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ABSTRACT

The detection of large-scale objects has achieved high accuracy, but due to the low peak signal to noise ratio
(PSNR), fewer distinguishing features, and ease of being occluded by the surroundings, the detection of small
objects, however, does not enjoy similar success. Endeavor to solve the problem, this paper proposes an attention
mechanism based on cross-Key values. Based on the traditional transformer, this paper first improves the feature
processing with the convolution module, effectively maintaining the local semantic context in the middle layer, and
significantly reducing the number of parameters of the model. Then, to enhance the effectiveness of the attention
mask, two Key values are calculated simultaneously along Query and Value by using the method of dual-branch
parallel processing, which is used to strengthen the attention acquisition mode and improve the coupling of key
information. Finally, focusing on the feature maps of different channels, the multi-head attention mechanism is
applied to the channel attention mask to improve the feature utilization effect of the middle layer. By comparing
three small object datasets, the plug-and-play interactive transformer (IT-transformer) module designed by us
effectively improves the detection results of the baseline.
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1 Introduction

The object detection model has achieved fruitful research results and has been widely used in
production, life, and other fields, significantly improving efficiency. However, these detection models
still face challenges from small object detection tasks. As shown in Fig. 1, the model has more false
detections and missed detections of small objects. There are three main reasons for this result: first,
the small object lacks distinguishable and significant features, the second is that the small object
is easy to be obliterated in the surrounding environment, and the third is that in the deep neural
network, pooling, normalization, label matching and other modules will gradually attenuate the
relevant features of the small objects layer by layer, resulting in the lack of relevant information at
the detection head [1,2]. The combined effect of these factors leads to the poor detection results of
traditional models on small objects.
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Figure 1: Small object detection. The traditional first-stage and second-stage object detection models
cannot effectively deal with unfavorable factors such as object occlusion, environmental interference,
and small object size, resulting in easy misdetection and missed detection. The improved model with
the addition of the IT-transformer effectively overcomes these challenges

To solve this problem, models such as multi-scale pyramid [3–5] and feature pyramid [6–8] are
used to process object features at different scales, that is to improve the detection accuracy of small
objects by hierarchical processing and end fusion. Another approach is to use larger feature maps [1,9],
such as [1] adding P2 layer features with less loss of feature information to the neck module, which
effectively improves the available features of small objects; On the contrary, larger feature maps lead
to slower inference speed; Focus [10] proposed a method of slice, which retains as many small object
features as possible without compressing the size of the input image; The you only look once (YOLO)
[11,12] models add data augmentation strategies, such as mosaic to diversify images in a wider range
to improve the contribution of small objects to training loss. In [13,14], the method of deformation
convolution is used to change the position of the convolution kernel and guide the convolution kernel
to extract the characteristics of a more accurate position. Other studies have proposed the addition of
the attention mechanism [15–17], by adding an attention mask representing the importance of each
region, to improve the attention of the model to different regions during processing, and effectively
suppress the noise of irrelevant regions. At present, the attention mechanism model represented by
the transformer [18] shines in many image processing tasks [19–21] and has received more and more
attention with its unique feature processing methods.

In summary, in terms of the actual task requirements, based on the transformer attention
mechanism, to fully construct the global and local semantic context of the avatar, we propose an
IT-tansformer attention mechanism to solve the detection problem of small objects. Specifically, the
traditional transformer adopts the calculation method based on the fully connected layer, resulting
in a heavy number of parameters, extremely high requirements for hardware, and insufficient local
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semantic characteristics due to the serialized data processing mode. Second, in the multi-head attention
mechanism, the query (Q), key (K), and value (V) are obtained separately. That is to say, they do not
explore Q and K deeply, nevertheless, the poorly explored relationship between each other weakens the
effectiveness of attention masking. To solve these two problems, we design an interactive transformer
module that can be plug-and-play. In detail, based on the previous research, we first replace the fully
connected layer with a 2D convolution module, use the characteristics of shared weight to provide
evidence, reduce the number of overall parameters of the model, realize the lightweight processing
of the model, and at the same time, improve the local context between the associated regions with
the help of the local field of view of the convolution module. Then, to further enhance the feature
representation ability of the middle layer and improve the accuracy of the attention mask, a feature
processing method based on cross-fusion K is proposed, and the coupling relationship in the features
of the middle layer is highlighted by fusing the K of the Q and V bidirectional branches, to improve
the model’s attention to detailed information. Finally, unlike the fully connected layer to calculate the
interaction effect between each pixel, we focus on the features between different channels, to maintain
the consistency of the global spatial position relationship of the features, and effectively improve the
feature representation of objects at each scale by applying channel-level multi-head attention to the
features of the middle layer.

