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ABSTRACT

The permanent magnet eddy current coupler (PMEC) solves the problem of flexible connection and speed
regulation between the motor and the load and is widely used in electrical transmission systems. It provides torque
to the load and generates heat and losses, reducing its energy transfer efficiency. This issue has become an obstacle
for PMEC to develop toward a higher power. This paper aims to improve the overall performance of PMEC through
multi-objective optimization methods. Firstly, a PMEC modeling method based on the Levenberg-Marquardt
back propagation (LMBP) neural network is proposed, aiming at the characteristics of the complex input-output
relationship and the strong nonlinearity of PMEC. Then, a novel competition mechanism-based multi-objective
particle swarm optimization algorithm (NCMOPSO) is proposed to find the optimal structural parameters of
PMEC. Chaotic search and mutation strategies are used to improve the original algorithm, which improves the
shortcomings of multi-objective particle swarm optimization (MOPSO), which is too fast to converge into a
global optimum, and balances the convergence and diversity of the algorithm. In order to verify the superiority
and applicability of the proposed algorithm, it is compared with several popular multi-objective optimization
algorithms. Applying them to the optimization model of PMEC, the results show that the proposed algorithm
has better comprehensive performance. Finally, a finite element simulation model is established using the optimal
structural parameters obtained by the proposed algorithm to verify the optimization results. Compared with
the prototype, the optimized PMEC has reduced eddy current losses by 1.7812 kW, increased output torque by
658.5 N·m, and decreased costs by 13%, improving energy transfer efficiency.
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1 Introduction

The permanent magnet eddy current coupler (PMEC) is a kind of equipment that uses the force
between magnetic fields to transfer torque and whose outstanding feature is no mechanical connection.
This noncontact structure has the benefits of vibration isolation, alignment error tolerance, and
overload protection while lowering friction and equipment loss [1]. When PMEC works, the induced
eddy current in the conductor provides torque for the load. However, it also causes heat to be produced
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and energy to be lost, which lowers the effectiveness of energy transfer. Multi-objective optimization
is an excellent method to balance the transmission performance and eddy current loss of PMEC.
A trustworthy model is required to predict the performance of PMEC throughout the optimization
process [2].

There are three common modeling methods for PMEC. The first is to use the method of separating
variables to solve partial differential equations based on Maxwell equations and boundary conditions
[3–8]. The second is to build an equivalent magnetic circuit (EMC) based on the similarity between the
magnetic circuit and the circuit and then solve it according to Kirchhoff’s law and Ohm’s law of the
magnetic circuit [9–13]. The influence of eddy currents should be considered in the modeling process
of PMEC. However, EMC is a method that does not consider eddy current, and the existing EMC
models cannot directly calculate eddy current effects [10]. Although the calculations for these two
methods are simple, the modeling process necessitates several assumptions and simplifications, as well
as the application of numerous empirical components, which causes the calculation results from the
model to diverge from the actual scenario. Additionally, these models often predict the performance
of PMEC with reasonable accuracy at low relative slips, but as relative slip increases, the accuracy
of the models rapidly decreases [14]. The third method is the numerical method, such as the finite
element method (FEM), which enables the analysis of electromagnetic field problems from the classical
analytical method to the numerical analysis method of discrete systems so that high-precision discrete
solutions can be obtained [15–17]. The FEM can produce accurate results, but because of its extensive
calculation and time requirement, it is often used for verification. Neural networks are frequently
used for numerical prediction in complex situations. There are, however, few studies that use neural
networks to predict PMEC performance. In light of this, this paper suggests a Levenberg-Marquardt
back propagation (LMBP) neural network-based modeling approach for PMEC.

Numerous intelligent optimization algorithms have been used to address the multi-objective
optimization of electromagnetic equipment. References [2] and [18] used the genetic algorithm (GA)
to carry out multi-objective optimization for dual-sided radial PMEC and radial flux permanent
magnet motors. Reference [19] has optimized and designed the inner-mounted permanent magnet
synchronous motor (IPMSM) by correlating the particle swarm optimization algorithm (PSO) with
the FEM. References [20] and [21] used an improved PSO to optimize the energy consumption of tram
operations. However, these methods use weighted methods to integrate multiple objective functions
into one. The solutions obtained in these ways are closely related to the defined weights and have high
subjectivity. To address the issues raised above, references [22–24] adopted multi-objective particle
swarm optimization (MOPSO) based on Pareto optimal sequencing. Although they proposed various
MOPSO improvement strategies, finding a globally optimal solution is still challenging since diversity
and convergence are tricky to balance.

