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ABSTRACT

Synthetic Aperture Radar (SAR) image target detection has widespread applications in both military and civil
domains. However, SAR images pose challenges due to strong scattering, indistinct edge contours, multi-scale
representation, sparsity, and severe background interference, which make the existing target detection methods
in low accuracy. To address this issue, this paper proposes a multi-scale fusion framework (Swin-PAFF) for SAR
target detection that utilizes the global context perception capability of the Transformer and the multi-layer feature
fusion learning ability of the feature pyramid structure (FPN). Firstly, to tackle the issue of inadequate perceptual
image context information in SAR target detection, we propose an end-to-end SAR target detection network with
the Transformer structure as the backbone. Furthermore, we enhance the ability of the Swin Transformer to acquire
contextual features and cross-information by incorporating a Swin-CC backbone network model that combines the
Spatial Depthwise Pooling (SDP) module and the self-attentive mechanism. Finally, we design a cross-layer fusion
neck module (PAFF) that better handles multi-scale variations and complex situations (such as sparsity, background
interference, etc.). Our devised approach yields a noteworthy AP@0.5:0.95 performance of 91.3% when assessed
on the HRSID dataset. The application of our proposed technique has resulted in a noteworthy advancement of 8%
in the AP@0.5:0.95 scores on the HRSID dataset.
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1 Introduction

Synthetic Aperture Radar (SAR) is an advanced active microwave sensor used for high-resolution
remote sensing observations of the Earth [1]. It has an all-weather, all-day operation capability and
performs an essential role in ocean monitoring [2]. SAR ship detection is a fundamental maritime
task with important applications in offshore traffic management, fisheries management, and offshore
emergency rescue [3,4]. Therefore, more and more scholars have devoted their attention to this topic
[5–16].

Previous standard SAR ship detection methods require manual design of ship features, such as
constant false alarm rate (CFAR) [1], saliency [2], superpixel [3], and transformation [4]. However,
these traditional methods usually have complex algorithms, limited migration capability, and require
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tedious manual design, which limit their application in practical scenarios. In addition, these methods
generally use a limited number of ship images for theoretical analysis to define ship features. Moreover,
they cannot capture the ship features of diverse sizes in various backgrounds [5]. Therefore, their multi-
scale and multi-scene detection performance is usually poor.

In recent years, with the development of deep learning and the rise of convolutional neural
networks (CNNs), the current state-of-the-art CNN-based SAR ship detectors have addressed some
of these problems to some extent [17]. However, recent research has shown that the size of the actual
receptive field in convolutional neural networks is much smaller than the theoretical receptive field,
which means that CNNs may not be able to make full use of the contextual information of the input
data. In addition, the feature capture capability of CNNs is also limited, and they cannot extract global
representation features well. To enhance the global capture capability of CNNs, deeper convolutional
layers can be stacked, but this results in models that are too large, with too many learning parameters
to train and converge effectively, which causes a dramatic increase in computation and reducing the
timeliness of the models. Therefore, there is a requirement to explore alternative model structures and
techniques to address these issues.

The Transformer structure [18] proposed by Google has been gradually applied to computer vision
tasks after achieving good results in natural language processing. In 2020, Vision Transformer (ViT)
[19] became the first Transformer structure adopted in computer vision, and it achieved state-of-the-art
results in optical natural scene recognition, demonstrating the feasibility of Transformers in this field.
Subsequently, other Transformer-based network models have emerged, such as Detection Transformer
(DETR) [20] and Swin Transformer [21].

Swin Transformer is a novel Transformer architecture used for computer vision tasks such as
image classification, object detection, and segmentation [22]. It employs a hierarchical attention
mechanism by dividing the input image into fixed-sized patches, allowing each patch to capture global
information effectively. This approach helps extract more contextual and global features. Compared
to traditional Transformer networks, Swin Transformer introduces a local window mechanism, trans-
forming global attention computation into local window-based computation, significantly reducing
computational complexity. This enables Swin Transformer to operate more efficiently when dealing
with large-scale images while reducing storage requirements. Therefore, the main reason for choosing
Swin Transformer is its ability to extract rich contextual features while reducing computational
overhead compared to other Transformer networks.

