
This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

echT PressScience

DOI: 10.32604/cmc.2023.042582

ARTICLE

Mobile-Deep Based PCB Image Segmentation Algorithm Research

Lisang Liu1, Chengyang Ke1,* and He Lin2

1School of Electronic Electrical Engineering and Physics, Fujian University of Technology, Fuzhou, 350118, China
2State Grid Fujian Power Supply Co., Ltd., Xiapu Power Supply Company, Ningde, 355100, China

*Corresponding Author: Chengyang Ke. Email: 2211905005@smail.fjut.edu.cn

Received: 05 June 2023 Accepted: 29 August 2023 Published: 29 November 2023

ABSTRACT

Aiming at the problems of inaccurate edge segmentation, the hole phenomenon of segmenting large-scale targets,
and the slow segmentation speed of printed circuit boards (PCB) in the image segmentation process, a PCB image
segmentation model Mobile-Deep based on DeepLabv3+ semantic segmentation framework is proposed. Firstly,
the DeepLabv3+ feature extraction network is replaced by the lightweight model MobileNetv2, which effectively
reduces the number of model parameters; secondly, for the problem of positive and negative sample imbalance, a
new loss function is composed of Focal Loss combined with Dice Loss to solve the category imbalance and improve
the model discriminative ability; in addition, a more efficient atrous spatial pyramid pooling (E-ASPP) module is
proposed. In addition, a more efficient E-ASPP module is proposed, and the Roberts crossover operator is chosen
to sharpen the image edges to improve the model accuracy; finally, the network structure is redesigned to further
improve the model accuracy by drawing on the multi-scale feature fusion approach. The experimental results show
that the proposed segmentation algorithm achieves an average intersection ratio of 93.45%, a precision of 94.87%,
a recall of 93.65%, and a balance score of 93.64% on the PCB test set, which is more accurate than the common
segmentation algorithms Hrnetv2, UNet, PSPNet, and PCBSegClassNet, and the segmentation speed is faster.
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1 Introduction

PCB is a carrier used to connect various electronic components, provide line connections and
hardware support, and its rational design and production specifications are essential for the stable and
reliable operation of equipment. In recent years, with the rapid development of electrical equipment
and products, the safety of printed circuit boards has become increasingly prominent [1,2].

Due to human damage, the working environment and other factors are very likely to cause PCB
defects such as short circuits and open circuits in the actual production process [3,4], therefore, PCB
defect detection is needed to ensure product quality. The traditional manual inspection method has the
defects of low efficiency and high cost, and it is difficult to meet the quality requirements of the PCB
production process with high precision [5,6]. Therefore, the industry has developed various types of
automated optical inspection (AOI) systems based on machine vision to achieve online defect detection
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of PCB, and scholars have also conducted in-depth studies on PCB defect detection and proposed
various algorithms to solve the problems of detection accuracy and efficiency.

PCB defect detection method can currently be divided into three categories: one is the manual
detection method, its detection accuracy and efficiency depends on the experience of personnel
judgment, with subjectivity and instability; the second is based on the electrical characteristics of
the defect detection method, with high precision and rapid detection, but there is the possibility of
damage to PCB equipment; third is based on the emerging computer vision detection method, the
method uses image recognition technology, to avoid secondary damage caused by direct contact with
PCB devices, and high efficiency of image detection. Therefore, this paper uses a deep learning-based
image detection method to detect PCB defects.

At present, in the process of PCB image detection, there are still problems such as inaccurate
image edge segmentation, hole phenomenon in segmenting large-scale targets, and slow segmentation
speed. To solve the above problems, this paper proposes a lightweight semantic segmentation algorithm
Mobile-Deep based on DeepLabv3+. The main features of this algorithm are: (1) To address the
problems of a large number of model parameters and slow real-time algorithm, the fine-tuned
MobileNetv2 lightweight network structure is used to replace the DeepLabv3+ feature extraction
module, which can improve the speed and ensure the accuracy of image segmentation at the same
time. (2) To address the problem of imbalance between positive and negative samples, a new loss
function consisting of Focal Loss combined with Dice Loss is used instead of Cross Entropy to solve
the problem of low accuracy of pixel classification due to the imbalance of sample categories. (3)
To address the phenomenon of blurred segmentation edges and the existence of holes, the Roberts
cross algorithm to sharpen the image edges to enhance the PCB edge information, and propose the
E-ASPP module to improve the model accuracy. (4) To address the problem that DeepLabv3+ fails to
fully utilize the multi-scale feature information, ignores the high-resolution shallow features, and loses
important pixel information due to too many direct upsampling, the coordinate multi-scale feature
fusion (C-MSFF) module is proposed, which draws on the feature pyramid network (FPN) multi-
scale feature fusion approach and subtly reduce the number of upsampling to achieve model accuracy
improvement.