This paper aims to investigate the multi-objective optimization design method of PMEC structural
parameters to simultaneously improve transmission performance, suppress eddy current loss, and
lower material cost. A PMEC modeling method based on the LMBP neural network is proposed. The
nonlinear regression model of PMEC is established in the whole space to compensate for the theoreti-
cal model’s low accuracy, which combines the ANSYS simulation data with the LMBP neural network.
Then, to balance the convergence and diversity of MOPSO, the novel competitive mechanism-based
multi-objective particle swarm optimization algorithm (NCMOPSO) is proposed and applied to the
parameter optimization of PMEC. This method can calculate all feasible nondominated optimal
solutions, avoiding the subjectivity and complexity of the objective function mechanism caused by
the weighting method. Chaotic search and mutation strategies are used to enhance the diversity of the
population, which improves the problem of a too-fast rate of convergence of the algorithm. Finally,
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the LMBP model’s accuracy and the optimization algorithm’s effectiveness are verified by MATLAB
and finite element simulation, respectively.

2 LMBP Neural Network Model of PMEC
2.1 Structure and Working Principle of PMEC

The mechanical structure of PMEC with a single-group disk structure is shown in Fig. 1. The
conductor rotor and PM rotor can rotate independently. When PMEC works, the conductor rotor is
driven by a motor to rotate, cutting off the magnetic induction lines generated by PM and forming
eddy currents. Near the conductor disk, eddy current, in turn, generates an induced magnetic field.
According to Lenz’s law, the eddy current magnetic field should prevent the relative movement between
the PM rotor and the conductor rotor by preventing the change of magnetic flux caused by the eddy
current. Under the interaction between the eddy current magnetic field and the permanent magnetic
field, the PM rotor lags behind the conductor rotor, which realizes the torque transfer from the motor
to the load.

Figure 1: Mechanical structure of PMEC

2.2 Levenberg-Marquardt Back Propagation Neural Network

The neural network can approximate arbitrary complex nonlinear systems. The BP neural network
based on the gradient descent (GD) method is the most successful and widely used neural network
learning algorithm [25]. However, its slow convergence speed makes it easy to fall into local extreme
values. The LMBP neural network uses the Levenberg-Marquardt (LM) algorithm instead of the GD
method to solve the optimization problem. It combines the GD and Gauss-Newton methods and
benefits from their global characteristics and efficient convergence. Moreover, it has advantages in
solving various nonlinear problems [26]. The formula for the modified weight is as follows:

x(k+1) = x(k) − JT (x) E (x)

JT (x) J (x) + uI
(1)
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where JT (x) is the Jacobian matrix, E (x) is the network error vector, I is the identity matrix, and u is
the damping term. The objective function is the square error function, as shown in Eq. (2).

E (x) = 1
2

N∑
i=1

e2
i (x) (2)

where ei (x) is the error between the ith predicted value and the actual value.

If u = 0, the LM algorithm becomes a Gauss-Newton method using an approximate Hessian
matrix. If u is large, it becomes a small step GD. The purpose of the LM algorithm is to convert to
the Newton method as quickly as possible. Since it converges faster and has higher accuracy near the
minimum error point. If an iteration succeeds and the error performance function decreases, then the
value of u will be reduced. If the iteration fails, the value of u will be increased. In this way, error
performance can be minimized with iteration.

2.3 Modeling of PMEC Based on LMBP Neural Network

2.3.1 Determination of Input and Output of the Model

PMEC is a complex multivariable coupling input and output system. The main structural
parameters affecting the PMEC output performance are the thickness of the copper disk and the
thickness, length, and width of the PM. Therefore, these four variables are selected as the model’s
input variables. The model’s output variables are the PMEC’s output torque and eddy current loss.
The impact of input variables on output variables is analyzed as follows:

• Copper disk thickness: During operation, the copper disk generates an eddy current and
provides a flow circuit for the eddy current. Its thickness will directly affect the resistance in
the eddy current circuit and then affect the eddy current loss and output torque.

