efficiently captures both semantic and detailed
characteristics of targets through effective multi-scale information. The combination of FPN and
PAN uses the advantages of the two network structures to achieve more effective and robust feature
representation and information fusion.

The Head module serves as the output layer, further extracting network features and transforming
them into target detection boxes and category predictions for input images.

3.1 Construction of the C2Net Module

The C2Net module consists of three ConvBNSiLU modules, multiple Bottle2neck modules, and a
Concat module, as shown in Fig. 1. The ConvBNSiLU module refers to the structural combination of
Conv, batch normalization (BN), and sigmoid-weighted linear unit (SiLU). The Bottle2neck module
will be introduced in Section 3.2. The Concat module is a commonly used module in deep learning to
connect multiple input features along specific dimensions.

In the earlier version of YOLOv5, the backbone network used the BottleneckCSP module for
feature extraction. C2Net differs from the BottleneckCSP module; it removes the Conv module after
the remaining output and replaces the activation function in the standard convolutional module with
SiLU. The C2Net module is structured into two branches: one uses the specified multi-Bottle2neck
stacks and ConvBNSiLU modules, while the other traverses a single ConvBNSiLU module. Subse-
quently, the branches were subjected to the Concat and ConvBNSiLU operations.

The advantages of the C2Net module are as follows: firstly, concatenating multiple convolutional
layers boosts the model depth and width. This enhances the model’s expressive ability to learn
complex feature representations; secondly, the module uses convolution operations at varying scales
to fuse multiple feature maps. This fusion of multi-scale features improves the model’s perception
of different target sizes and details. Additionally, the C2Net module leverages parallel computing
through concatenating and convolving feature maps of different sizes, which optimizes computational
efficiency. In summary, the C2Net module excels in multi-scale feature fusion and computational
efficiency.

3.2 Bottle2neck Module

To address the challenges of insufficient feature extraction in the model, a bidirectional Res2Net
module is introduced into the Bottle2neck module, as shown in Fig. 2c. This module facilitates
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multi-scale feature extraction in two opposite directions, which enhances feature representation. This
approach also rectifies the singularity orientation inherent in the Res2Net model. In this study, the
addition of squeeze-and-excitation (SE) channel attention resolves the issues arising from varying
channel importance during convolution pooling.

Figure 2: Res2Net, reverse Res2Net and Bottle2neck modules

The Bottle2neck module takes full advantage of Res2Net for multi-scale feature extraction. The
standard 1-3-1 CNN layout is replaced with multi-scale residual layering architecture. This alteration
shifts the main convolution in the middle from a single branch to a multi-branch configuration. By
increasing the receptive fields within the block, different scale levels are captured layer by layer at a finer
granularity, enhancing the CNN’s ability to detect objects within images. In this study, the bidirectional
Res2Net module was further used to conduct multi-scale feature extraction in two opposite directions
to rectify the singularity in the direction of the Res2Net model.

3.2.1 Res2Net Module and Reverse Res2Net Module

Fig. 2a shows the Res2Net module used in this study. It constructs residual blocks of multiple
branches within a single residual block. This module refines multi-scale features at a more granular
level and expands the network’s perceptual field. The steps are outlined as follows:

1) First, the module introduced a novel parameter, referred to as scale (denoted as s), which
signifies the number of groups into which the feature map is divided.

2) Next, the output features of the first 1 × 1 convolutional layer were divided by Res2Net into s
equal groups based on channels, with each group having w channels, i.e., n = s × w.

3) Next, the second layer convolution kernel in the original Bottleneck block was divided by
Res2Net into s groups, with each group having output channels w (similar to step 2). The
convolution operation for each group is denoted Ki().

4) For each group of features, after grouping xi, all groups corresponded to the convolution
operation except the last group, which omitted the convolution operation Ki(), where i ∈
{2, . . . , s}. Note yi is the output of the convolution operation Ki(), then from the second group
onwards, each convolution operation Ki() is preceded by the output of the preceding group
yi−1 and added to the features of the current group xi forming a residual concatenation through
Ki(). This process continued until the penultimate set of features and can be expressed by the
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following equation:

yi =
{

xi i = s,
Ki (xi + yi−1) 1 ≤ i < s, y0 = 0.