2 Related Work

Bare board detection in PCB defect detection mainly focuses on the determination of bare board
alignment and pad defects. In early methods for bare board defect detection, traditional image seg-
mentation algorithms dominate. Wang et al. [7] proposed a PCB solder joint detection algorithm based
on adaptive threshold segmentation and morphology, which improved the segmentation accuracy, but
there were still some errors during the study, which led to inaccurate detection results. Zhang et al. [8]
proposed an algorithm based on iterative threshold selection and combined with image detection for
the detection of effective edge information in PCB optoelectronic images, however, the algorithm can
only detect one board at a time. Ma et al. [9] obtained the complete range of PCB real defect regions by
an improved region-growing method, which improved the accuracy of detection, but it requires manual
adjustment of model parameters, which may lead to poor detection results. In summary, although the
traditional image segmentation method is less computationally intensive and has low hardware cost,
it is highly susceptible to factors such as uneven illumination and low image resolution, which leads
to the problem of poor segmentation accuracy.

In recent years, with the development of convolutional neural networks (CNNs) [10], various
symmetric semantic segmentation algorithms based on full convolution have emerged to make up
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for the shortcomings of traditional semantic segmentation algorithms. Shelhamer et al. [11] proposed
a fully connected neural network (FCNN), which fine-tunes the network by fine-tuning the learned
feature representation to the segmentation task. Based on this, Ronneberger et al. [12] proposed a
symmetric semantic segmentation model UNet, which consists of a contraction path that captures
contextual information and a symmetric expansion path that can accurately locate the segmentation
boundary. To solve the problem that the symmetric semantic segmentation algorithm based on full
convolution ignores the pixel space consistency, DeepLab, a semantic segmentation model based on
full convolution, emerged [13–16]. Based on the above conditions, Chen et al. [17] used convolutional
neural networks to classify and identify electronic devices in circuit boards, but the algorithm is
susceptible to noise interference, and the recognition accuracy for components of different scales still
needs to be improved. Wang et al. [18] proposed a deep learning-based method to identify and classify
10 types of defects such as breaks, burrs, and residual copper for PCB pads and alignments, but the
effective recognition of PCB images is too small in size. Hu et al. [19] proposed UF-Net by up-sampling
and fusion of features, and the region proposal network (RPN) and region of interest (ROI) pooling
modules are applied to effectively identify different defects such as board alignments and solder
joints, but the identification speed is slow. Khan et al. [20] proposed a hybrid deep learning model
that combines DenseNet and UNet for semantic segmentation. Although the algorithm performed
well, it did not consider the information loss in the encoding and decoding stages. Qiao et al. [21]
introduced deep learning techniques to the analysis of X-ray data from PCB and proposed an effective
deep convolutional neural network-graph cut (DCNN-GC) framework, but the algorithm was only
applicable to small data sets and the segmentation speed was slow.

In summary, the DeepLabv3+ model with a simple network structure and fast running speed is
selected for defect detection of PCB in this paper. However, the shortcomings of the DeepLabv3+
model are poor real-time performance, blurred segmentation edges, and the existence of holes. The
reason for this is that its feature extraction module uses the Xception model with a large number of
parameters, and in addition, the atrous spatial pyramid pooling (ASPP) module fails to make full use
of the feature information, and the number of samples on the decoding layer is too many and the
multiplier is too large. To address the above problems, this paper proposes a new Mobile-Deep model
based on DeepLabv3+ semantic segmentation framework.

3 Mobile-Deep Model

The structure of the Mobile-Deep model is shown in Fig. 1, which is divided into a pre-processing
layer, encoding layer, and decoding layer, and the specific model scheme is as follows. Firstly, the
Roberts crossover operator is selected in the preprocessing layer for edge enhancement of PCB images;
secondly, the fine-tuned MobileNetv2 is used as the backbone network in the encoding layer, and
feature extraction is performed by E-ASPP module to increase the perceptual field range; finally, the
extracted features are spliced and fused by C-MSFF module in the decoding layer to increase the
information expression.

3.1 Image Edge Sharpening

Image sharpening is an image processing technique that aims to enhance the high-frequency
details in an image to make it look sharper and more visually appealing. Generally, image sharpening
techniques can be divided into two categories: Gradient-based methods and Laplace transform-based
methods. Gradient-based methods enhance edges and contours by performing differential operations
on the image. The commonly used methods include the Sobel operator [22], the Prewitt operator [23],
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and the Roberts crossover operator [24]. The Laplace transform-based method, on the other hand,
uses a transform kernel to convolve the image to highlight sharp features that are blurred or obscured
in the original image due to various factors. Compared with other operators, the Roberts crossover
operator has the following advantages: (1) the algorithm is simple; (2) it is suitable for images with
sharp edges; (3) the detection effect is obvious; (4) it can be used for real-time processing; (5) the
convolution kernel is small.
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Figure 1: Mobile-Deep model structure. f stands for the number of filters. s stands for the dimensional
change multiplier

Since Roberts crossover operator is very effective for edge detection of straight lines, angles, and
other geometric shapes. Therefore, in this paper, the Roberts crossover operator is used in the image
preprocessing part to enhance the PCB image edges, obtain the coarse segmentation result of PCB, and
superimpose it with the original image to enhance the signal intensity of PCB edges, and its sharpening
process is shown in Fig. 2. Compared with the original image, the sharpened image edges are clearer
and the lines are more obvious, which is more conducive to the implementation of PCB edge detection.