In summary, our main contributions are:

1. The object detection model based on the IT-transformer is proposed. From the perspective of
improving the utilization efficiency of features in the middle layer, the dual-branch model is used to
extract the key values of features and provide more effective comparison features for the attention
module through cross-fusion. At the same time, to suppress the interference of noise channels, the
multi-head attention mechanism is applied to the generation and optimization of channel attention
masks, which significantly improves the differentiation of the characteristics of the middle layer.

2. A new small object detection dataset was collected and organized. Given the existing small
object detection data set, the types of objects are mostly common objects, and the object acquisition
angle and the scene are simple, etc. At the same time, to expand the application of intelligent detection
algorithms in the military field, we collect and sort out an Armored Vehicle dataset with diverse
viewing angles, variable distances, and complex scenes through network collection and unmanned
aerial vehicle (UAV) shooting, and carry out experiments on small object detection models in it.

3. Extensive experimental comparisons and self-ablation experiments were carried out to verify the
effectiveness of the module. The results show that the proposed IT-transformer can realize plug-and-
play in the first-stage and second-stage detection models, which can effectively improve the detection
accuracy of the baseline model. In the three datasets of Armored Vehicle, Guangdong University of
Technology-Hardhat Wearing Detection (GDUT-HWD), and Visdrone-2019, the mAP was improved
by 2.7, 1.1, and 1.3 compared with the baseline, respectively.

2 Structure
2.1 Object Detection

Object detection models based on deep learning have been fully developed, and they are mainly
divided into four branches: first, first-stage detection models, with YOLO [11,12,22,23], single shot
multibox detector (SSD) [24], and Retina [25]. They integrate region of interest (ROI) generation and
final result prediction, with faster image inference speed; Then there is the second-stage detection
model, represented by Faster region-based convolutional network method (Faster RCNN) [26],
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Cascade RCNN [27], etc. Their main feature is to set a separate module for more accurate ROI
extraction, and the addition of ROI alignment makes the detection accuracy of the object significantly
improved; The third is the transformer-based detection model, such as vision transformer (ViT) [19],
detection transformer (DETR) [21], DETR with improved denoising anchor box (DINO) [28], etc.
Represented by the addition of transformers, they integrate the addition of transformers into object
detection tasks, breaking the previous situation of convolutional modules in the image field, and
with the unique attention mechanism in transformers, the detection accuracy of such models quickly
catches up with a series of traditional state of the art (SOTA) models; The fourth is the detection
architecture based on the diffusion model [29–31]. Based on the diffusion model, they regard the
positioning problem of the object as the iterative diffusion process from a random noise vector to
the true value and complete the detection task of the object through cascade alignment. In this paper,
we first take the second-stage detection model Cascade RCNN as the benchmark to make full use of
the characteristics of the distributed model structure. At the same time, to further improve the model
performance, we also integrate the transformer attention mechanism to achieve the organic integration
of the two. Guided by the plug-and-play idea, we have designed an interactive attention module that
can adapt to the existing first-stage and second-stage detection models, which can effectively improve
the detection performance of the baseline model.

2.2 Small Object Detection

Small object detection is an important part of the computer vision task. According to the
definition of the COCO dataset, when the object size is less than 32 × 32 pixels, the object can provide
very limited feature information, resulting in increased detection difficulty. To solve this problem,
there are currently four main ideas: first, increase the size of the input image [9,10], so that the feature
can remain relatively stable, but too large input size will lead to a significant decrease in inference
speed, which is not suitable for scenarios with high real-time requirements; The second is the data
augmentation strategy [32,33], represented by the mosaic and generative adversarial network (GAN).
In the data preprocessing stage equipped with mosaic, through controllable parameter adjustment,
the proportion of small objects in all training instances in the training process is increased, and the
parameter update process dominated by large-size objects in the past is improved. In [34], GAN
synthesis and diversification of small objects are used to increase the number of positive samples in the
training process; Third, the multi-scale training and testing strategy [6,35,36] is adopted to improve
the consistency detection ability of the model for objects at each scale by changing the input image
size within a large range. The fourth is to add an attention mechanism [2,17,37], which improves the
attention of the model to specific regions and objects by additional calculation of attention masks that
indicate the importance of pixels. Starting from the perspective of improving the attention of the model,
this paper proposes an interactive attention mechanism. With the help of the IT-transformer, the
model can effectively represent the importance of the feature under the single-scale training strategy,
to improve the accuracy of the small object.