To better handle the extracted features from Swin Transformer, this paper proposes an innovative
cross-level fusion neck module called PAFF, which offers several advantages including multi-scale
receptive fields, feature fusion, enhanced contextual information, and end-to-end training. PAFF
constructs a feature pyramid to obtain rich multi-scale features, facilitating the detection of objects
at different scales. Additionally, PAFF can fuse features from different levels, integrating information
from both low-level and high-level features to improve object detection performance. It also prop-
agates contextual information through an upsampling path, enhancing the semantic representation
of features. Importantly, PAFF supports end-to-end training, enabling the entire network to learn
collaboratively and enhance model performance.

This paper focuses on optimizing the design of the backbone and neck parts of the target detection
framework, using YOLOX [23] as the baseline. The integration of the Transformer model and the
single-stage model in our research presents a novel approach that enhances the existing methodology
for ship detection in Synthetic Aperture Radar (SAR) imagery. This innovative combination offers
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significant contributions to the field, bringing about advancements in the current SAR ship detection
framework, and its main contributions include the following:

1. In order to solve the existing problem of SAR target detection which lacks weak contextual
information of the sensed images, we propose an end-to-end SAR target detection network with the
Transformer structure as the backbone.

2. Combining strategies such as the SDP module and the self-attentive mechanism, a Swin-CC
backbone model is proposed to improve the ability of the Swin Transformer to acquire contextual
features and cross information.

3. A cross-layer fusion neck module PAFF is designed, which can better cope with multi-scale
changes and complex practical situations. The module can effectively fuse features from different layers
to improve the performance and capability of the model, and it also improves the model’s ability to
detect and recognise objects at different scales.

The remainder of the paper is organised as follows: Section 2 of this paper presents an expanded
elucidation of the primary framework employed herein. The subsequent Section 3 delineates the core
methodology employed in this study, as well as the evaluation metrics utilized to gauge the experi-
mental outcomes. Section 4 provides comprehensive details regarding the experimental configurations,
presenting the results of the conducted ablation experiments and a substantial number of comparative
experiments. Finally, Section 5 serves as the conclusive section of this paper, summarizing the overall
findings and presenting prospects for advancing the research.

2 Related Work
2.1 YOLOX

The SAR ship detection problem poses challenges due to the unclear edge information of targets
and the limitations of traditional anchor-based methods. In order to overcome these shortcomings
and leverage the benefits of anchor-free detection frameworks, we draw inspiration from the latest
anchor-free model called Exceeding YOLO Series in 2021 (YOLOX) [23], which represents a significant
improvement over the YOLO series. YOLOX introduces an explicit definition of positive sample
regions by projecting the 3 × 3 region of the ground truth bounding box onto the center of the feature
graph. It predicts four values for each target, namely the offset distance of the upper left corner
and the height and width of the bounding box. To handle fuzzy samples more effectively, YOLOX
adopts the simOTA algorithm for positive and negative sample matching [23]. The simOTA algorithm
involves calculating the matching degree for each pair, selecting the top k prediction boxes with the
smallest cost in a fixed central area, and marking the grids associated with these positive samples
as positive. Given the sparsity, small sample characteristics, and target scattering in SAR images,
YOLOX’s characteristics of a decoupling head, a new tag allocation strategy, and an anchor-free
mechanism make it an ideal baseline detector with a trade-off between accuracy and speed. Therefore,
we have chosen YOLOX as the benchmark network for our research.

2.2 Swin Transformer

In SAR images, small target ships may lose information during downsampling. The Swin
Transformer infrastructure can address this issue with its large throughput and massively parallel
processing capability. To extract features from an image, firstly, input image is first divided into tokens
with high-resolution properties of the image. The Swin Block employs the Shift Window approach
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to limit the self-focused computation to non-overlapping partial windows, enabling cross-window
connections and improving efficiency [22].

The Swin Transformer Block is an elementary module within the Swin Transformer that extracts
features and transfers information in the input image. It consists of two primary components: the
Swin Self-Attention (MSA) and the Swin Transformer Feed Forward (FFN). The MSA captures the
relative position encoding between elements within each window by computing global contextual
information. It then performs a multi-headed self-attention calculation to enable each element to
aggregate information from others. This attention calculation considers the relative position relation-
ships between elements and uses scaling parameters to balance the importance between different parts
of the attention calculation. The FFN comprises two linear layers and an activation function that
perform a non-linear transformation on the elements within each window. The output of the FFN
calculation is added to the output of the MSA and normalized by Layer Normalization to produce
the final output of the Swin Transformer Block. In the Swin Transformer, the input and output of
each Swin Transformer Block consist of a set of windows, rather than individual pixels or feature
vectors. This approach enables the Swin Transformer to start with locally aggregated information and
gradually expand to globally aggregated information, thus capturing the structural and contextual
information of the input image better. Additionally, the Swin Transformer uses a window grouping
strategy that allows multiple Swin blocks to share windows, enhancing the coherence of information
flow while maintaining efficiency.

