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ABSTRACT

In the realm of Multi-Label Text Classification (MLTC), the dual challenges of extracting rich semantic features
from text and discerning inter-label relationships have spurred innovative approaches. Many studies in semantic
feature extraction have turned to external knowledge to augment the model’s grasp of textual content, often
overlooking intrinsic textual cues such as label statistical features. In contrast, these endogenous insights naturally
align with the classification task. In our paper, to complement this focus on intrinsic knowledge, we introduce a
novel Gate-Attention mechanism. This mechanism adeptly integrates statistical features from the text itself into
the semantic fabric, enhancing the model’s capacity to understand and represent the data. Additionally, to address
the intricate task of mining label correlations, we propose a Dual-end enhancement mechanism. This mechanism
effectively mitigates the challenges of information loss and erroneous transmission inherent in traditional long short
term memory propagation. We conducted an extensive battery of experiments on the AAPD and RCV1-2 datasets.
These experiments serve the dual purpose of confirming the efficacy of both the Gate-Attention mechanism and
the Dual-end enhancement mechanism. Our final model unequivocally outperforms the baseline model, attesting
to its robustness. These findings emphatically underscore the imperativeness of taking into account not just external
knowledge but also the inherent intricacies of textual data when crafting potent MLTC models.
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1 Introduction

Today, Artificial Intelligence technology is in the ascendant, and Natural Language Processing
(NLP) is also growing rapidly. In the era of big data explosion, text classification, as one of the
fundamental tasks in the field of NLP, has received a lot of attention based on the urgent demand
of human beings for efficient text information processing techniques. Text classification [1] refers
to classifying a given text according to a preset label. This text can be a sentence, a paragraph, or
even a document. Text classification is also an important part of docking downstream tasks such as
information retrieval [2], topic division [3], and question-answering systems [4] in the field of NLP. As
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one of the complex scenarios in text classification, Multi-Label Text Classification (MLTC) needs to
take into account the correlation between text feature extraction and mining labels.

In recent years, with the introduction of the Sequence Generation Model (SGM) [5], the research
paradigm of Sequence-to-Sequence has been widely adopted in the field of MLTC. In this framework,
the model is split into two parts: Encoder and Decoder. The Encoder module is dedicated to extracting
semantic features, and the Decoder module is dedicated to mining the correlations between labels
and classifying them. Currently, there is a growing body of research on semantic feature extraction
to enhance the model’s understanding of text by introducing exogenous knowledge. But the problem
with such exogenous knowledge is that it inevitably brings noise along with new knowledge to the
model. If the noise is not handled properly, it can backfire. However, this problem can be effectively
solved by exploiting some inherent and intrinsic information of the text itself, such as statistical
features. Compared with exogenous knowledge, this endogenous knowledge has the advantage of being
naturally compatible with the corresponding classification tasks [6]. However, there are incompatibility
issues between statistical features and semantic features in terms of scale and dimensionality, and not
all the information in statistical features is worthy to be referenced by semantic features, so a high-
quality fusion strategy is needed to combine the two features. In addition, sequence generation models
are often used to mine the correlations between labels. SGM proposes that the multi-label classification
problem can be transformed into a sequence generation problem, to effectively mine the correlations
between labels. However, there are problems of information loss and wrong propagation [7] when
decoding text feature vectors in this way, which brings certain troubles for the model to continuously
generate correct labels.

To address the above issues, we propose a VFS model composed of V-Net, F-Net and S-Net, where
V-Net refers to the Variational Encoding Network, F-Net refers to Feature Adaptive Fusion Network,
and S-Net refers to the Sequence Enhancement Generation Model. We draw inspiration from Adaptive
Gate Network (AGN) [6] and design V-Net and F-Net, which can better adapt to MLTC tasks. In V-
Net, we reconstruct the original label statistical features and map them into a continuous vector space,
which also address the problem of the mismatch between the original label statistical features and
the semantic feature dimensions. In the F-Net module, we propose a Gate-Attention mechanism to
enable statistical and semantic features to be fused across scales, and to reallocate attention weights
during fusion, allowing statistical information that is not worth learning from the current semantic
features to be released weights to more important statistical information. Compared to other fusion
strategies, the Gate-attention mechanism enables the model to autonomously discern information
from statistical features, thus reducing noise interference. In the S-Net module, we proposed a Dual-
end enhancement mechanism, which introduces original hidden vectors to the input end of Long Short
Term Memory (LSTM) cells for reference, and uses an attention mechanism to enhance the weight of
important information on the output end, effectively alleviating the problem of information loss and
error transmission during LSTM propagation. The main contributions of this paper are as follows:

• We propose a novel label distribution information extraction module, which can fully capture
the mapping relationship between label and text, and thus form a unique distributed represen-
tation of text.