2.3 Transformer

Transformer [18] was originally used to process serialized text data and made its mark in the
natural language processing (NLP) field. ViT [19] converts image data into serialized data composed
of multiple pixel blocks for the first time, and then performs image classification and detection tasks
in the way of transformers, opening the way for transformers to expand into the image field. Based
on the transformer architecture, many excellent models have emerged, such as DETR [21], and Swin
transformer [20]. The main feature of the transformer is the feature processing method based on



CMC, 2023, vol.77, no.2 1703

mutual attention between tokens, which covers the global semantic information in a single position,
which greatly improves the accuracy of the model inference results. However, under the single scale
setting, the transformer controls the number of model parameters by dividing the specified number of
tokens, but it still produces significantly higher parameters than the convolution module. Because of
the serialized image, the semantic relationship between adjacent tokens is broken. Experiments show
that when the dataset is small, the transformer-based model is difficult to effectively learn the effective
interrelationship matrix, resulting in low performance. This paper uses the attention mechanism in the
transformer to improve the cross-K value by integrating the middle-layer features. Furthermore, by
integrating the convolution module, we strengthen the semantic correlation between tokens, to improve
the performance of the model in the smaller dataset.

3 Method

In this part, first, we briefly introduce the relevant content of traditional transformers and then
introduce the structure and optimization indicators of IT-transformers in detail.

3.1 Revisiting Transformer

Transformer is a deep neural network model based on an encoder and decoder, and its core content
is the construction of the attention mechanism. Thanks to the globally encoded token, the transformer
uses fully connected modules to ensure that each token has a broad field of view and a full range of
connection relationships, which ensures better performance in advanced visual tasks such as object
detection and segmentation. The transformer attention mechanism is based on the calculation process
of the matrix, specifically, the calculation of Q, K and V based on the characteristics of the middle layer,
and then transpose and multiply the three. The interrelationship matrix reflecting the importance of
each token is obtained, that is, the attention mask. The structure of a traditional transformer is shown
in Fig. 2.

Figure 2: The traditional transformer

Suppose the input characteristics are X ∈ RC×H×W that in the traditional transformer calculation
process, it is necessary to first normalize the flattened two-dimensional matrix of X (X ′ ∈ RC×HW ), and
then multiply it with three weight matrices (WQ, WK · WV ), representing fully connected operations to
obtain the representation of Q, K, and V, where Q is calculated by:

Q = X ′ × WQ (1)

K and V are calculated similarly. In particular, to ensure the unbiased nature of the extracted
features, the bias coefficient needs to be set to zero when processing with a fully connected matrix.

Then, by transposing each multiplication of Q and K, the correlation matrix between the two is
obtained. Finally, the softmax activation function is used to normalize it to (0–1), that is, the spatial
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attention mask reflecting the importance of each token is obtained. The calculation process is:

Attention = Softmax(Q × K ′) (2)

Under multi-head attention, several such attention matrices can be calculated at the same time.
Next, these matrices are integrated by stitching and merging. At last, the hop connection method
is used to weighted fusion with the input features to obtain the feature map optimized by attention
masking, and send it to the subsequent detection module. Its calculation formula is:

Xout = X + (X ′ · Attention).reshape(C, H, W) (3)

In this process, since the calculation of Q, K, and V uses a fully connected layer module,
its parameter quantity is (CHW)2. The increased parameters will lead to a decrease in training
efficiency, increased energy consumption, and other problems. Therefore, many jobs are faced with the
problem of controlling the number of overall parameters of the model when designing and deploying
transformer models.

In addition, it is worth noting that the calculation and processing of Q, K, and V are the core
content of the transformer and directly determine the effectiveness of attention masking. However,
traditional transformers are only processed through 3 separate fully connected layers. Q, K, and V are
the basis for calculating attention masks, so it is necessary to explore their processing methods in more
depth to improve the accuracy of attention masks.

3.2 IT-Transformer

The overall structure of the IT-transformer is shown in Fig. 3. The research shows that the
transformer structure is different from the traditional convolution-based model. In feature processing,
due to the lack of the local field of view, the transformer-based architecture cannot complete the
acquisition of local semantic context, which will significantly affect the detection performance of the
model when the training dataset is small. In addition, as we introduced earlier, transformers widely use
the fully connected layer to calculate the characteristics of the middle layer, resulting in a large number
of parameters. In this regard, referring to the research results of many existing structural convolutions
and transformers, to balance the number of parameters and the demand for attention mechanisms, we
design Q, K, and V calculation methods based on convolutional modules. First of all, through weight
sharing, the convolution module can effectively use the local correlation semantic context between
adjacent pixels, that is, the local field of view of the convolution kernel. On the other hand, it can
significantly reduce the parameters.