The Swin Transformer adopts the concept of Windows Multi-Head Self-Attention (W-MSA) to
partition the feature map into multiple non-overlapping regions, or windows, and performs Multi-
Head Self-Attention within each window. This approach reduces the computational cost compared to
applying Multi-Head Self-Attention (MSA) directly to the entire global feature map as in the Vision
Transformer, particularly when the shallow feature map is large.

3 Main Methods

In this section, Swin Transformer is selected as the basic architecture of the backbone network,
based on which the Contextual Intersection Information Extractor (CSC) module and the backbone
Swin-CC network based on contextual cross-information fusion are designed. In addition, to better
extract multi-scale SAR target features, an adaptive spatial feature fusion feature pyramid structure
with an enhancement neck (PAFF) is designed. The general framework diagram is shown in Fig. 1.

3.1 General Architecture of Swin-PAFF

This paper uses YOLOX as the basic architecture and introduces Swin Transformer as the
backbone model of the network, and designs the feature extraction module CSC to fully capture
contextual cross-information. In particular, the CSC module achieves more comprehensive and finer
information interaction and better contextual information capture by cross-linking different blocks
in the target feature map and can help the network to better capture the relationship between the
target and its surroundings, thus improving the accuracy of target detection. The module has higher
computational efficiency and better interpretability, can optimizes the utilization of contextual and
cross-position information, can extract richer feature information, and improves the multi-scale SAR
target multi-characterization and description capability.
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Figure 1: General framework of Swin-PAFF

In this paper, a novel enhanced neck module called PAFF (Cross-Layer Augmented Features
and Adaptive Spatial Fusion) is proposed. The module incorporates a feature pyramid network [24]
to facilitate the transfer of robust semantic features from the top to the bottom layers. Employing
top-down and bottom-up feature pyramid networks, it enhances multi-scale connectivity operations.
Furthermore, the proposed module leverages an attention mechanism to generate a weight map of
equal dimensions from various layer parameters. Each pixel in the weight map corresponds to a specific
coordinate, which is then multiplied element-wise with the corresponding element in the feature map
to generate a new feature map [25]. This approach effectively captures spatial relationships within the
feature map, leading to improved model accuracy. Moreover, unlike traditional attention mechanisms,
explicit calculation of attention weights is unnecessary, thereby reducing computational costs. Finally,
the spatial adaptive fusion module facilitates better adaptation of the model to target scale variations
and positional changes, resulting in enhanced feature fusion.

Swin-PAFF consists of three main components: Swin-CC, PAFF, and YOLOX-Head. First,
features are extracted from the input image using the designed Swin-CC backbone network, and the
obtained feature maps are fused at multiple scales using the PAFF module. The YOLOX-Head module
receives the multi-scale feature maps and performs multi-scale feature fusion.

3.2 Swin-CC Backbone Network Based on Contextual and Cross-Information Fusion

For the characteristics of SAR targets such as strong scattering, sparse and multi-scale, a target
detection backbone network based on context and cross information fusion, Swin-CC, is designed
by combining the advantages of Transformer, which can extract richer contextual features and
cross information and improve multi-scale SAR target characterization. First, this paper uses the
Swin Transformer, a current state-of-the-art model in the field of target detection and instance
segmentation, as the base backbone network. Next, inspired by CCNet [26] and CSP_Darknet [27],
this paper extends the field of perception, depth, and resolution by introducing the CSC attention
mechanism module in the Patchembed section, which enhances the feature-aware domain, strengthens
the comparison between different windows on the feature map, and performs the ability to fuse
contextual and cross-information.
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3.2.1 Context-Based and Cross-Information Fusion CSC Module

In this study, we integrated the CSC attention mechanism module into the Patchembed module
and restructured it. The structure of the network for extracting the CSC attention mechanism is
depicted in Fig. 2. By incorporating the CSC module into the Patchembed module, we expanded the
field of perception and the depth of the network. As a result, we improved the resolution of the network
and its overall performance.