3.2 MobileNetv2 Structure Parameter Adjustment

The growth of the number of layers in a deep network brings a series of problems, such as gradient
disappearance, gradient explosion, model overfitting, and computational resource consumption,
which can be solved by residual connectivity. Among them, the most common lightweight residual
connectivity networks include the MobileNet family. Compared with MobileNetv1 [25], the biggest
advantage of MobileNetv2 [26] is the use of residual connectivity to prevent the network from
degradation. Therefore, in this paper, MobileNetv2, which has a stronger network feature extraction
capability, is selected as the backbone feature extraction network of Mobile-Deep.
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(a) Original (b) Edge extraction (c) Sharpening

Figure 2: PCB image sharpening

MobileNetv2 performs a total of 5 downsamplings in the first 18 layers, while for semantic
segmentation networks, 5 downsamplings are generally not chosen, so too much pixel information is
lost in pixel feature points. As the number of downsamplings decreases, the number of lost pixels also
decreases. So this paper chooses 3 downsamplings and modifies the parameters of inverted residual
with the penultimate two steps of 2 to make its step size 1. After completing MobileNetv2 feature
extraction, layer 4, layer 7, layer 14, and layer 18 are used as outputs, where layer 4 is the result of
compressing the height and width of the input image twice, and the other three layers are compressed in
height, and width three times, corresponding to the output size and several channels of 128 × 128 × 24,
64 × 64 × 32, 64 × 64 × 96 and 64 × 64 × 320, respectively. The outcomes are displayed in Table 1.

Table 1: MobileNetv2 structural parameters

Input1 Operator2 Exp size3 Out4 Num5 S6

512 × 512 × 3 Conv2d - 32 1 2
256 × 256 × 32 Bottleneck 1 16 1 1
256 × 256 × 16 Bottleneck 6 24 2 2
128 × 128 × 24 Bottleneck 6 32 3 2
64 × 64 × 32 Bottleneck 6 64 4 1
64 × 64 × 64 Bottleneck 6 96 3 1
64 × 64 × 96 Bottleneck 6 160 3 1
64 × 64 × 160 Bottleneck 6 320 1 1
Notes: 1Input represents the shape change of each feature layer; 2Operator represents the block structure
that each feature layer is about to go through; 3Exp size; 4Out represents the number of channels rising in
the inverse residual structure within the bottleneck, and the number of channels in the feature layer at the
time of input to the bottleneck, respectively; 5Num represents the number of repetitions of each feature
layer; 6S represents the step length used for each block structure.

3.3 Space Pyramid Improvement

The ASPP module has unique advantages in extracting multi-scale semantic features of images and
is widely used for image semantic segmentation. The ASPP module consists of multiple convolutional
operations in parallel and global average pooling operations. Except for the 1 × 1 convolution, each
convolution kernel has a different void rate. Convolutional kernels with high void rates facilitate the
segmentation of large targets; convolutional kernels with small void rate help segment small targets.



2448 CMC, 2023, vol.77, no.2

However, the model uses only simple stacking for features with different void rate convolutions,
failing to take full advantage of the perceptual wilderness brought about between dilated convolutions.
Therefore, in this paper, we borrow the dense connectivity of Dense ASPP [27] and adopt the efficient
channel attention (ECA) [28] to design a more efficient feature pyramid module, i.e., the E-ASPP
module, as shown in Fig. 3.
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Figure 3: E-ASPP feature pyramid module. f stands for the number of filters

The input of the atrous spatial pyramid pooling chains (ASPPs) module is a 1/8 size feature
map with 320 channels obtained via the backbone network MobileNetv2. In the E-ASPP module,
the feature maps are convolved 1 × 1, globally averaged pooled, and null convolved with expansion
rates of 6, 12, and 18, respectively, with the difference that the convolutions with different expansion
rates are spliced. First, the results obtained from the expansion rate of 6 branches are added to the
expansion rate of 12 branches and 18 branches, and second, the integrated 12 branches are added to
the 18 branches to obtain five feature maps of 1/8 size and 256 channels with three different feature
information of high, medium and low. The feature information produced by the E-ASPP module is
obtained by stitching and fusing the resultant feature maps in the channel dimension, followed by the
addition of the ECA attention mechanism. The output contains information about the features of
each branch and between branches, which can increase the ability of the model to segment targets of
different sizes.