(1)

5) Finally, the outputs corresponding to each group were channel concatenated and fed into a
final layer of 1 × 1 convolutional layers to fuse the multi-scale features and obtain the block’s
output. This module’s distinctive structure, characterized by a residual-like concatenation
mechanism, is referred to as Res2Net.

Fig. 2b shows the reverse Res2Net module, which is symmetrically aligned with the Res2Net
module. This module aims to enhance feature representation and achieve complementary information.

3.2.2 SE Channel Attention Module

The squeeze-and-excitation network (SENet) focuses on inter-channel relationships, enabling the
model to automatically learn the importance of different channel features. SENet proposed the SE
module as shown in Fig. 3. The operational process is as follows:

1) Squeeze: Using global average pooling, the two-dimensional features (H ∗ W) of each channel
were compressed into a real number. The resulting feature map transformed from [h, w, c]==>

[1, 1, c], yielding channel-level global features.
2) Excitation: Weight values were generated for each feature channel, establishing correlations

between channels through two fully connected layers. The number of output weight values
corresponds to the number of channels in the output feature map. The operation transformed
from [1, 1, c] ==> [1, 1, c], learned the relationships between different channels, and obtained
the weights of different channels.

3) Scale: The normalized weights obtained earlier were applied to each channel’s features. This
was achieved through channel-wise multiplication of weight coefficients, i.e., [h, w, c] ∗ [1, 1, c]
==> [h, w, c].

Figure 3: SE channel attention

Essentially, the SE module performs attention or gating operations within the channel dimension,
which allows the model to focus more on channel features with higher information content while
suppressing less important ones.

In Fig. 2c, the Bottle2neck module uses the channel attention module. Given that channel weights
for different channels often differ within an image, capturing this information enhances the model’s
overall information capacity and accuracy.
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4 Experiments and Analysis of Results

This section presents the experimental evaluation of the proposed method. The proposed traffic
sign detection method is implemented using the PyTorch deep learning framework. The method’s
efficacy was verified through testing on the TT100K and CCTSDB 2021 datasets.

4.1 Experimental Data

This study used the TT100K and CCTSDB 2021 [31] datasets. The TT100K is a traffic sign dataset
produced by Tencent and Tsinghua, with a total of 100,000 images, of which 10,000 contains traffic
signs. The training set consists of 6,150 images, while the test set consists of 3,071 images. Notably,
the dataset exhibited category imbalance, as certain signs (e.g., landslides and villages ahead) were
not visible in the city center. Additionally, there were 70 missing categories, i.e., 70 categories lacked
instances, emphasizing the importance of meticulous data processing. Only categories containing more
than 100 images were retained.

The CCTSDB 2021 dataset is a novel Chinese traffic sign detection benchmark proposed by the
authors, which adds over 4,000 real traffic sign images and homologous detailed labels to CCTSDB
2017. Furthermore, it replaces many original easy-to-detect images with difficult samples to fit the
complex and variable detection environment.

4.2 Assessment Indicators

In evaluating the experimental results, box_loss, cls_loss, obj_loss, precision, recall, Map0.5, and
F1-score were used as indicators for evaluating the proposed methods.