• We design a feature fusion strategy, which integrates the label distribution information into the
original semantic feature vector of the text based on the attention mechanism.

• A large number of experiments have been carried out on two datasets, and the experimental
results fully prove the effectiveness of our proposed framework.

• We propose a novel label sequence generation module, which transforms the multi-label clas-
sification problem into a label sequence generation problem and fully exploits the correlation
between labels.
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2 Related Work
2.1 Feature Extraction

Extracting and fusing features from multiple views can help models understand the text from
multiple perspectives and at a deeper level, which is also a mainstream idea in current feature extraction
research. Currently, most scholars rely on information other than the input text to assist model
understanding of semantics, such as Chinese Pinyin, Chinese radicals, and English parts of speech.
In Chinese, Liu et al. [8] used the pinyin of Chinese characters to assist the model in understanding
Chinese, while Tao et al. [9] used the association of Chinese characters to obtain information that can
assist the model in understanding the text. Liu et al. [10] also fused the three characteristics of Chinese
characters: font shape, font sound, and font meaning. Hong et al. [11] even calculated the similarity
between characters by using strokes and sounds based on characters. In English, Li et al. [6] designed a
statistical information vocabulary based on the part of speech of English words, and used it to complete
deep level feature extraction of text. In addition to these, Chen et al. [12] introduced conceptual
information and entity links from the knowledge base into the model pipeline through an attention
mechanism. Li et al. [13] combined domain knowledge and dimension dictionaries to generate word-
level sentiment feature vectors. Zhang et al. [14] improved fine-grained financial sentiment analysis
tasks by combining statistical distribution methods with semantic features. Li et al. [15] improved
emotion-relevant classification tasks by combining fine-grained emotion concepts and distribution
learning. Li et al. [16] enabled the extraction of global semantics at both token-level and document-
level by redesigning the self-attention mechanism and recurrent structure. Li et al. [17] addressed
the challenge of potential inter-class confusion and noise caused by using coarse-grained emotion
distribution by generating fine-grained emotion distributions and utilizing them as model constraints.
However, these efforts rarely focus on the necessity and compatibility of adding information, so it is
impossible possible to avoid bringing noise while bringing new knowledge to the model.

2.2 Multi-Label Text Classification

There are two types of solutions for mining the association between labels. One is based on
problem transformation, which mainly transforms the data of the problem and ultimately makes
it applicable to existing algorithms designed for single label classification. For example, the Binary
Relevance (BR) algorithm was proposed by Boutell et al. [18], but due to not mining the correlation
between labels, the classification efficiency is low. Thereafter, Read et al. [19] proposed a Classifier
Chain (CC) to address this drawback. This model links all the classifiers that come before it in a chain,
allowing a single trainer to train on the input space and classifiers in the chain. The Label Powerset
(LP) algorithm proposed by Tsoumakas et al. [20] converts all different subsets of category labels into
different categories for training. The other category is based on applicable algorithms. This category of
algorithms is mainly an improvement over existing algorithms designed for single label classification,
making them applicable to MLTC. Chen et al. [21] proposed a model that extracts text feature vectors
from text using Convolutional Neural Network (CNN), and then sends these vectors to a Recurrent
Neural Network (RNN) to output labels, named CNN-RNN. Yang et al. [5] proposed the SGM model
by introducing the attention mechanism into the Sequence-to-Sequence (Seq2Seq) model and applying
it to MLTC. Later, Yang et al. [22] made improvements to SGM by adding a Set Decoder module to
reduce the impact of incorrect labels. Chen et al. [23] designed a MLTC model with Latent Word-Wise
Label Information (MLC-LWL) to eliminate the effects of predefined label order and exposure bias
in the Sequence-to-Set (Seq2Set). In terms of classification performance, models such as Seq2Seq are
more advantageous.
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3 Model

In this section, we will introduce the implementation details of the VFS model in detail. The overall
framework is shown in Fig. 1.