Figure 3: The IT-transformer

Taking the calculation of Q as an example, the traditional transformer middle layer features
donated as X, and C, H, and W is 1024, 64, 64, 64, respectively, so its parameter quantity is:
Param(Qtransformer) = (1024 × 64 × 64)2. In IT-transformer, when the 3 × 3 convolution kernel module is
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used to obtain Q, K, and V, the parameters are: Param(QIT−transformer) = (1024 × 9)2. It can be seen that
through this lightweight design, the number of parameters of the IT-transformer module has nothing
to do with the size of the middle layer features, and the number of parameters is reduced by a factor
of (64 × 64/9)2 compared with the fully connected method in Fig. 2. The number of parameters is
greatly compressed, which helps to improve the efficiency of model training and reduce the hardware
requirements of the model.

At the same time, to further strengthen the connection between Q, K, and V, we use synchronous
calculation. As can be seen from Fig. 3, Q and K1, K2 and V are calculated by the same convolution
module, and then through channel splitting, we get Q, K, and V with more close coupling effects.

Q, K1 = chunk(ConvKQ(X), dim = 1) (4)

K2, V = chunk(ConvKV(X), dim = 1) (5)

By setting up the dual branch, we obtain K rooted in Q and V, and it can be said that
the extracted features K1 · K2 contain more explicit cross-coupling features, which provide richer
sampling information for attention calculations. When calculating attention, according to the unified
requirements of the transformer architecture, we get the key feature expression after crossover, namely:

KIT = K1 + K2 (6)

We also use multi-head attention to complete the analysis from multiple different dimensions, and
fully use the characteristics of the middle layer, to achieve the purpose of improving the effectiveness
of attention masking. First of all, we know that the contribution of different channel feature maps
is different, some feature maps are accurately extracted to the decisive features, while other channels
may introduce noise. If the characteristics of each channel are set to the same weight, it will inevitably
affect the final judgment of the model. Therefore, under the premise that the convolution module has
been used to extract the local semantic context of the feature map, we pay more attention to which
channel features have a more important position in the multi-head attention. Therefore, unlike the
way the transformer module focuses more on spatial attention, IT-transformer focuses on different
channels. Under the bullish attention mechanism, we divide Q, K, and V into subsets according to the
number of heads N, where Qsub ∈ R

C
N ×H×W , KIT−sub ∈ R

C
N ×H×W , Vsub ∈ R

C
N ×H×W .

The computational focus of attention also becomes the acquisition channel-level attention mask,
which is calculated as follows:

Attentionchannel = Cat(Vsub · Soft max(KIT−sub · Q′)) (7)

We obtain the mask that reflects the attention of each group of channels by parallel computing,
and then we also use the splicing method to obtain the attention mask that reflects the features of all
the intermediate layers, among them Attentionchannel ∈ RC×C. Finally, by adding the input of the module
by jumping the connection, the feature representation of the middle layer is further strengthened, and
the enhanced feature map is obtained.

Xout = X + Attentionchannel (8)

3.3 Loss Function

We detail the structure and working process of IT-transformers. In fact, in the detection task of
small objects, to improve the overall detection accuracy of the model, we add the P2 level feature map
refer to [1,9] and detect small objects in the large-size feature map. Here, using Cascade RCNN as the
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baseline, we design an IT-transformer-enhanced small object detection model, the overall structure of
which is shown in Fig. 4.

Figure 4: The improved Cascade RCNN with IT-transformer

It can be seen that the IT-transformer can be plugged directly into the back end of the feature
pyramid network (FPN), which also means that the IT-transformer can achieve a plug-and-play effect.
In this regard, we conducted experimental verification in Section 4.6, showing the wide utility and
effectiveness of the IT-transformer.

As shown in Fig. 4, this paper selects Cascade RCNN [27] as the baseline model, and builds the
object detection model by inserting IT-transformer into it, so its loss function is mainly composed of
2 parts, and its calculation formula is:

L = LRPN + LROI (9)

Among them, the LRPN model makes the initial judgment of the object presence and position of
the feature map, which is composed of binary classification Lobject loss and location regression loss Lloc,
specifically:

Lobject = − log
[
pip

′
i + (1 − pi)(1 − p

′
i)
]

(10)

Lloc = λ · 1
Nreg

p
′
i · Lreg

(
bi, b

′
i

)
(11)

where i represents the serial number of the anchor, pi is the probability that the i-th anchor has an
object, p′

i
is the label assigned by the first anchor (1 when containing the object, otherwise 0), Nreg is the

total number of valid object boxes currently predicted by the model, bi is the number the coordinates
of the object position predicted by the i-th anchor, similarly, b′

i are the real coordinates assigned by the
i-th anchor containing the object, which is λ the adjustment coefficient of loss, which is set to 1.0 by
default according to mmdetetion1.