The cls_loss was used as the classification loss function. The model generated three prediction
boxes for each N ∗ N grid cell containing nc classification probabilities. The formula for calculating
cls_loss, as presented in Eq. (2), involves several components, such as label (representing values in
the unique heat code label), α (the smoothing coefficient with a value ranging from 0 to 1), and nc
(representing the total number of categories). The label probability matrix is denoted as matrix Lsmooth,
while the prediction probability is represented as matrix P. The Binary CrossEntropy Loss (BCE Loss)
for each numerical entry in the matrix is referred to as lossBCE. In this context, nc represents the dataset
category, N represents the grid size, z represents the z-th anchor in the grid, x represents the abscissa
position, y represents the ordinate position, and t represents the t-th category.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

labelsmooth = label ∗ (1 − α) + α/nc

lossBCE
0≤z<3

0≤x<N

0≤y<N

0≤t<nc

(z, x, y, t) = Lsmooth (z, x, y, t) ∗ logP (z, x, y, t) − (1 − Lsmooth (z, x, y, t)) ∗ log (1 − P (z, x, y, t)),

clsloss = 1
nc ∗ (mask = false)

∑
mask = false

0≤z<3

0≤x<N

0≤y<N

0≤t<nc

lossBCE (z, x, y, t).
(2)

The box_loss was used as the localization loss to indicate the deviation between the prediction
and calibration boxes. The formula for calculating box_loss, as presented in Eq. (3), consists of a
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constant λcoord that balances the loss of position and size. The variables S2 and B represents the number
of grid cells and candidate boxs, respectively. Furthermore, x_i, j, y_i, j, w_i, j, and h_i, j represent
the center coordinates, width, and height of the j-th prediction box in the i-th grid cell. The x̂_i, j,
ŷ_i, j, ŵ_i, j, ĥ_i, j represent the center coordinates, width, and height of the real box, respectively. Iobj

i,j

indicates whether the rectangle is responsible for predicting a target object, with a value of 1 indicating
responsibility and 0 indicating otherwise.

box_loss = λcoord

S2∑
i=0

B∑
j=0

Iobj
i,j (2 − wi × hi)

[(
xi − x̂i

)2 + (
yi − ŷi

)2 + (
wi − ŵi

)2 +
(

hi − ĥi

)2
]

(3)

The obj_loss was used as the confidence loss function to indicate the confidence level of the
computed network. The formula for calculating obj_loss is presented in Eq. (4). The lossBCE represents
the BCE Loss of the confidence label matrix and the predicted confidence matrix, α represents the
weight of confidence loss when the mask is true, usually ranging from 0.5 to 1. This makes the network
focus more on training when the mask is true. Variable z represents the z-th anchor in the grid, x
represents the abscissa position, y represents the ordinate position, and N represents the grid size as
N ∗ N.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

lobj = 1
num (mask = true)

∑
mask = true

0≤z<3

0≤x<N

0≤y<N

lossBCE (z, x, y),

lnobj = 1
num (mask = false)

∑
mask = false

0≤z<3

0≤x<N

0≤y<N

lossBCE (z, x, y),

objloss = a ∗ lobj + (1 − a) ∗ lnobj.

(4)

The precision indicates the proportion of the predicted positive samples that are positive. The
formula for calculating precision is presented in Eq. (5). The true positive (TP) + false positive (FP)
represents the number of results that have been determined to be positive samples, and TP represents
the number of positive samples that have been determined to be positive.

Precision = TP
TP + FP

. (5)

The recall is also referred to as the check rate. It indicates the proportion of the correctly identified
samples in the total positive samples. The formula for calculating recall is presented in Eq. (6). The
TP + false negative (FN) represents the actual number of positive samples, and TP represents the
number of positive samples that have been determined to be positive.

Recall = TP
TP + FN

. (6)

The Map0.5 is the average precision of all categories at an intersection over union (IOU) threshold
of 0.5. The formula for calculating Map0.5 is presented in Eq. (7). The variable k represents the total
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number of categories and APi represents the average precision of the i-th category.

Map0.5 =
∑k

i=1APi

k
. (7)

The F1-score is a measure of the classification problem. The formula for calculating F1-score is
presented in Eq. (8). The precision represents the accuracy, and recall represents the recall rate.