• The volume of PM: Increasing PM volume will inevitably result in rising magnetic flux and
magnetic potential. However, at the same time, the magnetic resistance and leakage in the
magnetic circuit will also increase, consuming the increased magnetic potential and decreasing
the remaining magnetic flux of PM. The growth rate is reducing while the output torque and
eddy current loss are rising.

The LMBP neural network model structure of PMEC is shown in Fig. 2.

Figure 2: Structure of PMEC neural network model

2.3.2 Sample Point Selection and Pretreatment

The accuracy of sample data determines the reliability of neural network modeling. Establish a
PMEC model using ANSYS Maxwell software. Conduct finite element simulation to obtain relevant
data on its torque characteristics and eddy current loss as the LMBP neural network training samples.
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This paper takes a 30 kW PMEC as an example, and Table 1 shows the prototype parameters.
According to the parameters, establish its three-dimensional finite element simulation model. Through
finite element calculation, the influence of four input variables of PMEC on torque performance and
eddy current loss is shown in Fig. 3.

Table 1: Prototype parameters of PMEC

Parameter Value Parameter Value

Number of pole-pairs 9 Length of pm 130 mm
Thickness of pm 33 mm Width of pm 65 mm
Copper disk inner radius 190 mm Copper disk thickness 9 mm
Copper disk outer radius 370 mm Back iron inner radius 190 mm
Thickness of back iron 15 mm Back iron outer radius 370 mm
Width of air gap 4 mm Relative slip 45 rpm

Figure 3: Influence of input variables on output torque and eddy current loss
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To ensure assembly, the influence of material strength, performance, and heat dissipation is
comprehensively considered. The range of input variables is shown in Table 2.

Table 2: Range of input variables of the PMEC model

Input variable Range Input variable Range

Thickness of copper disk 4–12 mm Thickness of pm 10–50 mm
Length of pm 115–155 mm Width of pm 60–70 mm

Because the units and order of magnitude of the input parameters are inconsistent, the parameters
are normalized using the following equation to remove discrepancies:

y = x − xmin

xmax − xmin

(3)

where y represents the processed data, x represents the original sample data, xmax represents the
maximum value of the sample data, and xmin represents the minimum value of the sample data.

2.3.3 Neural Network Topology and Parameter Selection

The LMBP neural network has an unknown number of hidden layers and hidden layer nodes.
Therefore, it is necessary to determine a more appropriate value through experiments. Since the
model parameters in this study are not complicated, the number of hidden layers is determined to
be one according to the Kolmogorov theorem. The range of hidden layer node points can generally be
obtained from the empirical equation:

n = √
xin + yout + α (4)

where n is the number of hidden nodes, xin is the number of input nodes, yout is the number of output
nodes, and the range of α is 1 < α < 10.

The number of input layer nodes equals the number of input variables, which is 4. The output
variable is the eddy current loss or output torque, so the number of output nodes should be 1.
According to Eq. (4), the number of hidden layer nodes ranges from 3 to 12. Experiments on models
with different hidden layer nodes yield the corresponding number of iterations and mean square error
(MSE) to select the optimal setting value. The experimental results are shown in Fig. 4. The training
outcomes of each model are the average after ten pieces of training to ensure the reliability of the
experimental results.

It can be seen from Fig. 4a that the model of output torque and eddy current loss is optimal when
the hidden layer nodes are 10 and 11, respectively.

3 Verification of the Established Mode
3.1 Model Training and Result Comparison

The input variables of the neural network are the thickness of the copper disk and the thickness,
length, and width of the PM, while the output is the output torque or eddy current loss. Train and test
based on 530 data sets obtained from finite element calculations. Among them, four hundred twenty-
four data groups are randomly assigned as a sample set for training. Fifty-three data groups are used
as validation data sets, and the remaining 53 are used as test sets for post-training tests.
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Figure 4: Number of neurons in the hidden layer, number of iterations and MSE

The LMBP and standard BP neural networks are trained under the same conditions to compare
the training effect. Fig. 5 shows the change in MSE in both training processes.