Figure 2: CSC module network structure

The figure presented in this paper, Fig. 3 illustrates that the CSC feature extraction module
comprises two components: the CrissCross Attention (CCA) [26] mechanism module and the SDP
module. The CrissCross Attention is a multi-headed attention mechanism that is designed to improve
a model’s ability to model spatial and channel relationships between features. It operates by mapping
input features into multiple query, key, and value vectors and then computing an attention score
by taking the inner product of queries and keys to assign a weight to each location and channel.
Then, the weighted value vectors are summed to produce a weighted feature representation. The
advantage of CrissCross Attention is that it can effectively capture spatial relationships and cross-
channel dependencies between features, thus improving the model performance while consuming less
GPU memory.

We have innovatively introduced the CSC operation to address the limitation of the CCA module,
which can only capture contextual information both horizontally and vertically. The CSC operation
first fuses the feature information extracted from the previous CCA module with the SDP operation
information features, reducing the number of computed parameters, before adding another layer of
CCA modules. In the first CCA attention module, the feature map H extracted from each patch’s
feature picture serves as the input, producing an output feature map H′ of the same shape. In the
second CCA attention module, the input is H′ that has undergone feature fusion in the SDP module,
producing an output feature map H′ ′ . Fig. 3 illustrates this process. By fusing features from two CCA
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modules and one SDP module, we obtain full image contextual information from all pixel points and
generate new features that are contextually dense and rich in information.

Figure 3: Example diagram after two CCA propagations

Overall, our CSC module compensates for the fact that cross-information cannot be obtained
from all pixels with dense contextual information. Compared to the CCA module, the CSC module
does not bring in additional parameters and can obtain improved performance with lower computa-
tional effort. So we introduce the CSC module to enhance the network’s ability to extract contextual
features and fuse cross-information while reducing the computational effort.

3.2.2 Multi-Scale Feature Extraction

The SDP method is a novel approach to enhancing the receptive field of neurons and achiev-
ing multi-scale feature extraction by utilizing maximum pooling and depth separable convolution
(DWconv) techniques. Through the integration of convolution kernels of varying sizes across different
layers, the neural network is capable of capturing a broader range of features and improving its
receptive field, resulting in improved target detection. Furthermore, the employment of multi-layer
features helps to mitigate the impact of environmental factors and enhance the background data at
varying scales, thus facilitating the detection of small targets.

3.3 Feature Pyramid and Spatial Adaptive Fusion Module PAFF

The architecture of the feature pyramid and spatial adaptive fusion module (PAFF) proposed in
this paper consists of two main parts, PAFPN and ASFF [28], and its structural diagram is shown in
Fig. 4.

PAFPN is a feature extraction and integration network that can detect targets of various sizes
at different scales. It improves on the Feature Pyramid Network (FPN) by not only upsampling and
fusing features between each level but also combining features between levels to enhance sampling
and fusion. The path aggregation module in PAFPN captures the importance between different
feature layers and fuses their features with the corresponding up/down-sampled features into a unified
feature pyramid. This approach allows PAFPN to better handle targets of different sizes and improve
detection performance for both large and small targets.

Research on attention mechanisms has revealed that inter-channel attention significantly improves
model performance. However, it often neglects inter-pixel location information. Therefore, this paper
incorporates Coordinate Attention (CA) [29] operations into the feature map before up/downsampling
by PAFPN. As shown in Fig. 5, CA encodes the relationship between channel and remote location
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information. The overall structure consists of two steps: Coordinate Information Embedding and
Coordinate Attention Generation.

Figure 4: Structure of the PAFF model

Figure 5: CA model structure

Modeling the relationships between channels with ordinary convolution is difficult. Explicitly
constructing interdependencies between channels can enhance the model sensitivity to informative
channels, thereby facilitating the final classification decision. Furthermore, global average pooling
can help the model capture global information, which is not available through convolution. The
compression step for the cth channel given an input X can be expressed as shown in Eq. (1).

zc = 1
H × W

H∑
i=1

W∑
j=1

xc(i, j) (1)