So far, we get a series of ROIs. Then, the L1 loss fine-tuning object location box is used, which is
calculated as:

Lloc [f ] =
N∑

t=1

Lreg (f (xi, bi) , gi) (12)

where f (xi, bi) is the positional regression function, which is used to regress the candidate bounding
box bi to the object bounding box gi. In fact, due to the fine-tuned regression method using cascading

1https://github.com/open-mmlab/mmdetection

https://github.com/open-mmlab/mmdetection
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f , it consists of phased progressive functions, specifically:

f (xi, bi) = fT ◦ fT−1 ◦ · · · f1(x, b) (13)

in this paper T = 3, the regression position is fine-tuned under three conditions.

Further, in the t first stage, the position L1 loss function based on the calculation formula is as
follows:

Lreg =
Nreg∑
i=1

{
ci, IOU(x, g) > u
0, otherwise

(14)

where ci represents the object class vector predicted by the anchor when the intersection over union
(IOU) exceeds the threshold.

Finally, we use the cross-entropy loss function Lclass = −
M∑

i=1

(
ci log c′

i + (1 − ci) log
(
1 − c′

i

))
to

calculate the category loss of the object, and then the total loss function is as follows:

L = Lobject + Lloc + Lloc[f ] + Lclass (15)

4 Experiments

For small object detection tasks, GDUT-HWD2, Visdrone-20193, etc., are available public bench-
mark datasets. To fully verify the effectiveness of the IT-transformer, we compare 8 typical algorithms
in the above two datasets. In addition, we have built our own dataset of ground objects in the military
field and conducted comparative experiments in it. The distribution of objects of each scale in the
three datasets is shown in Fig. 5, and it can be seen that the Armored Vehicle dataset we collected and
sorted out has similar instance distribution characteristics to the other two, which are composed of
small and medium-sized objects, which has great detection difficulty.

Figure 5: The distribution of three used datasets

4.1 Datasets

Armored Vehicle: We collected, organized, and annotated 4975 images through online searches
and local shooting. In the dataset, there are 10250 labeled boxes, and we use 3920 as the training set,
which contains 8022 instances, and the remaining 1057 as the validation set, containing 2210 instances.
There is only one type of object in the dataset, and its size distribution is shown in Fig. 5. We label

2https://github.com/wujixiu/helmet-detection/tree/master/hardhatwearing-detection
3https://github.com/VisDrone/VisDrone-Dataset

https://github.com/wujixiu/helmet-detection/tree/master/hardhatwearing-detection
https://github.com/VisDrone/VisDrone-Dataset
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the data in a coco format to ensure that it can be used directly for multiple training architectures. The
difference is that in the Armored Vehicle dataset, the object’s viewing angle, distance, environment,
scale, weather, and other characteristics are more complex, making it more difficult to detect small
objects.

GDUT-HWD [38]: This is a very common hard hat detection dataset in industrial scenarios,
containing 3174 training images, consisting of 5 types of labeled boxes, which is a lightweight
benchmark for small object detection.

Visdrone-2019 [9]: This is a small object dataset of large scenes from an aerial perspective,
consisting of 10209 images and 2.6 million annotation boxes, which can be used to test the detection
performance of the model on small objects, and at the same time can test the efficiency of model
reasoning. Due to its large image size, we divide each image into 4 non-overlapping subplots
concerning [39].

4.2 Metrics

We select mean average precision (mAP), APs, APm, and APl commonly used in object detection
tasks as evaluation indicators and precision and recall are the basis for calculating each value. AP is
the area around the precision-recall (P-R) curve and the coordinate axis, and its calculation formula
is:

AP =
∫ 1

0

P(x)dx (16)

For datasets with multiple class objects, mAP is the average of APs across all classes, expressed as:

mAP = 1
c

c∑
i=1

APi (17)

APs refer to objects with a size of less than 32 × 32, and in the same way, APm and APl correspond
to 96 × 96, and 128 × 128, respectively. In the course of the experiment, we also calculate the evaluation
results of mAP50 concerning the practice of [1,9], which means the mAP is calculated when IOU = 0.5.