3.4 Feature Fusion Improvement

The basic model of DeepLabv3+ recovers the image resolution by direct quadruple upsampling,
which causes the loss of pixel information in the feature tensor, thus destroying the continuity between
pixels in the image. On the other hand, it only fuses the 1/4 feature tensor stored in the encoder
process, ignoring the semantic information contained in the deeper feature tensor and the spatial detail
information contained in the shallower feature tensor, resulting in poor pixel recovery and serious loss
of edge information in the final image segmentation results.

To gradually fuse the low-resolution deep features and high-resolution shallow features generated
in the encoding stage, this paper proposes a C-MSFF feature fusion module by reducing the loss of
pixel information in the feature tensor through twice up-sampling to make the segmentation boundary
finer, and its structure is shown in Fig. 4.

For C-MSFF, the middle two layers of features from the deep convolutional neural network
output are first spliced [29] to integrate the shallow channel information, then the feature layers that
pass through the E-ASPP module are feature fused to receive more information from the deeper
features for better feature representation, followed by the coordinate attention (CA) [30] after splicing
to compensate for the lack of model accuracy, and then twice the upsampling is performed to
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achieve the docking with the first layer output to obtain the feature information generated by the
C-MSFF module. Since only twice the upsampling is used, the C-MSFF module can obtain a more
comprehensive and richer set of features.
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Figure 4: C-MSFF feature fusion module. f stands for the number of filters. s stands for the dimensional
change multiplier

3.5 Loss Function Improvement

In image semantic segmentation tasks, the commonly used loss function is cross-entropy loss [31],
but this function does not solve the problem of sample class imbalance well. Focal Loss [32] solves the
problem of severe imbalance between positive and negative samples by improving the cross-entropy
loss function, whose binary classification is shown in Eq. (1).

Lossfocal =
{

−α (1 − p′)γ ln p′ p = 1
−(1 − α)p′γ ln(1 − p′) p = 0

(1)

where, p denotes the true label category, p′ denotes the probability value of predicting as this category;
Focal Loss adds α and γ parameters, α parameter is used to balance the importance of positive and
negative samples to solve the problem of unbalanced positive and negative samples, and the parameter
γ is used to adjust the weights of difficult and easy samples to solve the problem of difficult samples.

Intersection over union (IoU) is often used to evaluate the segmentation effectiveness of a model,
and Dice Loss [33] is a loss function that measures the intersection ratio metric, as shown in Eq. (2).

Lossdice = 1 − 2 |X ∩ Y |
|X | + |Y | (2)

where, X denotes the set of target class predictions and Y denotes the set of true label classes. Since the
Dice Loss training process is unstable, but its optimized IoU metric works well, this does not indicate
the better performance of the model. Thus, this paper uses the sum of Dice Loss and Focal Loss as
the loss function to improve the small target segmentation accuracy to compensate for the accuracy
loss caused by the limited feature extraction capability of the lightweight backbone network. The loss
function is calculated as shown in Eq. (3).
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Loss = Lossdice + Lossfocal

= C −
C−1∑
c=0

TP(c)
TP(c) + αFN(c) + βFP(c)

− λ
1
N

C−1∑
c=0

N∑
n=1

gn(c) (1 − pn(c))
2 ln pn(c) (3)

where, N is the total number of samples; C is the number of label categories; pn(c) indicates whether the
predicted class at pixel position n is class c, and gn(c) indicates whether the true class at pixel position
n is class c, α = β = 1. TP(c), FN(c) and FP(c) are shown in Eq. (4).⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

TP (c) =
N∑

n=1

pn (c) gn (c)

FN (c) =
N∑

n=1

(1 − pn (c)) gn (c)

FP (c) =
N∑

n=1

pn (c) (1 − gn (c))

(4)

where, TP(c) is the true rate of category c, FN(c) is the false negative rate of category c, and FP(c) is
the false positive rate of category c.

4 Experimental Results and Analysis

The experimental hardware configuration is Intel Core i5-2500 CPU, 16 GB RAM, NVIDIA
GeForce RTX 3060 graphics card with 12 Gbyte video memory, Ubuntu 18.04 software environment,
64 bit, Pytorch 1.8.0 deep learning framework, and CUDA 11.1 parallel computing framework.

4.1 Dataset Construction

This paper uses a laboratory-built image acquisition platform for PCB image acquisition, as
shown in Fig. 5. Among them, the hardware components of the platform mainly include industrial
cameras, switches, light sources, industrial lenses, and motors.