Figure 5: The learning curve of the neural network

It can be seen from Fig. 5 that compared to the standard BP neural network, the LMBP neural
network has a faster convergence speed and higher training accuracy. Use the test set to compare the
MSE of the two prediction results, and its prediction results are significantly better.

3.2 Error Analysis of the Model

Fig. 6 shows the regression analysis of output torque and eddy current loss data. Almost all sample
points are near the zero-error line, indicating that the regression line fits the observed values well and
that the trained model is accurate and reliable.
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Figure 6: Regression analysis diagram of output torque and eddy current loss data

To test the training network’s generalization ability, select 70% of the samples as training samples
and the balance as verification samples. Train the LMBP neural network with training samples, and
test the generalization ability of the trained LMBP neural network with validation samples. The
network model is run ten times under identical conditions. The projected output values are then
statistically analyzed, and their MSE is calculated.

Table 3 shows the maximum, minimum, and average MSE values in the 10 test results of the
LMBP neural network and the standard BP neural network. The PMEC model established using the
LM algorithm to improve the BP neural network has superior prediction accuracy and generalization
capacity. Furthermore, the modeling results based on standard BP neural networks fluctuate more
violently. In the output torque and eddy current loss model of PMEC, the difference between the
maximum and minimum MSE values of the standard BP neural network is 0.0103 and 0.4791,
respectively, while the difference based on LMBP neural network modeling is only 0.0003244 and
0.0106, respectively. Therefore, the prediction output based on LMBP neural network modeling is
more stable.

Table 3: MSE of two kinds of neural networks

(a) Output torque

MSE Maximum Minimum Average value

BP 0.012 0.0017 0.00546
LMBP 0.0008419 0.0005175 0.0006492

(b) Eddy current loss

MSE Maximum Minimum Average value
BP 0.5629 0.0838 0.17973
LMBP 0.0191 0.0085 0.01196
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4 Multi-Objective Optimization Design of PMEC
4.1 Novel Competitive Mechanism-Based MOPSO

In MOPSO, the diversity of the population mainly comes from the difference between personal
optimum and global optimum. Due to the global influence of the global optimum, the personal
optimum may be similar to it or even have the same value, resulting in a reduction in population
diversity [27]. In order to eliminate their impact on diversity, a competition mechanism is introduced
to improve MOPSO.

4.1.1 Competitive Swarm Optimizer (CSO)

CSO introduces the survival competition mechanism of the fittest in biology based on PSO. In
each iteration, particles are not updated with their personal and global optimums. Instead, they are
randomly paired for comparison and update the loser with the winner’s information, thereby avoiding
premature convergence and increasing the variety of the population.

Take the minimization problem as an example. First, initialize a population p (t) containing N
particles, where N is the population size and t is the number of iterations. Randomly divide each
generation’s particle population p (t) into N/2 pairs. Then select a pair of particles to compete
according to their fitness values. Those particles with smaller fitness values are called winners and
will enter the next generation p (t + 1) directly. The losers with large fitness values must learn from the
winners to update their position and velocity vectors to enter the next generation. One iteration has
been completed when all particles are transferred to the next generation.

The updated formulas for the velocity vector and position vector of the loser after the competition
are as follows:

Vlo,k (t + 1) = R1 (k, t) Vlo,k (t)

+ R2 (k, t)
(
Xwi,k (t) − Xlo,k (t)

)
(5)

+ ϕR3 (k, t)
(
X k (t) − Xlo,k (t)

)
Xlo,k (t + 1) = Xlo,k (t) + Vlo,k (t + 1) (6)

where Xwi,k (t) , Xlo,k (t) , Vwi,k (t) and Vlo,k (t) respectively represent the position vector and velocity
vector of the winner and loser in the kth round of iteration t, R1 (k, t) , R2 (k, t) and R3 (k, t) are three
random vectors distributed in [0, 1]n, X k (t) is the average position value of all contemporary particles,
and ϕ is the control parameter to adjust the influence of X k (t).