Feature pyramids are a commonly used technique in object detection but suffer from inconsistency
between features at different scales, particularly for first-level detectors. To address this issue, we
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propose the Attentional Spatial Fusion Network (ASFF) feature fusion strategy to improve target
detection performance within the feature pyramid in single-level detectors. The ASFF network module
filters and fuses feature maps from different levels to retain valuable information, adaptively blending
features from different levels at each spatial location. From Fig. 4, we show that fusion vectors are a
weighted combination of vectors from the first three feature maps, with network-learned coefficients
shared across all channels. We set the feature maps to different levels (l ∈ 0, 1, 2) based on the input
mapping’s dimensionality, with the corresponding feature maps referred to as Xl. In this paper, we set
level l (l ∈ 0, 1, 2) to 192, 384, and 768, respectively, depending on the input size and the characteristics
of the SAR ship target. The output of the ASFF module is defined as follows:

yl = αl × x1→l + β l × x2→l + γ l × x3→l (2)

where xn→l denotes the feature vector after adjusting the features at level n to level l. α, β and γ are the
learning rates at level n, level n+1 and level n+2, respectively, defined as follows:

αl + β l + γ l = 1 (3)

αl = el
α

el
α
+ el

β
+ el

γ

(4)

3.4 Loss Function

Swin-PAFF is derived from the YOLOX model, with improvements and optimizations made to
the original model. As a result, the loss function used in Swin-PAFF is similar to that of the YOLOX
model. Below are the formulas for the operations of Lcls, Lreg, Lobj, and Loss, respectively:

Loss = Lcls + Lreg + Lobj

Npos

(5)

To calculate the Lcls classification loss, we utilize the Varifocal loss. This loss function allows for
more flexible control of the model’s attention on samples of different difficulty levels by adjusting the
α and β parameters accordingly. The formula for the classification loss is as follows:

VFL(p, q) =
{

−q(qlog(p) + (1 − q)log(1 − p)

−αpγ log(1 − p)

q > 0
q = 0

(6)

Lreg localization loss function, we use GIoU Loss. GIoU Loss is a useful metric for target detection
as it makes the predicted bounding box as close as possible to the true bounding box in terms of
position and size. This helps to improve the accuracy of the target detection model, especially when
dealing with objects with complex shapes or high occlusions. Its formula is as follows:

GIoU = IoU − Ac − u
Ac (7)

For the Lobj loss function, we use the binary cross-entropy loss function (BCELoss). It is calculated
as follows:

Lossobj = − 1
N

N∑
i=1

yilog(p(yi)) + (1 − yi)log(1 − p(yi)) (8)
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For the final 15 rounds, we disabled the data augmentation mode and employed the SmoothL1Loss
function on the unencoded predictions of the positive sample bounding boxes and their corresponding
ground truth bounding boxes. The calculation of the SmoothL1Loss is presented in Eq. (12).

smoothL1(x) =
{

0.5x2

|x| − 0.5
if |x| < 1
otherwise

(9)

4 Experimental Results

The present section presents the experimental evaluation of our proposed detection method.
The HRSID dataset is utilized as the experimental data, and the model’s effectiveness is validated
using data from the SSDD [29] and a subset of the HRSID [30] dataset. Subsequently, we assess
the effectiveness of the Swin-CC attention mechanism module and the PAFF module on the model
by performing ablation experiments, as described in the following section. Finally, we compare our
approach with other existing methods to validate its effectiveness. The experimental environment
includes the MMdetection [31] based framework, NVIDIA RTX3090 GPU with 24 GB video memory,
and Ubuntu 18.04 operating system. The AdamW optimizer is used with a batch size of 8 and the
model epoch set to 100.

4.1 Calculation Methods of Evaluation Metrics

This paper utilizes the COCO evaluation metric, which employs average precision (AP) as the
primary metric. AP is calculated by determining the mean precision at ten intersections with an IoU
threshold that ranges from 0.50 to 0.95 in intervals of 0.05. AP50 refers to the AP with an IoU threshold
of 0.50, while AP75 represents the AP with an IoU threshold of 0.75. In addition, APS and APM denote
the AP for small and medium ships, respectively. The evaluation metric uses true positives (TP), false
positives (FP), and false negatives (FN) to determine the number of samples in each category. Recall
(R), precision (P), and mean average precision (MAP) are defined as follows:

R = TP
TP + FN

(10)

P = TP
TP + FP

(11)

mAP =
∫ 1

0

P(R)dR (12)

4.2 Ablation Experiments

This paper presents a series of ablation experiments to verify the efficacy of the Swin-CC
and PAFF modules proposed in this study. The experiments use the HRSID dataset published by
Wei et al. [30] in 2020, which comprises 5604 images of SAR ships with resolutions ranging from 0.1
to 3 m and featuring HH, HV, and VV polarisations.