Figure 5: PCB surface defect detection platform

After completing the debugging of industrial cameras and light sources, this paper uses the
platform for PCB bare board picture acquisition. Since the acquired image contains a large number
of irrelevant background pixels, this paper performs image segmentation, open operation, and image
cropping operations on the acquired PCB surface image to obtain the ROI region of the PCB surface
to eliminate the interference of irrelevant factors on the subsequent defect detection.
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After the data acquisition is completed, its production process is as follows: first, the original
image is cropped to 128 × 128 sizes; second, the image is enhanced by mirroring and rotating the data;
finally, the color image is converted into a grayscale map. The experiments use ITK-SNAP software
to manually label the pads and alignments of PCB images to get the data labels. The dataset consists
of 1458 sheets, and the approximate ratio of 8:1:1 is used to set the training set, test set, and validation
set, of which 1180 sheets are used as the training set, 146 sheets as the test set, and 132 sheets as the
validation set.

4.2 Evaluation Criteria

To verify the effectiveness of the proposed algorithm, the following six evaluation metrics are used
in this experiment: Precision, Recall, F1-Score, mIoU, Speed, and Params. Among them, Speed and
Params are used as evaluation metrics for segmentation speed and model size, respectively, and the rest
of the metrics are used to analyze the segmentation accuracy of the model. Usually, mIoU is used to
calculate the intersection and concatenation of two sets of true and predicted values, to calculate how
well the predicted results match the true values in the original image, as shown in Eq. (5).

mIoU = 1
k + 1

k∑
i=0

pii

k∑
j=0

pij +
k∑

j=0

pji − pii

(5)

where, k denotes the category of label tagging, k + 1 denotes the total category containing empty class
or background, pii denotes the number of pixels that are class i predicted to be class i, pij denotes the
number of pixels that are class i, but predicted to be class j, and pji denotes the number of pixels that
are class j, but predicted to be classified i. The projected segmentation map is more accurate with the
higher value of mIoU , which has a range of [0, 1].

Precision is a measure of the accuracy of a semantic segmentation model for a class of targets, i.e.,
the ratio of the number of real targets segmented by the model to the number of all segmented targets,
which is shown in Eq. (6).

Precision = TP
TP + FP

× 100% (6)

where, TP is the number of correctly segmented targets in the image, and FP is the number of
incorrectly segmented non-targets in the image.

The recall is a measure of a semantic segmentation model’s ability to segment all targets, i.e., the
ratio of the number of targets correctly segmented by the model to the number of all true targets, which
is shown in Eq. (7).

Recall = TP
TP + FN

× 100% (7)

where, FN is the number of targets in the image that are detected as other kinds of objects.

The balance score, also known as the F1-Score, takes into account both the precision and recall of
the classification model and is defined as the summed average of the precision and recall rates, which
is shown in Eq. (8).

F1-Score = 2 × P · R
P + R

(8)

where, P is the precision rate, and R is the recall rate.
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4.3 Mobile-Deep Ablation Experiment

To verify the effectiveness of the algorithm, this experiment uses the homemade PCB dataset
and uses multi-stage migration learning [34] as an iterative training strategy. The experiments set
the initialized learning rate to 0.007, the stochastic gradient descent (SGD) with a momentum of 0.9
and a weight decay of 0.0004, the learning rate descent method is chosen STEP, and the number of
iteration steps is 300. The images are cropped to 256 × 256 sizes for training. Among them, the ablation
experiments include the experimental comparison of the edge sharpening model, the adjustment of
the downsampling number of MobileNetv2, the adjustment of the loss function, and the experimental
verification of E-ASPP and C-MSFF.

4.3.1 Edge Sharpening

The Gradient-based image sharpening techniques mainly include the Sobel operator, Prewitt
operator, and Roberts crossover operator, and the above methods are compared and analyzed in this
paper, and the experimental results are shown in Table 2 and Fig. 6. From Table 2 and Fig. 6, the use of
Sobel and Prewitt degrades the image quality and introduces noise, resulting in a decrease in mIoU of
19.89% and 17.77%, respectively, compared to the original network. The use of the Roberts crossover
operator, on the other hand, sharpens the image edges, highlights the edge information more, and
improves the mIoU by 0.92%. Therefore, in this paper, the Roberts crossover operator is added to the
DeepLabv3+ preprocessing module to sharpen the PCB image edges.

Table 2: Comparison of edge sharpening results

Sobel Prewitt Roberts mIoU (%)

88.01
� 68.12

� 70.24
� 88.93

Note: � means with.

(b) Sobel (c) Prewitt (d) Roberts(a) Original

Figure 6: Comparison of PCB image sharpening results

4.3.2 MobileNetv2 Downsamplings Adjustment

In this paper, we set different downsampling times in the MobileNetv2 network for comparative
analysis, and the results are shown in Table 3. When the number of downsamplings is 3, the mIoU value
is 90.21%; when the number of downsamplings is 4, more information is lost in the pixel feature points



CMC, 2023, vol.77, no.2 2453

and the mIoU value is reduced by 0.97%. It can be seen that as the number of downsamplings increases,
the pixel information lost from the pixel feature points increases. Therefore, this paper adopts the 3
downsamplings with fewer downsamplings and more effective information contained in MobileNetv2
as the feature extraction network of the model.