Figure 1: The overall framework of the proposed VFS

3.1 Problem Definition

MLTC refers to finding a matching subset of a text in a label set. Mathematically, give a set of text
samples T = {t1, t2, . . . , tm}, and a set of labels L = {l1, l2, . . . , ln}, the goal is to learn a mapping function
f : T → 2L, where 2L represents the power set of L, which contains all possible label combinations. For
each text sample f : T → 2L, the function f predicts a set of labels f : T → 2L, which may contain zero
or more labels.

3.2 V-Net: Variational Encoding Network

Due to the discrete nature of the initial label statistical features in the vector space, it is difficult
to represent the statistical features in depth, and their dimensions do not match the semantic features.
Therefore, we designed V-Net to reconstruct the original label statistical features to obtain a statistical
feature that matches the semantic feature dimension and has deep level information. The frame
diagram is shown in Fig. 2.

Figure 2: V-Net and F-Net frame diagram

The contribution of different words in a text to the semantics of the text varies, and the
contribution of a word in different texts to the semantics of the text may also differ. Some words in the
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text are associated with the corresponding labels of the text, which means that when the probability
of a word appearing on a label is high or low, the word can be considered to contribute significantly
to the label classification of the sentence. We first define a text Ti = {w1, w2, . . . , wc} with a length of
c, which corresponds to a set Li = {l1, l2, . . . , ld} containing d labels. After stacking the statistics in
order, we can obtain a Table of Label Frequency (ToLF) corresponding to all words. We can obtain
a vector ξ w = [ξ1, ξ2, . . . , ξn] representing a word and a vector ζ l = [ζ1, ζ2, . . . , ζm] representing a label
from ToLS, where n and m both represent dimensions.

Not all high-frequency words contribute significantly to the semantics of a text, so we will first
filter these words. We believe that a word with semantic contribution should have a normal distribution
over all texts, so words that do not belong to the normal distribution will be filtered out by us first and
will not be used subsequently.

The vector dimensions of the original statistical features do not match the semantic features of the
text, and the vectors constructed based on this positional relationship are difficult to represent fine-
grained semantics. For this reason, we use an Auto-Encoder to reduce the dimension of the original
distributed representation vector. However, in order to make the distribution of the feature vectors
more consistent with the real scene and reduce the interference of noise, we use a Variational Auto-
Encoder (VAE) [24] to achieve this process.

If the statistical vector of a label is known to be ζ l = [ζ1, ζ2, . . . , ζm], then the statistical matrix of all
labels is ζ L = [ζ l1 , ζ l2 , . . . , ζ ln ], where n represents the dimension of ζ L ∈ R

m×n. Unlike ordinary Auto-
Encoder, VAE becomes a model that fits the probability distribution. Assuming that the intermediate
vector z follows a standard multivariate Gaussian distribution, I represents the identity matrix, and
the calculation process is shown in formula (1):

p (z) = N (0, I) (1)

So for VAE, the encoder samples an intermediate vector z from the prior distribution p(z), and
then the decoder samples the X from the posterior distribution p(X |z) according to the intermediate
vector z. In order to facilitate the learning and training of the neural network, θ is parameterized, then
the calculation process of the decoder model is shown in formula (2):

pθ (X |z) = N
(
μ′, σ ′2 ∗ I

) = N
(
X |μ′ (z; θ) , σ ′2 (z; θ) ∗ I

)
(2)

where μ represents the mean and σ represents the standard deviation. For the encoder, its task is mainly
to fit a distribution pθ (X) close to the real distribution p(X). Then pθ (X) is:

pθ (X) = ∫
z
pθ (X |z) p (z) dz ≈ 1

m

m∑
j=1

pθ

(
X |zj

)
(3)