Our selection of YOLOX as the current baseline is supported by the data presented in Table 1. We
conducted training on the HRSID dataset using several widely used target detection models, including
YOLOF [32], YOLOv3 [33], YOLOv7 [34], YOLOv8 [35], and YOLOX [23]. Upon comparing their
performance, we observed that YOLOX achieved a slightly lower AP50 value than YOLOv8, but with
a smaller number of parameters. This finding indicates that YOLOX can deliver satisfactory results
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while requiring relatively fewer computational resources. As a result, we have chosen YOLOX as our
benchmark model for further analysis.

Table 1: Comparison with the state-of-the-art detectors on HRSID dataset

Method AP AP50 AP75 APS APM Params

YOLOF 0.459 0.682 0.529 0.45 0.544 42.06
YOLOv7 0.489 0.756 0.559 0.519 0.325 37.62
YOLOv3 0.476 0.823 0.499 0.519 0.38 61.52
YOLOv8 0.614 0.853 0.691 0.627 0.607 43.7
YOLOX 0.567 0.835 0.639 0.591 0.534 27.53

The benchmark model is augmented with the Swin-CC and PAFF modules, and their impact on
the model’s performance is evaluated. The experimental results presented in Table 2 indicate that the
Swin-CC module significantly improves detection accuracy. That is because the Swin Transformer’s
remote modeling capability and the CSC module’s powerful feature extraction capability enable the
model to capture target object features more effectively. Furthermore, the PAFF module is used as
a feature enhancement extraction tool, and the results demonstrate that incorporating the PAFF
module improves the model’s detection accuracy by 1%. Most notably, the combined use of the Swin-
CC and PAFF modules leads to an exponential increase of approximately 8% in feature extraction
performance compared to the baseline model. These experimental results establish the proposed
method’s scalability, applicability, and efficacy in enhancing detection performance.

Table 2: Ablation experiments

Method Swin-CC PAFF AP AP50 AP75 APS APM

YOLOX (baseline) – – 0.567 0.835 0.639 0.591 0.534
YOLOX+Swin-CC √ – 0.583 0.842 0.665 0.602 0.547
YOLOX+PAFF – √ 0.576 0.848 0.651 0.598 0.545
Swin-PAFF √ √ 0.646 0.913 0.732 0.657 0.678

Table 2 illustrates that the Swin-CC module, serving as the backbone network module, has
superior feature extraction capabilities due to its combination of global-local and spatial-location
characteristics. Furthermore, the use of the Swin-CC module improves the detection performance of
small, medium, and large ships compared to the baseline YOLOX. Specifically, the APS and APM for
small and medium-sized vessels increased by 1.1% and 1.3%, respectively, while AP, AP50, and AP75

increased by 1.6%, 0.7%, and 2.6%, respectively. In addition, the PAFF module improves inter-feature
fusion and adaptive spatial fusion compared to the baseline YOLOX, resulting in improvements of
0.9%, 1.3%, and 1.2% for AP, AP50, and AP75, and 0.7% and 1.1% for APS and APM. When combined,
the complete Swin-PAFF yields significant improvements of 7.9%, 7.8%, 9.3%, 6.6%, and 14.4% in
each metric compared to the baseline. These findings suggest that both the Swin-CC module and the
PAFF module of Swin-PAFF improve model detection performance and their combination results in
a more robust model.
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4.3 Comparative Experiments

To substantiate the effectiveness of the proposed approach, this paper conducts a comparative
analysis with state-of-the-art SAR ship detection methods, utilizing HRSID dataset as presented in
Table 3. The Swin-PAFF model is a hybrid model combining a single-stage model and a transformer
model. Hence, we selected approaches primarily based on single-stage and transformer models for
comparison, including YOLOF [32], YOLOv3 [33], YOLOv7 [34], YOLOv8 [35], RetinaNet [36],
SSD [37], FCOS [38], TOOD [39], VFNet [40], PVT [41], and deformable DETR [42]. Furthermore,
we evaluated the performance of our model against classical one-stage models using the LS-SSDD-
v1.0 dataset, with the results reported in Table 4. Additionally, to assess the model’s generalization
capability, we directly applied the weights of the aforementioned models to predict the accuracy of
the SSDD dataset. We conducted predictions for the test set, training set, nearshore hull, and offshore
hull, and the outcomes are presented in Tables 5–8. The Swin-PAFF model exhibited promising results
across all scenarios, highlighting its robustness and superior performance.