Table 3: A comparison of MobileNetv2 downsamplings times

Downsamplings Params (MB) Speed (FPS) mIoU (%)

3 5.82 29.78 90.21
4 5.82 38.03 89.24

4.3.3 Loss Function Adjustment

The gap between the anticipated value and the model’s real value is measured using the loss
function. The loss functions of different models are generally different, and the same model has
different effects for different loss functions. Table 4 shows the experimental findings of the model for
various loss functions when MobileNetv2 is downsampled by 3.

Table 4: Comparison results of different loss functions

Cross entropy Focal Loss Dice Loss mIoU (%)

� 90.21
� 90.34

� 90.26
� � 90.54

Note: � means with.

The experimental results show that the mIoU value of the original loss function Cross Entropy
is 90.21%; when only Focal Loss is used, it solves the problem of severe imbalance between positive
and negative samples, with mIoU reaching 90.34%; when only Dice Loss is used, it can alleviate the
negative impact caused by the imbalance between the foreground and background areas in the samples,
with mIoU reaching 90.26%, as it focuses more on mining the foreground areas; the mIoU of the loss
function proposed in this paper improves by 0.33% relative to the original loss function. It shows
that the loss function using the sum of Focal Loss and Dice Loss not only solves the problem of low
accuracy of pixel classification due to unbalanced sample categories but also improves the performance
of semantic segmentation of the model.

4.3.4 Feature Pyramid E-ASPP

In the ASPP structure of the DeepLabv3+ model, different dilation rates can process the input
feature maps in parallel to extract multi-scale target information, but the original dilation rates (6, 12,
18) do not fully utilize the perceptual field to extract effective information. To solve the problem of
feature resolution reduction when the perceptual field is increased, the E-ASPP module is proposed in
this paper as shown in Fig. 3, and the experimental results are shown in Table 5. From the table, it can
be obtained that the segmentation accuracy of ASPPs is higher with a mIoU of 90.75% compared to
90.54% of the original ASPP, which is an improvement of 0.21%, indicating that ASPPs can perform
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feature extraction more effectively. Together with the ECA attention mechanism, which re-integrates
feature information, the mIoU value is further improved by 0.27% to 91.02% compared to the ASPPs.

Table 5: Characteristic pyramid E-ASPP

ASPPs ECA Params (MB) Speed (FPS) mIoU (%)

5.82 29.98 90.54
� 7.59 26.93 90.75
� � 7.59 26.66 91.02
Note: � means with.

4.3.5 Feature Fusion C-MSFF

Experimental validation is performed with the feature fusion module C-MSFF designed in this
paper, and the comparison results are shown in Table 6. Compared with MobileNetv2, the backbone
feature extraction network only, C-MSFF improves mIoU by 0.42% due to the addition of multi-
scale feature fusion (MSFF) branches; continuing to use the CA attention mechanism for channel
integration, mIoU improves by 0.16% with only 0.02 MB increase in the number of model parameters.
After the fusion of multi-layer feature information, the overall segmentation effect of C-MSFF is
improved by 0.58%.

Table 6: Feature fusion C-MSFF

MSFF CA Params (MB) Speed (FPS) mIoU (%)

5.82 29.98 90.54
� 5.93 29.49 90.96
� � 5.95 29.31 91.12
Note: � means with.

4.3.6 Mobile-Deep Experiment

To verify the effectiveness of the improved Mobile-Deep algorithm proposed in this paper, Table 7
compares the segmentation results of DeepLabv3+ with the module proposed in this paper.

Table 7: Mobile-Deep ablation experiment

E-ASPP C-MSFF Params (MB) Speed (FPS) mIoU (%)

5.82 29.98 90.54
� 7.59 26.66 91.02

� 5.95 29.31 91.12
� � 7.72 26.50 93.45
Note: � means with.

From the previous Sections 4.3.4 and 4.3.5, it is clear that the E-ASPP and C-MSFF modules can
effectively improve the segmentation accuracy of the model. Since the Mobile-Deep model combines
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E-ASPP and C-MSFF, the mIoU value of Mobile-Deep is improved by 2.91% compared to the original
model, at the cost of a slight decrease of 3.48 FPS in segmentation speed. In summary, the global
average mIoU value of the improved algorithm compared to the original DeepLabv3+ network model.
The large improvement in recognition accuracy indicates that the deep feature pyramid structure
and the multi-scale fusion enhancement network help to improve the segmentation capability of the
network model.