4.1.2 Motivation and Framework of NCMOPSO

Although CSO can improve the diversity of PSO, there are several limitations. First, the diversity
of winners in the parent generation has not improved. Because winners directly enter offspring without
position updating. Chaotic search can be used to deal with the winners because chaotic dynamics have
the characteristics of ergodicity, randomness, and irregularity. Second, if the parent population lacks
diversity, the population will converge prematurely. Therefore, the mutation strategy can be used to
avoid the population falling into a local optimum.

Algorithm 1 shows the framework of the NCMOPSO. Its major cycle mainly includes an update
strategy based on the novel competition mechanism and environmental selection. They will be detailed
in the following sections.
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Algorithm 1: Framework of NCMOPSO.
Input: maximal iteration Tmax, population size N
Output: final positions P
initialization

randomly initialize the velocities V and positions P of each particle
end initialization
for t = 1 to Tmax do

calculate the objective values
CompetitionMechanism (P, V )//Algorithm 2
EnvironmentalSelection (P, P′, R)//Algorithm 3

end for
return P

4.1.3 The Novel Competition Mechanism

The proposed competition mechanism includes pairwise competition, particle update, and muta-
tion. In pairwise competition, the population p (t) is randomly divided into N/2 pairs. Then, compare
the dominance relationship between the two particles in each pair according to the Pareto dominance
relationship. If one particle can dominate the other, the dominant particle is the winner. If the two
particles are nondominated by each other, select the winner according to the crowding distance ranking
in the nondominated sorting genetic algorithm-II (NSGA-II) [28].

After the winner is determined, the loser’s position vector and velocity vector are updated by
learning from the winner. The updated equations are Eqs. (5) and (6) in CSO. In order to improve the
diversity of the winners, an update strategy was designed based on a chaotic search. It is based on the
well-known logistic equation [29], which is defined as:

zn+1 = μ · zn (1 − zn) n = 0, 1, 2 · · · (7)

where zn is a variable, and μ is a control parameter. When μ = 4, an utterly chaotic sequence can be
iterated from any initial value z0 ∈ [0, 1].

The primary measure to update the winner is to use the ergodicity of chaotic dynamics to search
for the winner and generate chaotic sequences. The process of chaotic search is defined as:

pm+1
i = 4 · pm

i

(
1 − pm

i

)
(8)

where pi is the ith chaotic variable, m represents the number of chaotic search iterations, and pm
i

distribution in [0,1] requires p0
i ∈ (0, 1). After each competition, the winner particle is iterated M

times using Eq. (8) to generate a chaotic sequence of size M. Calculate the fitness value and crowding
distance of particles in the chaotic sequence, and then select the best particle to update the original
winner.

Algorithm 2: CompetitionMechanism.
Input: current positions P, current velocities V
Output: new positions P′

U ← P, P′ ← ∅

while U �= ∅ do
/∗Pairwise Competition∗/
randomly choose two particles p1, p2 from U

(Continued)
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Algorithm 2 (continued)
if p1 dominates p2 then

pw = p1, pl = p2

else if p2 dominates p1 then
pw = p2, pl = p1

else
calculate the crowding distance of p1, p2

if crowding distance of p1 > crowding distance of p2 then
pw = p1, pl = p2

else
pw = p2, pl = p1

end if
end if
/∗ Particle Updating ∗/
v′

l ← update the velocity of particle pl using Eq. (5)
p′

l ← update the position of particle pl using Eq. (6)
zw ← map pw to domain [0,1] of logistic equation
z′

w ← chaotic search of zw using Eq. (8)
Zm

w ← map chaotic variable z′
w back to the original solution space

calculate the fitness and crowding distance of Zm
w

p′
w ← select the optimal particle

add p′
w, p′

l into P′

remove p1, p2 from U
end while
/∗ Mutation ∗/
P′ ← mutate particles in P′ using Eqs. (9) and (10)
return P′

The rapid convergence of MOPSO may cause the population to gather around some particles or
a specific area prematurely, thus losing diversity. Therefore, after the particles are updated, a time-
varying mutation strategy is designed to mutate the particles based on the idea of [30]. The mutation
formula is shown below:

xi (t + 1) =
{

xi (t) + cg (u (j) − l (j)) Pmut, Pmut ≥ rand
xi (t) , Pmut < rand

(9)

Pmut =
(

1 − t
Tmax

) 5
Km

(10)

where Pmut is the probability of mutation, Tmax is the maximum number of iterations, t is the current
number of iterations, cg is the random number subject to the Gaussian distribution with a mean value
of 0 and variance of 1, u (j) and l (j) are the upper bound and lower bound of the jth dimension decision
variable respectively, and Km is the mutation parameter.