F1 − score = 2 × Precision × Recall
Precision + Recall

. (8)

4.3 Performance of the TT100K Dataset

To test the efficacy of the proposed method, the TT100K dataset was first used to train and analyze
the experimental results. Fig. 4 shows the experimental effect of the proposed method on the TT100K
dataset. Given the relatively small proportion of traffic signs in the entire map, for a clearer display
effect, the six localized detection detail maps were stitched together to form Fig. 4. It can be observed
that the model detects targets with high accuracy and accurately classify them into the correct category.

Figure 4: Sample detection results based on the C2Net-YOLOv5 method
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Fig. 5 shows the results of YOLOv5 and the C2Net-YOLOv5 model trained on the TT100K
dataset. The evaluation criteria consisted of cls_loss, box_loss, obj_loss, precision, recall, and Map0.5.
Larger values of precision, recall, and Map0.5 indicate superior predictions, while smaller values of
cls_loss, box_loss, and obj_loss denote improved predictive performance. From the comparison of
the line diagram, it can be observed that in the initial stage of the detection model training, the
learning efficiency of the model is higher, and the convergence rate of the training curve is faster.
As the training period increases, the slope of the training curve gradually decreases and eventually
stabilizes. Fig. 5 shows that each loss function gradually converges. The precision, recall, and Map0.5
metrics continuously improve and converge as the number of training periods increases. In terms of
precision metrics, the C2Net-YOLOv5 model consistently maintained a slightly higher performance
than the YOLOv5 model during training. At an IOU threshold of 0.5, the proposed model achieves
an improved level of detection accuracy compared to the original YOLOv5 model and converges more
rapidly. Therefore, the C2Net-YOLOv5 model not only enhances precision, recall, and Map0.5, but
also exhibits faster convergence than the YOLOv5 model. The C2Net-YOLOv5 model’s performance
on TT100K gradually stabilized after 600 rounds of training, indicating the feasibility of optimizing
the model for significant improvements compared to the original model.

Figure 5: Detection results of YOLOv5 and C2Net-YOLOv5 on the TT100K dataset

In addition to the above experimental comparisons, a comparative experiment between C2Net-
YOLOv5 and some other mainstream detection models was conducted. This experiment tested Faster
R-CNN, SSD, YOLOv5, and C2Net-YOLOv5 on the TT100K dataset. Precision, recall, Map0.5, and
F1-score were used as benchmarks for evaluation, and the detection effect of different methods are
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presented in Table 1. The superiority of the proposed method compared to YOLOv5 is because of the
improved ability of the backbone network to extract traffic sign features by introducing a bidirectional
Res2Net module and SE attention module in YOLOv5.

Table 1: Performance of the models on the TT100K dataset

Method Backbone Precision Recall Map0.5 F1-score

Faster R-CNN ResNet50 82.74 78.67 71.31 80.65
SSD VGG16 81.35 79.78 72.39 80.56
YOLOv5 CSPDarknet 81.92 80.31 80.05 75.88
YOLOv5_all C2Net 83.74 76.31 82.27 79.85
C2Net-YOLOv5 C2Net 83.30 79.28 84.23 81.24

The reason behind the proposed method’s superior performance over Faster R-CNN and SSD
is that the feature map of Faster R-CNN is monolayered with a very small resolution. This limits
its effectiveness in detecting small and multi-scale objects. In the case of SSD, its feature pyramid
structure fails to harness the powerful semantic information in deep feature graphs, which is essential
for effectively detecting smaller objects. Therefore, the proposed method’s performance surpasses that
of both Faster R-CNN and SSD.

4.4 Performance of the CCTSDB 2021 Dataset

To demonstrate the generalization of the method, the performance of YOLOv5 and the proposed
method were tested on the CCTSDB 2021 dataset. The detection results of each model on the
CCTSDB 2021 dataset are presented in Table 2. The precision, recall, Map0.5, and F1-score metrics
were used as benchmarks for evaluation. The CCTSDB 2021 dataset is characterized by a small
number of categories (i.e., mandatory, warning, and prohibited), and the overall performance metrics
were all higher than those in the TT100K dataset. Notably, the C2Net-YOLOv5 method increased
precision to 91.49, with a slight enhancement in recall, an increase in Map0.5 to 81.03, and an F1-
score of 81.69. Overall, these indicators surpassed the detection effectiveness of the original YOLOv5
method.