However, if a large number of zj are sampled from p (z) to obtain pθ (X), the requirements for
the vector dimensions of X and Z are too high, which is not suitable for neural network training.
Therefore, we can assume a posterior distribution pθ (z|X), and get pθ (z|X) according to the Bayesian
formula:

pθ (z|X) = pθ (X |z) p (z)
pθ (X)

= pθ (X |z) p (z)∫
ẑ
pθ

(
X |ẑ) p

(
ẑ
)

dẑ
(4)

However, for the denominator in the above formula, it is still necessary to sample a large number
of zj from p (z), so the � parameterized encoder is fit the p�(z|X) distribution to approximate the
pθ (z|X) distribution. In addition, because pθ (X |z) and p (z) both obey the multivariate Gaussian
distribution, it can be obtained that the posterior distribution pθ (z|X) also obeys the multivariate
Gaussian distribution. So:
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p� (z|X) = N
(
z|μ (X ; �), σ 2 (X ; �) ∗ I

)
(5)

However, the neural network cannot backpropagate the sampling function when training the
model through the loss function, so it is necessary to sample an ei from the standard multivariate
Gaussian distribution N(0, I) first, and then calculate zi:

zi = μi + σi � ei (6)

where � represents the element-wise product operation.

This module is trained independently in the entire model, and only the intermediate vector Z needs
to be taken out for subsequent use in this paper. The input to the VAE is ζ t, so that the feature matrix
EL ∈ R

m×D representing the label can be obtained, where D represents the reconstructed statistical
feature vector dimension.

3.3 F-Net: Feature Adaptive Fusion Network

The F-Net needs to complete the extraction of text semantics and fuse it with statistical features
from the V-Net. Due to the scale incompatibility between statistical and semantic features, and the
presence of noise in statistical features. To this end, we designed a Gate-Attention mechanism to assign
weights to statistical features and filter them. After weighted summation, we obtain a feature vector
that can represent the text with high quality. Finally, we will perform vector stitching on both. The
frame diagram is shown in Fig. 2.

First of all, we extract feature vectors of the input text via a bidirectional LSTM [25]. Timing data
wt of the t-th time step will be passed into two LSTM units. Therefore, we can obtain hidden vectors
from both directions of output:
−→yt = LSTM

(−→yt−1, wt

)
(7)

←−yt = LSTM
(←−yt+1, wt

)
(8)

Therefore, we can obtain the final hidden representation of the t-th time step by concatenating
the hidden states from both directions, yt = [−→yt ; ←−yt ] and the future matrix of the entire text, ET =
[y1, y2, . . . , yc], where c denotes the length of text, yc ∈ R

1×D denotes the last hidden state, and D denotes
the dimension semantic features.

We propose a Gate-Attention mechanism that combines statistical features with semantic features.
We regard yc as query, EL as key and value at the same time to implement the attention mechanism.
First, We obtain the attention weight for each el

ε
∈ EL, where EL = [el

1, el
2, . . . , el

m] and el
ε

denotes the
ε-th vector in EL (1 ≤ ε ≤ m).

α′ = [
α′

1, . . . , α′
ε
, . . . , α′

m

]
, α′

ε
= f

(
yc, el

ε

)
(9)

where α′ ∈ R
1×m denotes the attention weight. Besides, f denotes the distance function which is stated

as an element-wise dot product operation in this paper. Then, we obtain α = [α1, . . . , αε, . . . , αm] via
to normalize α′ with the softmax function:

αε = exp
(
α′

ε

)
∑m

i=1 exp
(
α′

i

) , where
∑m

ε=1 αε = 1 (10)

However, in order to reduce the impact of irrelevant labels in understanding text, we have designed
a gate mechanism. Under this mechanism, labels whose contribution cannot reach the threshold will
be released with a weight, and this weight will be assigned to other labels.
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Gate (αε) =
{

(exp(γ ) + 1)αε, αε ≥ sigmoid(ϑ)

0, other
(11)

where γ and ϑ both denote hyper-parameters. Besides, sigmoid(ϑ) denotes the threshold value at
which the contribution meets the requirements and exp(γ ) denotes the compensation of the model for
satisfying the statistical future. Finally, Gate denotes the gate function as a filter to extract necessary
information.