The detailed process of the updating strategy based on the novel competition mechanism is shown
in Algorithm 2.
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4.1.4 Environmental Selection Strategy

During the initial iteration, few Pareto optimal solutions will lead to poor competitiveness
and convergence. However, a too-large Pareto optimal solution set in the later iteration period will
lead to insufficient diversity. The angle-penalty distance (APD) proposed in the reference vector-
guided evolutionary algorithm (RVEA) [31] can dynamically balance convergence and diversity in
the optimization process according to the number of targets and the number of iterations. The APD
between reference vectors and particles in RVEA is calculated as the following equation:

APD
r∈R,pi∈P

(pi, r) =
⎛
⎝1 + D

(
t

Tmax

)2 〈G (pi) , r〉
min

s∈R,s �=r
〈s, r〉

⎞
⎠ ||G (pi) || (11)

where D is the dimension of the target space, R is the set of reference vectors, t is the number of
iterations, and Tmax is the maximum number of iterations. G (pi) is the target vector of the particle pi,
〈G (pi) , r〉 and 〈s, r〉 are the angles between G (pi) and r, and between s and r, respectively.

Algorithm 3: Environmental Selection.
Input: current positions P, new positions P′, the reference vector R
Output: next generation P
W ← ∅

proceed nondominated sort on P′

W ← save the nondominated solution in W
Wm ← get the number of particles in W
if Wm < ϕ then

P ← add W to P
return P

else
for i = 1 to Wm do

P ← perform environment selection in RVEA
end for

end if
return P

The environmental selection proposed in RVEA can be used based on constraining the size
of the nondominant solution set. When the size of the nondominant solution set is smaller than
γ , the nondominant solution and parent directly enter the next generation. When the size of the
nondominant solution set is larger than γ , the new nondominant solution set is determined through
the environmental selection of the RVEA algorithm. The study of Pareto optimal solution set size
constraints in adaptive competitive multi-objective swarm algorithm based on inverse modeling [32]
shows that the effect is best when γ = N/20. Algorithm 3 shows the details of the environmental
selection strategy.

4.2 Multi-Objective Optimization Model of PMEC

According to the analysis of different structural parameters in Chapter 2, the thickness of the
copper disk and the thickness, length, and width of the PM are selected as decision variables. The
optimization goal is to increase output torque while decreasing eddy current loss and cost. The LMBP
neural network fits the fitness functions of output torque and eddy current loss. The cost is also of



CMC, 2023, vol.77, no.2 1547

great significance in the design of PMEC, mainly from the copper disk, PM, and back iron materials.
In order to simplify the calculation, it is assumed that the price of the PM is ten times the price of the
copper disk and the back iron. Then the approximate fitness function of the cost can be expressed as:{

V = voldriver + 10volmagnet = πr2
avW + 10Nmx2x3x4p

W = x1 + 2sb

(12)

where rav is the average radius of the copper disk of PMEC, Nm is the number of permanent magnets,
x1 is the width of the thickness of the copper disk, x2, x3 and x4 are the thickness, length, and width of
PM, respectively, and sb is the thickness of the back iron.

There is the multi-objective optimization model of PMEC:⎧⎪⎨
⎪⎩

min Ploss = f1 (X) s.t. 2 ≤ x1 ≤ 10

max T = f2 (X) 4 ≤ x2 ≤ 12

min V = f3 (X) 10 ≤ x3 ≤ 50
25 ≤ x4 ≤ 75

(13)

where X = (x1, x2, x3, x4), f1 (X) , f2 (X) is the functional relationship of PMEC eddy current loss and
output torque concerning decision variables established by the LMBP neural network, respectively,
and f3 (X) is the functional relationship between PMEC cost and decision variables. Fig. 7 shows the
specific optimization process for PMEC.