Table 2: Performance of the models on the CCTSDB 2021 dataset

Method Backbone Precision Recall Map0.5 F1-score

YOLOv5 CSPDarknet 89.06 73.47 79.57 80.52
YOLOv5_all C2Net 86.26 68.31 75.21 76.24
C2Net-YOLOv5 C2Net 91.49 73.79 81.03 81.69

4.5 Ablation Experiments

To gain a deeper understanding of the effect of different insertion positions of C2Net modules
on the experimental results, ablation experiments were conducted. YOLOv5_all indicates that C2Net
was applied to both the model’s Backbone and Neck, while C2Net-YOLOv5 indicates that C2Net was
applied solely to the Backbone segment. The key variable under consideration was whether the C2Net
module for feature extraction and fusion was included. The experiments were conducted on both the
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TT100K and CCTSDB 2021 datasets. The impacts of the different designs on the experiments are
presented in Tables 3 and 4. Upon analyzing the model’s performance on the TT100K and CCTSDB
2021 datasets, the C2Net-YOLOv5 model exhibited the best experimental results. Notably, the recall,
Map0.5, and F1-score metrics were greatly higher than the YOLOv5_all method in the TT100K
dataset, despite exhibiting slightly lower accuracy. Furthermore, in the CCTSDB 2021 dataset, all
metrics of C2Net-YOLOv5 surpassed the YOLOv5_all method.

Table 3: Results of ablation experiments on the TT100K dataset

Ablation study Backbone Precision Recall Map0.5 F1-score

YOLOv5_all C2Net 83.74 76.31 82.27 79.85
C2Net-YOLOv5 C2Net 83.30 79.28 84.23 81.24

Table 4: Results of ablation experiments on the CCTSDB 2021 dataset

Ablation study Backbone Precision Recall Map0.5 F1-score

YOLOv5_all C2Net 86.26 68.31 75.21 76.24
C2Net-YOLOv5 C2Net 91.49 73.79 81.03 81.69

4.6 Performance Comparison of Res2Net and Bidirectional-Res2Net on TT100K

To ascertain the true impact of the bidirectional Res2Net composition on feature extraction
capability, a comparative experiment was conducted against the detection network composed of
unidirectional Res2Net. The experimental comparison was conducted on the TT100K dataset, with
other variables remaining constant. The C2Net-YOLOv5 model indicates that its backbone extraction
module is C2Net, which uses a Bottle2neck as a bidirectional Res2Net structure. On the other hand,
the C2Net-YOLOv5 model indicates that the backbone extraction module is CNet, with the only
distinction being that the Bottle2neck structure changes from bidirectional to unidirectional. The
impacts of the different designs on the experiments are presented in Table 5. Upon analyzing the
model’s performance on the TT100K dataset, the C2Net-YOLOv5 model exhibited the best experi-
mental results. All metrics of the C2Net-YOLOv5 model greatly surpassed those of the CNet-YOLOv5
method. These findings confirmed that the bidirectional Res2Net composition really enhances the
feature extraction ability.

Table 5: Performance comparison of Res2Net and bidirectional-Res2Net on TT100K dataset

Method Backbone Precision Recall Map0.5 F1-score

CNet-YOLOv5 CNet 81.62 78.89 80.53 79.90
C2Net-YOLOv5 C2Net 83.30 79.28 84.23 81.24

4.7 Overall Performance Comparison

This section compares the C2Net-YOLOv5 and YOLOv5_all with other methods. The results of
the comparison, including input_size, Map0.5, frames per second (FPS), and speed/ms, are presented
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in Table 6. It can be observed that the C2Net-YOLOv5 method exhibited even better results. Notably,
Faster R-CNN achieves a Map0.5 of 82.74 for an image size of 224 × 224, but operated at a slower
speed of 7 FPS. The SSD achieves a Map0.5 of 81.35 for an image size of 512 × 512, which is faster
but with slightly lower detection accuracy than the proposed method. In contrast, the proposed
method improves Map0.5 to 83.30 with an input image size of 640 × 640 and achieves a speed of
27.10 FPS. Furthermore, the detection speed is 36.9 ms per image, notably shorter than that of the two-
stage detector and an improved accuracy compared to the one-stage detector SSD. This achievement
highlights the proposed method’s ability to improve the balance between accuracy and speed.