Afterward, we can obtain the attentive representation y′
c through attentive weighted sum as:

y′
c = ∑m

ε=1 Gate(αε)el
ε

(12)

where αε denotes the ε-th dimensional value of α ∈ R
1×m (1 ≤ ε ≤ m).

Thereafter, in order to systematically integrate the vectors about text representation obtained by
these two methods, yC and y′

C are concatenated.

Y = concat
(
yc, y′

c

)
(13)

where Y ∈ R
1×2D represents the direction after concatenating, and this has the advantage of retaining all

information [26]. Then, the potential correlation between yc and y′
c is learned through a fully connected

layer neural network, and its dimension is reduced to D:

y = FC (Y) (14)

3.4 S-Net: Sequence Enhancement Generation Network

After obtaining the feature vector y containing statistical information, it is necessary to parse
it through LSTM and assign appropriate labels. To address the problem of error transmission and
information loss during LSTM parsing, we designed a Dual-end enhancement mechanism to enhance
the information at both the input and output ends of LSTM. The overall structure of the model is
shown in Fig. 3.

Figure 3: S-Net structure diagram

First, we will equally share the feature vector y from the F-Net with each LSTM unit, which can
reduce the erroneous impact of hidden information from the previous layer.

ht = LSTM (ht−1, Lt−1, y) (15)
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where Lt−1 denotes an embedded representation of the label output from the previous layer, t denotes
the t-th time step.

Second, we also enhanced the output of each LSTM unit. We use the Attention mechanism to
refer different labels to different important words. This model will be used to obtain the future matrix
ET from F-Net as query and value, hidden state ht of improved LSTM unit as the key. Therefore, we
can obtain the attention weight representation βt:

βt = Softmax
((

ET
)T

ht

)
(16)

where ET ∈ R
c×D needs to be transposed first. Afterward, we can obtain the attentive representation h′

t

through attentive weighted sum as:

h′
t = ∑c

i=1 βt(i)yi (17)

We will concatenate the h′
t calculated by the Attention mechanism and the hidden state ht of the

LSTM output:

Ht = concat
(
h′

t, ht

)
(18)

Compared to ht, Ht increases the reference to important words in the understanding of labels,
which can reduce the impact of insufficient information transmission at the upper level. After that, Ht

is passed into the fully connected neural network to further learn the deep connection between h′
t and

ht, and the corresponding label is output through the softmax function.

4 Structure
4.1 Dataset Description

This experiment uses two publicly available English datasets, AAPD and RCV1-2, to train and test
the model. Each dataset will be divided into three parts: training set, verification set, and test set. The
AAPD dataset is a collection of 55840 abstracts and corresponding subject categories collected and
collated by Li et al. [6] on the internet, with a total of 54 labels, which can predict the corresponding
subject of academic papers based on a given summary. The RCV1-2 dataset is from a Reuters news
column, compiled and collected by Lewis et al. [27]. With a total of 804414 news stories, each news
story is assigned multiple themes, with a total of 103 themes. The details of the two datasets are given
in Table 1. Including Ntrain training set is the total number of samples, Ntest is testing samples, total L is
the total number of labels, L is label number, average every sample have L̂ is average each label has a
label number, Wtrain is the average number of words, each training set sample Wtest is test sample average
word count.

Table 1: Details of the datasets

Dataset Ntrain Ntest L L L̂ Wtrain Wtest

AAPD 54840 1000 54 2.41 2444.04 163.42 171.65
RCV1-2 781265 23149 103 3.18 729.67 259.47 269.23

To test the effect of the model on texts with different numbers of labels, the label distributions of
AAPD and RCV1-2 were also calculated, and the results were shown in Fig. 4.
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Figure 4: Dataset label distribution

4.2 Experimental Details

We set the sample length of the training set to 500, fill in <pad> if this is not enough, and cut the
rest The AAPD vocabulary is 30,000 in length and the RCV1-2 vocabulary is 50,000 in length. The
word embedding dimension D is set to 256, the length of the V-Net intermediate vector is set to 256,
the length of Bi-LSTM for the F-Net is set to 500, and the length of LSTM for the S-Net is set to
10. To prevent overfitting, the dropout mechanism is used with the drop rate of 0.5. Adam optimizer
was used, and the learning rate was 0.001. Finally, the V-Net is trained separately and the results are
screened for subsequent use.