4.3 Settings

All experiments in this paper are based on the mmdetection architecture, which ensures the
fairness and reproducibility of the test. In the experimental process, we adopt a single-scale training
strategy, and the input image size is uniformly limited to 640 × 640 (the Visdrone-2019 dataset is set to
1280 × 960), and only random flipping is used for data augmentation in the data preprocessing stage.
For the learning rate and the number of detection heads, we determine through a grid search, which
is described in Section 4.6. In the following experiment, learning rate (lr) is 4E-2 and N is 8 in the
following experiment. Other parameters refer to the default settings of mmdetection.

4.4 Results in the Armored Vehicle Dataset

The experimental results are shown in Table 1, from which it can be seen that the improved
IT-Cascade-RCNN model achieves higher detection accuracy. The longitudinal comparison shows
that IT-Cascade-RCNN improves 14.8 mAP compared with the typical first-order detection model
YOLOx and 12.8 mAP compared with the typical second-order model Sparse. In particular, IT-
Cascade-RCNN also achieved better results than DINO and DiffusionDET which based on diffusion
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models, exceeded 4.5 and 4.4 mAP. Furthermore, the IT-transformer also surpassed another attention-
based model, named adaptive training sample selection (ATSS) [40], 6 mAP in a word. It is worth
noting that under the AP50, although the DINO and DiffusionDET model achieved higher detection
results, the performances have not been well extended to other threshold conditions, and they failed
to balance between various early warning restrictions, object detection accuracy, and false alarm rate.
In contrast, IT-Cascade-RCNN provides better results at various IOU thresholds. Further, we find
that the accuracy of IT-transformer for large objects has decreased, because we have integrated global
features and local features in the middle features of IT-transformer, resulting in the introduction of
interference in some environmental information brought by local semantic features, resulting in a
smaller APl.

Table 1: The metrics in armored vehicle dataset

Model mAP AP50 APs APm APl

Retina 44.5 84.1 24.2 51.2 54.2
Sparse RCNN 44.6 81.6 30.1 50.4 54.8
YOLOv3 42.7 82.4 38 49.9 59
YOLOx 42.6 80.1 29.5 49.6 47.9
ATSS 51.4 87.3 34.4 57.1 69.1
DINO 52.9 89 36.1 58.8 69.7
DiffusionDET 53 89 40.2 57 62.1
Cascade RCNN 54.7 87.3 38.5 60.1 70.6
+IT-transformer 57.4 88 41 63.5 68.4

Fig. 6 shows the visualization of the detection results of each model in the Armored Vehicle
dataset. Fig. 6 can more clearly show the detection effect of the five models, from which we can see that
in the first line of images, Retina, YOLOx and DINO have serious false alarm problems, identifying
non-existent areas as objects, while Faster RCNN fails to detect objects at all, and the improved model
with cross-attention mechanism correctly detects objects; In the second line, Retina, Faster RCNN,
and YOLOx also have the problem of missing detection, although DINO detects all objects, but the
precision measurement accuracy is not as high as the improved model; Similarly, when the object in the
third row is partially occluded, although the first three models are correctly positioned to the object,
the detection accuracy does not reach a higher level, but unfortunately, DINO missed an object at
this time; The fourth line shows the level difference between the models more vividly, when the object
is obscured by smoke and dust, resulting in the object feature being disturbed, Retina, YOLOx and
DINO fail to detect the object, and the Faster RCNN obtains less accurate detection results, compared
to the improved Cascade RCNN model showing accurate results.

4.5 Results in the GDUT-HWD Dataset

We also perform experiments in lightweight GDUT-HWD datasets to test the ability of the IT-
transformer to deal with small object detection in industrial scenarios, and the experimental results
are shown in Table 2. From this, we found that IT-Cascade-RCNN also showed good performance
advantages, improving by 14.1 mAP compared with the typical first-order detection model YOLOx,
16.9 mAP compared with the second-order detection model represented by sparse, and 13.3 mAP
higher than the DINO based diffusion model. Among the more challenging small-scale object
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detection results, IT-Cascade-RCNN also achieved the highest detection accuracy of 34.3, which is
2.1 higher than the benchmark Cascade-RCNN. In summary, the results show that IT-transformer
can effectively improve the detection performance of the model.