Table 3: Results of ten network models with the HRSID dataset

Method AP AP50 AP75 APS APM Params

YOLOF 0.459 0.682 0.529 0.45 0.544 42.06
SSD 0.448 0.735 0.49 0.44 0.594 36.04
YOLOv7 0.489 0.756 0.559 0.519 0.325 37.62
DeformableDETR 0.532 0.798 0.599 0.537 0.586 39.84
PVT 0.538 0.815 0.587 0.551 0.571 71.1
YOLOv3 0.476 0.823 0.499 0.519 0.38 61.52
VFNet 0.593 0.83 0.663 0.6 0.657 32.67
RetinaNet 0.586 0.851 0.646 0.592 0.659 36.33
YOLOv8 0.614 0.853 0.691 0.627 0.607 43.7
FCOS 0.577 0.861 0.649 0.591 0.622 50.96
TOOD 0.62 0.872 0.702 0.63 0.642 50.97
Swin-PAFF (ours) 0.646 0.913 0.733 0.657 0.679 45.7

Table 4: Results of ten network models with the LS-SSDD-v1.0 dataset

Method AP AP50 AP75 APS APM Params

YOLOF 0.166 0.507 0.039 0.150 0.318 42.06
YOLOv3 0.208 0.580 0.078 0.202 0.315 37.62
RetinaNet 0.219 0.607 0.072 0.202 0.367 36.33
YOLOv7 0.281 0.713 0.116 0.266 0.384 37.62
YOLOv8 0.297 0.74.4 0.150 0.281 0.432 43.7
Swin-PAFF (ours) 0.301 0.752 0.161 0.293 0.447 45.7
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Table 5: Results of ten network models under the train dataset in SSDD

Method AP AP50 AP75 APS APM

FCOS 0.304 0.608 0.238 0.338 0.173
YOLOv3 0.275 0.658 0.162 0.337 0.234
DeformableDETR 0.302 0.692 0.217 0.32 0.211
TOOD 0.339 0.72 0.264 0.362 0.243
YOLOF 0.299 0.722 0.177 0.329 0.147
VFNet 0.35 0.726 0.274 0.384 0.235
RetinaNet 0.362 0.741 0.305 0.391 0.24
PVT 0.331 0.748 0.237 0.36 0.226
SSD 0.287 0.77 0.349 0.397 0.391
YOLOv7 0.343 0.753 0.304 0.374 0.375
YOLOv8 0.447 0.784 0.455 0.478 0.398
Swin-PAFF (ours) 0.464 0.803 0.476 0.492 0.41

Table 6: Results of ten network models under val dataset in SSDD

Method AP AP50 AP75 APS APM

FCOS 0.294 0.633 0.235 0.33 0.176
DeformableDETR 0.284 0.643 0.211 0.304 0.2
YOLOv3 0.272 0.645 0.171 0.328 0.227
YOLOF 0.283 0.682 0.167 0.314 0.152
TOOD 0.33 0.687 0.252 0.354 0.251
VFNet 0.33 0.688 0.245 0.362 0.23
PVT 0.334 0.716 0.254 0.366 0.227
RetinaNet 0.351 0.721 0.302 0.385 0.241
SSD 0.377 0.753 0.33 0.384 0.388
YOLOv7 0.384 0.767 0.345 0.396 0.393
YOLOv8 0.449 0.773 0.465 0.468 0.408
Swin-PAFF (ours) 0.462 0.78 0.479 0.489 0.41

Tables 4 and 5 depict that the proposed Swin-PAFF approach outperforms other models in
detecting ships on the HRSID dataset and the LS-SSDD-v1.0 dataset. Additionally, Tables 3–6 exhibit
that the Swin-PAFF framework not only achieves outstanding results on the HRSID dataset but also
showcases strong generalization capabilities on the SSDD dataset, especially in complex nearshore
scenes. The Swin-CC’s ability to extract contextual cross-information and the PAFF enhancement
neck’s spatially adaptive fusion capability are the two main factors behind this remarkable per-
formance, which improves the feature extraction performance of the Swin-PAFF framework and
enhances the network’s robustness.