Table 6: Comparison of different methods on the TT100K dataset

Method Input_size Map0.5 FPS (f · s−1) Speed/ms

Faster R-CNN 224 × 224 82.74 7 142.86
SSD 512 × 512 81.35 27.61 36.22
YOLOv5 640 × 640 81.92 27.25 36.7
YOLOv5_all 640 × 640 83.74 14.12 70.8
C2Net-YOLOv5 640 × 640 83.30 27.10 36.9

4.8 Robustness Testing

To evaluate the performance and reliability of the system or model in the face of various abnormal
scenarios, robustness testing was conducted on the model. In practical applications, systems or models
encounter various uncertainties and changes, such as changes in occlusion, target scale, and lighting.
Robustness testing serves as a means to evaluate the performance of a system or model in the real
world, ensuring that it adapts to various changes and diversity.

The robustness of the model was tested under occlusion, multi-scale changes, and noise conditions,
as shown in Fig. 6. The upper left image shows that the C2Net-YOLOv5 model can detect traffic signs
accurately with high confidence even when more than half of the sign is obscured. This performance
stems from the model training on a more diverse dataset, which includes traffic sign samples under
various occlusion scenarios. This comprehensive training process enables the model to learn more
robust feature representations, thereby enhancing its detection accuracy. The two comparison images
in the upper right (from left to right) represent the detection performance of the original YOLOv5
and C2Net-YOLOv5 models. In the TT100K dataset, the traffic signs are often small and account
for less than one percent of the entire image; the training dataset only includes small object detection.
The original YOLOv5 encountered difficulties detecting large traffic signs, as it exhibited multiple
detection boxes around the target and traffic signs absent in the false detection dataset. In contrast, the
proposed model accurately detects large-scale traffic signs without erroneously detecting signs that are
absent. Notably, the C2Net-YOLOv5 model adopts multi-scale feature extraction technology, which
makes the model more effective in detecting multi-scale traffic signs. The subsequent two comparative
images in Fig. 6 show the model’s accuracy in light and shadow noise scenarios. This accuracy results
from the integration of HSV (hue, saturation, value) data enhancement and SE attention mechanism.
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Figure 6: Robustness testing of the C2Net-YOLOv5 on the TT100K dataset

5 Conclusion

This study proposed a novel traffic sign detection method termed C2Net-YOLOv5. To address
the existing limitations of YOLOv5, a bidirectional Res2Net module was used within the Bottle2neck
architecture to enhance feature representation and improve the fusion of features across different
scales. Additionally, the inclusion of channel attention through the SE attention mechanism within
the C2Net module enabled the refining and retaining of valuable features while discarding extraneous
features. The experimental results revealed that the proposed method had superior performance com-
pared to other mainstream detection models. The proposed method effectively used feature informa-
tion from different levels to improve the accuracy and robustness of object detection. Furthermore, it
efficiently addressed challenges such as occlusion, changes in target scale, and lighting variations. This
study has a promising impact on practical applications such as autonomous driving, video surveillance,
and intelligent assistance. However, the proposed method is faced with challenges due to the common
problem of deep learning: the vulnerability to malicious attacks. Future optimization works will focus
on enhancing the robustness of the detection network and strengthening its ability to resist malicious
adversarial attacks, thereby improving application security. Some possible optimization directions
include adversarial attack training, robustness enhancement technology, detection of abnormal input,
data enhancement, and preprocessing.
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