4.3 Comparison Methods

We compare our proposed method with the following baselines:

• BR [13]: This method converts multi-label classification into multiple binary classification tasks
and trains the binary classifier for each label.

• CC [14]: This method converts multi-label classification into a chain binary problem.
• LP [15]: Treats each label combination as a new class and transforms the MLTC problem into

a multi-class classification.
• CNN-RNN [16]: The model uses CNN to capture local features of text, RNN to capture global

features, and finally fuses into a feature vector that contains both types of information.
• SGM [5]: The method is a sequentially generated model that uses the LSTM-based Seq2Seq

model with an attention mechanism, while the decoding phase uses global embedding to obtain
inter-label dependencies.

• SGM with Global Embedding (SGM-GE) [5]: Employs the same sequence-to-sequence model
as SGM with a novel decoder structure to tackle the MLTC problem.

• Seq2Set [17]: Improvements have been made to SGM, including a Set Decoder module to reduce
the impact of mislabeling.

• Multi-Label Reasoner (ML-Reasoner) [28]: This model designs a multi label classification
algorithm based on reasoning, reducing the dependence of the model on label order.

• Seq2Seq Model with a Different Label Semantic Attention Mechanism (S2S-LSAM) [29]:
This model generates fusion information containing label and text information through the
interaction between label semantics and text features in the label semantic attention mechanism.

• Spotted Hyena Optimizer with Long Short Term Memory (SHO-LSTM) [30]: The Spotted
Hyena Optimizer algorithm is used to optimize the LSTM network.

• MLC-LWL [18]: This model uses the topic model of labels to construct effective word-by-word
label information and combines the label information carried by words with the label context
information through a gated network.
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• Label-Embedding Bi-Directional Attentive (LBA) [31]: The paper proposes a Label-Embedding
Bi-Directional Attentive model by fully leveraging fine-grained token-level text representations
and label embeddings.

• Counter Factual Text Classifier (CFTC) [32]: The paper achieves causality-based predictions by
eliminating correlation bias in MLTC tasks, significantly improving the model’s performance,
and effectively eliminating correlation bias in the datasets.

4.4 Experimental Results

4.4.1 Comparative Experiments

We compared the proposed the VFS model with all baseline models on the AAPD dataset and the
RCV1-2 dataset, and the results are shown in Table 2. The results show that our proposed model has
achieved excellent performance, with the best performance in three indicators. On the AAPD dataset,
our proposed the VFS model achieves a reduction of 5.55% hamming-loss and an improvement of
1.41% micro-F1 score over the best model MLC-LWL in baselines. Although our model is 7.03% micro-
precision score less than MLC-LWL, achieves an improvement of 2.17% over the model SHO-LSTM.
We get the results of the proposed method and the baselines on the RCV1-2 test set. Similar to the
experimental results on the AAPD test set, the VFS model achieves a reduction of 8.22% hamming-
loss and an improvement of 0.68% micro-F1 score over the model MLC-LWL. Based on these results,
the significant advantages of our proposed model can be fully demonstrated. Where HL, P, R and F1
denote hamming-loss [33], micro-precision, micro-recall and micro-F1 [34]. In addition, the symbol
“+” denotes that the higher the value is, the better the model performs. The symbol “−” and the
symbol “+” indicate opposite meanings.

Table 2: Comparison between our methods and all baselines on two datasets

Models AAPD RCV1-2

HL (−) P (+) R (+) F1 (+) HL (−) P (+) R (+) F1 (+)