Figure 7: Flow chart of the optimization process

5 Optimization Results and Analysis

In order to verify the performance of NCMOPSO, it is compared with the popular NSGA-II
[28], dominance-weighted uniformity (DWU) multi-objective evolutionary algorithm [33], direction-
guided evolutionary algorithm (DGEA) [34], and existing PSOs such as MOPSO with multiple search
strategies (MMOPSO) [35], speed-constrained multi-objective particle swarm optimization (SMPSO)
[36], multi-objective particle swarm optimization algorithm based on decomposition (MPSOD) [37],
and MOPSO [38]. To be fair, the parameters used in the comparison algorithm are the original paper’s
recommended values. Table 4 shows the parameters of the proposed NCMOPSO.
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Table 4: The parameters of the proposed NCMOPSO

Symbol Quantity Value Symbol Quantity Value

N Population size 200 Tmax Maximum number of
iterations

1000

ϕ Control parameter 0.05 M Chaotic sequence size 50
Pmut Probability of mutation 0.4 Km Variable parameter in

mutation
0.5

γ Size limit of the nondominated solution set in environmental selection 10

The proposed NCMOPSO and seven other multi-objective optimization algorithms are applied
to the optimization model of PMEC, and the resulting solution is shown in Fig. 8.

Figure 8: Solution set obtained by proposed NCMOPSO and other optimization algorithms

In Fig. 8, f1 is eddy current loss, f2 is output torque, and f3 is the cost of PMEC. The particle
distribution in the solution set obtained by the proposed NCMOPSO is more uniform and extensive
than that of other optimization algorithms, which indicates that it solves the problem of poor diversity
in MOPSO to a certain extent.

To make a more comprehensive evaluation of the performance of NCMOPSO, the hypervolume
(HV) indicator is used to evaluate the eight optimization algorithms. It can simultaneously evaluate the
convergence and distribution of the solution set. Hv is a strictly monotonous evaluation index in the
Pareto dominance relationship. The higher the HV value, the better the comprehensive performance
of the algorithm. The expression of HV is:

HV = δ
(∪|S|

i=1vi

)
(14)

where δ represents the Lebesgue measure used to measure volume, |S| represents the size of the
nondominated solution set, and vi represents the super volume formed by the reference point and
the ith solution in the solution set. The HV values of the proposed NCMOPSO and seven other multi-
objective optimization algorithms are shown in Fig. 9.
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Figure 9: The HV values of the proposed NCMOPSO and seven other optimization algorithms

The proposed NCMOPSO has the largest HV value, which shows that its comprehensive perfor-
mance is the best. To sum up, the proposed algorithm effectively balances convergence and diversity.

In Fig. 10, the solution set obtained by NCMOPSO optimization is compared with the structural
parameters of the original PMEC. It is found that at point A, the eddy current loss is lower than the
initial value, and the output torque is higher than the initial value, but the cost is also higher than the
initial value; at point B, the eddy current loss and cost are lower than the initial value, but the output
torque is lower than the initial value; at point C, the output torque is higher than the initial value, and
the cost is lower than the initial value, but the eddy current loss is higher than the initial value.

Figure 10: Comparison between the solution set obtained by NCMOPSO and the prototype value
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It can be concluded that these three objective functions of eddy current loss, output torque, and
cost are conflicting and cannot be optimized simultaneously. A better goal will lead to a worse goal.
Select a compromise solution from the solution set as the optimization result, as shown in Table 5.
Compared with the prototype, the optimization results show that the output torque increases while the
eddy current loss and cost are reduced, which can improve transmission performance while suppressing
eddy current loss.

Table 5: Optimization results

Parameter Optimization result Prototype

Decision variables

Thickness of copper disk 6 mm 9 mm
Thickness of pm 30 mm 33 mm
Length of pm 145 mm 130 mm
Width of pm 68 mm 65 mm

Optimization objectives
Output torque 4.8766 kN·m 4.2284 kN·m
Eddy current loss 18.4297 kW 20.2122 kW
Cost 194.658 229.286

To further validate the performance of NCMOPSO, compare the optimization results obtained
with other PSO methods, as shown in Table 6. When the obtained results are worse than NCMOPSO,
deepen the data color. The optimization results obtained by NCMOPSO can dominate the results
obtained by other PSO methods. They are the optimal solutions among all the results.