Figure 6: Detection results (green circles indicate missed detections and yellow circles indicate false
detections)

Table 2: The metrics in GDUT-HWD dataset

Model mAP AP50 APs APm APl

Retina 34.9 59.1 18.2 48.5 58
Sparse RCNN 33.4 56.5 20.3 44.5 53.4
YOLOx 36.2 67.9 22.2 47.9 52.8
YOLOv5 40.5 75.6 26.8 52 57.1
YOLOv7 34.5 70.8 24.1 47.1 37.2
DINO 37 69.8 19.3 50.1 65.6
Cascade RCNN 49.2 79.7 32.2 62.5 70.8
+IT-transformer 50.3 80.8 34.3 63.1 70.6

Fig. 7 is the visualization of some model detection results, and it is found that Retina, Faster
RCNN, YOLOx, and DINO have serious missed detection problems, and none of them can detect the
object marked by the green circle in the Fig. 7. At the same time, Retina and Faster RCNN also have the
problem of false detection, and they misjudge the object category marked by the yellow circle; Finally,
Faster RCNN also has the problem of duplicate detection, and the object marked by the blue circle in
the duplicate detection figure is repeated; Among the detected objects, the improved Cascade RCNN
model has a higher degree of confidence. On the whole, the model improved by the cross-transformer
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shows better performance, which effectively improves the detection accuracy of the model for small
objects.

Figure 7: Detection results (green circles indicate missed detections, yellow circles indicate false
detections and blue circles indicate retests)

4.6 Ablation Experiments

The IT-transformers we design are mainly affected by factors such as learning rate, normalization
layer, number of detection heads, etc., to test their impact on precision measurement accuracy more
reliably, we carry out ablation experiments on them separately in this part.

4.6.1 The Impact of lr

We use the grid search method to test the influence of different learning rates on the detection
accuracy of the model. During the experiment, we sampled 15 learning rates from 1E-3 to 5E-2 and
experimented in the GDUT-HWD dataset, and the relevant results are shown in Fig. 8.

Observing the experimental results in Fig. 8, it is first confirmed that the difference in learning
rate does have a great impact on the detection accuracy of the model, for example, with the increase of
the learning rate, the detection accuracy of the model shows an upward trend. Furthermore, it can be
seen that when lr is set to 4E-2, the model achieves the highest results, reaching 48.9 mAP. Therefore,
in the full text, we set the lr to 4E-2.
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Figure 8: The impact of lr

4.6.2 The Impact of Head Number

The bull attention mechanism determines how many angles the interrelationships between features
need to be extracted, and we know that the number of attention heads is not as many as possible, and
vice versa. Our ablation experiments confirmed this as well. As shown in Table 3, it can be seen that
when the number of detection heads is small, an effective attention mask cannot be generated, resulting
in an interaction between feature maps, which cannot provide more effective feature information
for the detection head, and when the number of attention heads is too large, too much redundant
information will be introduced, which will also weaken the expression ability of features. From the
experimental results, when the head number is 8, the model performs better.

Table 3: The results of different numbers of head

Head mAP AP50 APs APm APl

2 48.1 79.2 32.1 61.2 68.3
4 48.1 79.2 31.8 61.2 69.3
6 48 79.5 31.4 61 69.2
8 48.9 79.8 33 62 69.1
10 48.3 79.3 32 61.6 69
12 48.6 79.6 33.2 61 68.8

As shown in Table 4, we also experiment with the normalization layer in the transformer. The
results show that the model performs better when the normalization layer is not used. We believe
that the possible reason is that the normalization operation affects the representation of the middle-
layer features, and when the normalization operation is carried out, the features are compulsorily
concentrated on some prior knowledge, which weakens the ability of the model to rely on its ability to
induct effective bias, drowns the middle-layer features that have a direct impact on the detection results,
and causes the model detection accuracy to decline. On the contrary, by reducing the constraints of
prior knowledge on the model learning process, and more through self-learning guidance, the model
can more effectively learn the universal characteristics of different object features, to achieve more
accurate detection in the detection process.
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Table 4: The impact of normalized layer

Norm mAP AP50 APs APm APl

LN 48.8 79.9 32.9 61.9 69.1
BN 48.4 79.8 32.2 61.5 68.8
None 48.9 79.8 33 62 69.1

4.6.3 The Impact of Kernel Size

IT-transformer better integrates the ability of convolutional modules to obtain local semantic
features. In fact, local semantic features can provide more environment and reference information for
the identification of small objects, and help achieve accurate classification and positioning. In order
to determine a more suitable field of view, in this part, we conducted a comparative experiment on the
size of the convolution kernel in the Armored Vehicle dataset, and the results are shown in Table 5.