2670 CMC, 2023, vol.77, no.2

Table 7: Results of the ten network models under the inshore dataset in SSDD

Method AP AP50 AP75 APS APM

DeformableDETR 0.195 0.417 0.165 0.211 0.164
YOLOv3 0.191 0.426 0.158 0.323 0.138
PVT 0.234 0.493 0.199 0.266 0.187
VFNet 0.288 0.548 0.296 0.336 0.201
TOOD 0.306 0.555 0.332 0.364 0.183
YOLOF 0.311 0.575 0.289 0.366 0.167
FCOS 0.29 0.577 0.255 0.325 0.221
SSD 0.308 0.595 0.286 0.345 0.276
RetinaNet 0.311 0.598 0.286 0.325 0.299
YOLOv7 0.282 0.584 0.268 0.329 0.289
YOLOv8 0.368 0.596 0.418 0.409 0.306
Swin-PAFF (ours) 0.37 0.603 0.426 0.409 0.311

Table 8: Results of the ten network models with the offshore dataset in SSDD

Method AP AP50 AP75 APS APM

FCOS 0.295 0.655 0.227 0.334 0.156
YOLOF 0.286 0.738 0.142 0.311 0.161
DeformableDETR 0.325 0.745 0.231 0.344 0.246
TOOD 0.352 0.758 0.234 0.36 0.328
VFNet 0.358 0.769 0.242 0.377 0.288
YOLOv3 0.326 0.779 0.188 0.334 0.317
RetinaNet 0.374 0.789 0.312 0.416 0.214
PVT 0.38 0.808 0.294 0.406 0.273
SSD 0.423 0.853 0.364 0.412 0.487
YOLOv7 0.453 0.812 0.348 0.454 0.466
YOLOv8 0.487 0.864 0.456 0.492 0.458
Swin-PAFF (ours) 0.507 0.877 0.508 0.523 0.476

The analysis presented in Table 4 reveals that our model exhibits a higher number of parameters in
comparison to other YOLO models. While the fusion of YOLO and Swin Transformer for static target
detection is a novel approach, the significant increase in the number of parameters after incorporating
the Swin Transformer raises concerns regarding the practicality of real-time detection and tracking
tasks. It is imperative to acknowledge this issue as a crucial area that requires further development in
the future.

Moreover, Fig. 6 presents that the Swin-PAFF model possesses powerful generalization capa-
bilities and surpasses other models in detecting near-shore ships without relying on the SSDD
dataset for training. Furthermore, Fig. 7 demonstrates that the Swin-PAFF model exhibits exceptional



CMC, 2023, vol.77, no.2 2671

performance in detecting small nearshore objects on the HRSID dataset, further highlighting its
exceptional generalization capabilities.

Figure 6: Detection nearshore in the SSDD dataset. (a) Green markers indicate true boxes. (b) Orange
markers indicate targets with false detections (i.e., false positives, FP). (c) Blue markers indicate missed
detections (i.e., false negatives, FN)
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Figure 7: HRSID dataset detection Swin-PAFF module (a) Green markers indicate true boxes. (b)
Orange markers indicate targets with false detections (i.e., false positives, FP). (c) Blue markers indicate
missed detections (i.e., false negatives, FN)

5 Conclusion

In this paper, we present Swin-PAFF, a Transformer network designed for SAR ship detection,
which incorporates contextual cross-information fusion and adaptive spatial feature fusion. Swin-
PAFF builds on the YOLOX, an advanced single-stage target detection algorithm, and addresses
challenges related to complex backgrounds, large scale differences, and dense distribution of small
targets in SAR ship detection.

In order to enrich the extraction of comprehensive contextual intersection information, we
have developed a dedicated feature extraction module, referred to as the Contextual Intersection
Information Extractor (CSC), and seamlessly integrated it with the Swin Transformer architecture.
Furthermore, we propose a novel technique, named Adaptive Spatial Feature Fusion (PAFF), for
enhancing the feature pyramid structure, thereby bolstering the efficacy of feature extraction. Our
methodology was rigorously evaluated on the HRSID dataset, yielding an accuracy improvement
of approximately 8%. Additionally, Swin-PAFF exhibits exceptional performance as a single-stage
network, thereby underscoring its robustness and practical utility. Nonetheless, the incorporation of
the Transformer architecture significantly escalates the computational requirements of our model,
necessitating the exploration of strategies to alleviate this computational burden.

Although Swin-PAFF combines Transformer and CNN detection methods, we intend to explore
ways to reduce the computational complexity associated with the Transformer model by integrating
it with blockchain in future research [43,44]. In addition, we plan to explore ways to make the
Transformer model lighter.
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