Table 6: Comparison of optimization results between NCMOPSO and other PSOs

Output torque Eddy current loss Cost

NCMOPSO 4.8766 kN·m 18.4297 kW 194.658
MMOPSO 4.2413 kN·m 19.0657 kW 193.213
MOPSO 5.2174 kN·m 20.7742 kW 203.072
MPSOD 4.7176 kN·m 18.3295 kW 198.801
SMPSO 5.0504 kN·m 19.6476 kW 200.646

The finite element simulation model is established using the optimized PMEC structural parame-
ters, and then the electromagnetic characteristics of PMEC before and after optimization are analyzed.

Fig. 11 compares eddy current loss and output torque before and after optimization. The eddy
current loss and output torque of PMEC are improved after optimization. In addition, the fluctuation
amplitude of the output is significantly reduced, which means that PMEC is more stable and its
reliability has improved.

Fig. 12 shows the distribution of magnetic induction intensity in the conductor disk before and
after optimization. The optimized magnetic induction intensity distribution is more concentrated. The
magnetic flux density is significantly increased and more concentrated in the area of the conductor disk
corresponding to the PM, which is more conducive to increasing the dragging force between magnetic
fields and improving the transmission torque.
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Figure 11: Eddy current loss and output torque before and after optimization

Figure 12: Distribution map of magnetic induction intensity in conductor disk before and after
optimization

Fig. 13 shows the vector diagram of the eddy current density distribution in the conductor disk
after and before optimization. The eddy current in the conductor disk of PMEC has an essential
impact on its overall performance. Its induced magnetic field causes the PM and conductor rotor
to rotate in the same direction, resulting in torque transfer. In addition, the heat generated by the eddy
current in the conductor disk contributes significantly to PMEC power loss. By designing the structural
parameters of PMEC, the eddy current path in the conductor disk was optimized. Reducing useless
stray current in the eddy current circuit allows more eddy currents for torque transmission, which
improves transmission efficiency and reduces eddy current losses.

In order to verify the accuracy of finite element simulation, a prototype of axial flux PMEC is
designed, and an experimental platform is built. Fig. 14 shows the overall structure of the experimental
platform. The main equipment includes a base plate, a frequency converter, two AC motors, a PMEC,
a torque meter, and a DC motor. The control system mainly includes an industrial personal computer
(IPC) for joint operations and monitoring.
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Figure 13: Vector diagram of eddy current density distribution in conductor disk before and after
optimization

Figure 14: Structure of the PMEC experimental platform

Fig. 15 shows the actual experimental platform. During the experiment, the air gap length can be
adjusted to a maximum of 6 cm to avoid the impact load when starting. Then adjust the air gap to
4 mm for the experiment. Change the load size and record the output torque data of the PMEC.

Figure 15: Physical image of PMEC experimental platform

Fig. 16 shows the finite element simulation results and the experimental results. The relative slip is
limited to 25 to 75 rpm. The difference between the two is relatively small. Therefore, it can be proven
that using finite element simulation to verify the optimization results is reliable.
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Figure 16: Comparison between finite element simulation results and experiments

6 Conclusion

This paper proposes a new multi-objective optimization algorithm to optimize the structural
parameters of PMEC to improve energy transfer efficiency and reduce loss. The accurate PMEC model
is the premise of the follow-up system optimization, control, and other research work. Therefore, the
LM optimization algorithm is used to improve the BP neural network, and the nonlinear regression
model of PMEC is established. Even when the number of training samples is small, it maintains good
generalization ability and high stability. Then, a multi-objective optimization model is established
based on the LMBP model of PMEC. For the multi-objective optimization problem, NCMOPSO
is proposed and applied to the multi-objective optimization model of PMEC. The final PMEC
optimization result improves the system’s work efficiency. It lowers energy consumption compared
to the prototype by reducing eddy current loss by 1.7824 kW, increasing output torque by 648.2
Nm, and lowering cost by 15.1%. Based on the optimized structural parameters of PMEC, the
distribution results of magnetic induction intensity and eddy current density of PMEC before and
after optimization are compared through the ANSYS simulation experiment, which verifies that the
optimization method is feasible.
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