Table 5: The impact of kernel size (ensure that the size of the output feature map remains unchanged)

Kernel size mAP AP50 APs APm APl Parameters (G) TFlOPS

Size Stride Padding

1 1 0 55.5 87.3 39.1 61.8 71.9 0.0774 0.114
3 1 1 56.9 87.1 40.1 63.1 70 0.0879 0.171
5 1 2 56.9 87.1 40.7 62.9 69.4 0.109 0.285
7 1 3 57.4 88 41 63.5 68.4 0.14 0.457
9 1 4 56.6 87 40.3 62.7 65.7 0.182 0.686

It can be seen from Table 5 that the change in convolution kernel size has a significant impact on
IT-transformer, in which with the increase of convolution kernel size, the receptive field of intermediate
feature fusion also increases, providing the validity of intermediate layer features, which is reflected in
the detection results is the steady improvement of various indicators, such as kernel size is 7, reaching
a maximum value of 57.4, in which the APs reaches 41; However, with the further increase of the
convolution kernel size, such as kernel size 9, too many environmental features are integrated into the
middle layer features, which interferes with the utilization effect of the middle layer features, resulting
in a downward trend in object detection accuracy. At the same time, it is obvious that as the size of
the convolution kernel increases, the number of parameters of the model will increase simultaneously,
and the computing power expenditure will increase, but it is worth the effort to improve the accuracy
of object detection.
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4.6.4 The Result of Plug-and-Play

As we mentioned earlier, IT-transformer has plug-and-play features and can significantly improve
accuracy. In this regard, we selected typical first-stage and second-stage detection models such as
Retina, Faster RCNN, and Cascade RCNN in the GDUT-HWD, Armored Vehicle, and Visdrone-
2019 for experiments. The results are shown in Table 6. After adding IT-transformer, the baseline
model has achieved significant performance improvements, such as in GDUT-HWD, with the IT-
transformer, the mAP of Faster RCNN and Cascade RCNN increased by 8.8 and 1.1, respectively;
meanwhile, in the Armored Vehicle dataset the accuracy of Retina is improved by 4.1 mAP and
the accuracy of small objects by 20.56%, compared with 6.18% of APm and 0.95% of APl. IT-
transformer’s effect on model performance improvement can also be reflected in the Visdrone-2019.

Table 6: The results of plug-and-play

Dataset Model mAP AP50 APs APm APl

GDUT-HWD

Faster RCNN 40.1 73 23.2 53.6 62.4
+IT-transformer 48.9 79.4 33 62 69.1
Cascade RCNN 49.2 79.7 32.2 62.5 70.8
+IT-transformer 50.3 80.8 34.3 63.1 70.6

Armored vehicle

Faster RCNN 51.7 86.4 35.6 57.8 67.2
+IT-transformer 52.8 86.3 36 59.1 68.1
Retina 44.7 82.8 24.8 51.8 63.1
+IT-transformer 48.8 85.4 29.9 55 63.7
Cascade RCNN 54.7 87.3 38.5 60.1 70.6
+IT-transformer 57.4 88 41 63.5 68.4

Visdrone-2019

Faster RCNN 18.7 32.8 9.7 30.7 48.6
+IT-transformer 19.8 33.6 10.6 32.4 48.5
Cascade RCNN 20.7 34 10.6 33.5 49
+IT-transformer 22 35.5 11.9 35.1 49.8

Experimental results show that the IT-transformer designed in this paper does exhibit good plug-
and-play and can be directly used in many types of benchmark models. Fig. 9 is the test results in the
Visdrone-2019 dataset, and we test the effect of cross-transformer addition on the detection effect of
the Cascade RCNN model before and after the addition of the cross-transformer. It can be seen that
the addition of cross-transformers significantly improves the false detection and missed detection of
Cascade RCNN.
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Figure 9: The result in Visdrone-2019 (yellow circle indicates false detection, green circle represents
missed detection)

5 Conclusion

For the challenging small object detection task, we first analyze and sort out the existing
solution ideas, summarize them into four basic methods, and then, combined them with the current
mainstream attention mechanism, based on the traditional transformer model, from the perspective of
compressing the number of model parameters and strengthening the coupling of middle-layer features,
we design a cross-K-value transformer model with a double-branch structure, and at the same time,
we apply the idea of multi-head attention to the processing process of channel attention masking. By
experimenting with the self-built Armored Vehicle dataset and 2 additional benchmarks, the improved
Cascade RCNN model based on cross-transformer was verified and a higher detection level was
achieved. Finally, by combining the cross-transformer with the existing first-order and second-order
detection models, the ablation experiment confirms that the cross-transformer has good plug-and-play
performance and can effectively improve the detection results of each baseline. In addition, we also
collected and collated an Armored Vehicle dataset containing a class of military ground objects to
provide data support for related research.
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