4.4 Comparison Experiments between Mobile-Deep and Other Algorithms

To further verify the superiority of the Mobile-Deep model proposed in this paper, it is also
compared and analyzed with other classical algorithms, and the experimental results are shown in
Table 8 and the visualization results are shown in Fig. 7.

Table 8: Comparison of semantic segmentation results of different algorithms

Network Model Params
(MB)

Speed
(FPS)

Precision
(%)

Recall
(%)

F1-Score
(%)

mIoU
(%)

Hrnetv2 W32 29.55 13.98 94.86 93.54 93.61 93.43
UNet ResNet50 43.93 12.49 91.24 90.60 90.65 90.10
PSPNet ResNet50 46.72 12.07 91.31 90.79 90.82 90.13
DeepLabv3+ MobileNetv2 5.82 29.78 91.15 90.56 90.54 90.08
DeepLabv3+ Xception 54.71 8.17 91.42 90.98 91.02 90.27
PCBSegClassNet —- 1.31 34.52 94.04 93.25 93.17 93.24
Mobile-Deep MobileNetv2 7.72 24.61 94.87 93.65 93.64 93.45
Note: The Model represents the backbone network used by the network. —- indicates no specific name for the PCBSegClassNet backbone
feature extraction network.

(a)

Image Lable Hrnetv2 UNet PSPNet DeepLabv3+(M) DeepLabv3+(X) Mobile-Deep

(f)

PCBSegClassNet

Figure 7: Prediction results of 7 algorithms on the PCB dataset

The UNet network is suitable for small datasets of medical images and performs poorly on this
dataset, with mIoU achieving only 90.10%, a precision of 91.24%, a recall of 90.60%, and a balance
score of 90.65%. Compared with the proposed algorithm in this paper, UNet is at a disadvantage in
terms of model segmentation accuracy, speed, and number of parameters. And PSPNet also failed
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to achieve the desired results. Compared with the Hrnetv2 network, the proposed algorithm reduces
the number of parameters by 21.83 MB and improves the segmentation speed by 10.63 FPS. For the
PCBSegClassNet [35] network, it has the advantages of a small number of model parameters and fast
segmentation, but in terms of segmentation accuracy, Mobile-Deep is 0.21%, 0.83%, 0.40%, and 0.47%
higher than PCBSegClassNet in terms of average intersection ratio, precision, recall, and balance score,
respectively. Therefore, the MobileNetv2 backbone network, which has great advantages in terms of
several parameters and segmentation speed, is still chosen for such tasks. Considering the number of
parameters, segmentation speed, and segmentation accuracy, the Mobile-Deep model proposed in this
paper is still the optimal one.

As can be seen from Fig. 7, UNet, PSPNet, DeepLabv3+, and PCBSegClassNet all have the
phenomenon that the segmentation of alignment edges is mutilated, the segmentation of pads
and alignments is fused, and the overall segmentation of the target is incomplete, although the
segmentation effect of Hrnetv2 is clearer, there are mis-segmentation errors. Consistent with the above
findings, the proposed algorithm is more complete for the segmentation of pads and alignments in the
PCB dataset, and the edge contours are smoother.

To check the generalization of Mobile-Deep, the different algorithms mentioned above were
compared and analyzed on the PASCAL VOC 2012 dataset, and the segmentation results are shown
in Table 9. Due to the large image size of the VOC dataset, the input size was adjusted to 512 × 512.

Table 9: Experimental comparison between different models

Network Model Precision (%) Recall (%) F1-Score (%) mIoU (%)

Hrnetv2 W32 79.64 78.69 78.71 78.56
UNet ResNet50 70.51 69.27 69.34 69.16
PSPNet ResNet50 83.78 83.34 83.39 83.29
DeepLabv3+ MobileNetv2 72.56 72.65 72.97 72.23
DeepLabv3+ Xception 81.65 81.24 81.56 80.78
PCBSegClassNet —- 76.03 75.21 75.12 75.15
Mobile-Deep MobileNetv2 76.13 75.98 76.06 75.74
Note: The Model represents the backbone network used by the network. —- indicates no specific name for the PCBSegClassNet
backbone feature extraction network.

In the VOC dataset, PSPNet has the highest segmentation accuracy with a mIoU of 83.29%,
precision of 83.78%, recall of 83.34%, and balance score of 83.39%, while the proposed algorithm
in this paper has a mIoU of 75.74%, precision of 76.13%, recall of 75.98%, and balance score of
76.06%. Compared with UNet, the most representative algorithm for semantic segmentation, the
mIoU, precision, recall, and balance scores are 6.58%, 5.62%, 6.71%, and 6.72% higher, respectively,
and this shows the superiority of the proposed algorithm.