BR 0.0316 0.644 0.648 0.646 0.0086 0.904 0.816 0.858
CC 0.0306 0.657 0.651 0.654 0.0087 0.887 0.828 0.857
LP 0.0312 0.662 0.608 0.634 0.0087 0.896 0.824 0.858
CNN-RNN 0.0278 0.718 0.618 0.664 0.0085 0.889 0.825 0.856
SGM 0.0251 0.746 0.659 0.699 0.0081 0.887 0.850 0.869
SGM-GE 0.0245 0.748 0.675 0.710 0.0075 0.897 0.860 0.878
Seq2Set 0.0247 0.739 0.674 0.705 0.0073 0.900 0.858 0.879
ML-Reasoner 0.0238 0.761 0.684 0.720 0.0081 0.912 0.847 0.878
S2S-LSAM 0.0238 0.762 0.673 0.715 0.0072 0.893 0.869 0.881
SHO-LSTM 0.0248 0.737 0.684 0.710 0.0079 0.897 0.862 0.880
MLC-LWL 0.0234 0.810 0.633 0.711 0.0073 0.910 0.854 0.881
LBA 0.0228 0.774 0.669 0.718 0.0073 0.900 0.859 0.880
CFTC 0.0237 0.770 0.666 0.714 0.0074 0.893 0.861 0.880
VFS (ours) 0.0221 0.753 0.691 0.721 0.0067 0.906 0.869 0.887
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4.4.2 Ablation Experiment

In addition, we used the classic model SGM in the field of MLTC as the baseline model, and
compared the Encoder of the SGM model with VF and Decoder with S-Net, respectively. The results
are shown in Fig. 5. From the figure, it can be seen that replacing Encoder with VF and Decoder with
S-Net can improve the effect of the SGM model, and the combination of VF and S-Net has the best
effect. This fully demonstrates the respective effectiveness of VF and S-Net.

Figure 5: Comparison diagram of ablation experiment

4.4.3 Analysis of Label Length Impact

In order to explore the impact of label length on experimental results, we selected samples with
label lengths of 2 to 7 from the RCV1-2 test set and tested them on models SGM and VFS, respectively.
The results are shown in Fig. 6. From the figure, it can be seen that both models achieve optimal
results when the label length is 3, whether it is HL or F1. Since then, as the label length increases, the
model effect has become worse, indicating that the longer the label length, the greater the difficulty
of classification. However, it can also be seen that the performance degradation of the VFS model is
lower than that of SGM when faced with an increase in labels. This indicates that the VFS has better
robustness than SGM.

4.4.4 Analysis of Attention Weight Distribution

The S-Net model can allow words that contribute more to the semantics of text to receive more
attention and give them greater weight. At the same time, the weight can also reflect differences when
faced with different labels. The thermal distribution table of the attention weight section is shown in
Table 3. From Table 3, it can be seen that when the VFS model predicts the “cs.CV” label, the words
“visual” and “movie” have gained more attention from the model, while when predicting the “cs.CL”
label, the words “presence”, “LSTM”, and “verb” have gained more attention from the model. This
shows that our proposed model can automatically assign greater weight to words that can contribute
more semantic information, and there are differences in the consideration of different labels and key
words in the text.
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Figure 6: Comparison of effects on labels of different lengths

Table 3: Visualization of attention weight distribution

cs.CV cs.CL

We show how to learn robust visual
classifiers from the weak annotations of the
sentence descriptions based on these visual
classifiers.

We show how to learn robust visual classifiers
from the weak annotations of the sentence
descriptionss based on these visual classifiers.

We learn how to generate a description using
an LSTM. We explore different design
choices to build and train the LSTM.

We learn how to generate a description using an
LSTM. We explore different design choices to
build and train the LSTM.

We argue that it is important to distinguish
verbs, objects, and places in the challenging
setting of movie description.

We argue that it is important to distinguish
verbs, objects, and places in the challenging
setting of movie description.

5 Conclusion

In this paper, we propose a novel fusion strategy that combines statistical features with semantic
features in a high-quality manner to solve the problem of mismatching between statistical and
semantic features in terms of scale and dimension. Secondly, we propose an information enhancement
mechanism to effectively alleviate the problems of information loss and incorrect transmission in
LSTM networks. A large number of experimental results show that our proposed model is significantly
superior to the baseline. Further analysis shows that our model can effectively capture the semantic
contributions of important words. In future work, we plan to explore additional types of statistical
features and apply them to tasks such as named entity recognition and even image classification.
Although our proposed model can alleviate the impact of the increase in the number of labels to
some extent, it is still difficult to cope with the prediction task of a large number of labels. Further
exploration is needed in this area in the future.
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