The visualization results of the algorithm on the PASCAL VOC 2012 dataset are shown in Fig. 8.
The first row shows the original image, and the second row shows the labels corresponding to the
original image, followed by a comparison of Hrnetv2, UNet, PSPNet, and DeepLabv3+ with different
backbone models, and PCBSegClassNet.
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Figure 8: Prediction results of 7 algorithms on the PASCAL VOC 2012 dataset

As can be seen in the first column of Fig. 8, the algorithm in this paper identifies the pixel points
that were lost in the tail section during the segmentation of the comparison model, and the predicted
results are more accurate. In the second column of segmentation results, the UNet network model
incorrectly identifies the train as other objects, and the improved algorithm avoids the misclassification
error. The third column of segmentation results shows that the algorithm in this paper can segment
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small-scale targets such as flagpoles, and although the segmented pixels are not obvious, the model
is better at segmenting and predicting small-scale targets. The fourth column of results shows that
the improved algorithm is more accurate for segmenting bicycles and has better continuity of results,
although there are still voids in segmenting riders. In summary, the improved network model not only
improves the segmentation accuracy of small-scale targets compared with the comparison model but
also has stronger classification recognition ability.

To test whether the model proposed in this paper applies to real scenarios, the model is deployed
in Rockchip RK3588. The CPU model of the device is RK3588, octa-core; the GPU model is ARM
MALI-G610, quad-core; the running memory is 8 GB; the operating system is Android 12. First, the
model training weights are converted to the open neural network exchange (ONNX) framework, and
then to RK3588’s runnable Rockchip neural net-Toolkit2 (RKNN-Toolkit2) framework; second, the
connection between RK3588 and the monitor is built; finally, the running interface is written in C++
under OpenCV, Rockchip neural net (RKNN) and other frameworks. In practical applications, the
inference speed of the model is also affected by the software version and physical environment, so this
is only a qualitative experiment. To ensure the accuracy of the measured latency as much as possible,
we averaged the inference speed for 1000 images, as shown in Table 10. As can be seen from Table 10,
the mobile device RK3588 inference latency is between the server GPU and CPU, which indicates that
Mobile-Deep can perform well even in the mobile model.

Table 10: Mobile device inference latency testing

Network Model Latency (ms) RK3588 Latency (ms) GPU Latency (ms) CPU

DeepLabv3+ MobileNetv2 40.16 20.86 61.12
Mobile-Deep MobileNetv2 43.45 24.54 65.45
Note: The Model represents the backbone network used by the network.

Although this paper improves the segmentation accuracy and speed of the model for PCB
bare board images by adjusting the number of MobileNetv2 downsamplings, and loss function and
introducing an edge sharpening model as well as proposing E-ASPP and C-MSFF modules, there are
still some defects. Fig. 9 shows the results of poor segmentation of PCB bare board by the method
in this paper. In Fig. 9(a2), the pads appear over-segmentation phenomenon, and in Fig. 9(b2), the
edge segmentation of the alignment is discontinuous and there is a mutilation phenomenon. The main
reasons for the above problems are as follows.

(1) Since this paper mainly constructs a lightweight segmentation model, MobileNetv2 is used
as the backbone network of the model. Although the number of its downsamplings is adjusted, since
MobileNetv2 is not a deep network, its extraction of feature information of the image is incomplete,
which affects the segmentation accuracy of the model.

(2) The underlying features in the model lack the global feature information of the image due to
the restricted perceptual field. Although this paper compensates for this by feature fusion through
E-ASPP and C-MSFF modules, some information will still be missing.
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(a) Image (a1) Lable (a2) Mobile-Deep

(b) Image (b1) Lable (b2) Mobile-Deep

Figure 9: Mobile-Deep poorer segmentation result display

5 Conclusions

In this paper, the Mobile-Deep model is proposed for the problems such as blurred segmentation
edges and the existence of holes in the image segmentation process of PCB boards. First, the Roberts
cross operator is chosen to sharpen the PCB image edges; second, the MobileNetv2 lightweight
network structure is used to replace the DeepLabv3+ feature extraction module; then, the E-ASPP
and C-MSFF modules are designed and validated; finally, a new loss function consisting of Focal Loss
combined with Dice Loss is used instead of Cross Entropy. The experimental results show that with
MobileNetv2 as the backbone, Mobile-Deep improves by 3.37% in mIoU, 3.72% in precision, 3.09%
in recall, and 3.10% in balance score compared to DeepLabv3+, although the number of parameters
increases by 1.90 MB and the segmentation speed decreases by 5.17 FPS, but it still achieves good
applications for PCB image segmentation tasks. And from the segmentation visualization results, the
Mobile-Deep segmentation algorithm is effective for segmenting boundaries and small-scale target
segmentation. However, the current model can only detect PCB defects in the laboratory environment,
and it is temporarily unavoidable for various degradations, noises, or variants that the data imaging
process is affected by. The authors believe that image recovery methods in areas such as image
denoising can be introduced to recover the original image information as much as possible and make
the model more generalizable, which is the focus of the next step.
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