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ABSTRACT

Intelligent healthcare networks represent a significant component in digital applications, where the requirements
hold within quality-of-service (QoS) reliability and safeguarding privacy. This paper addresses these requirements
through the integration of enabler paradigms, including federated learning (FL), cloud/edge computing, software-
defined/virtualized networking infrastructure, and converged prediction algorithms. The study focuses on achiev-
ing reliability and efficiency in real-time prediction models, which depend on the interaction flows and network
topology. In response to these challenges, we introduce a modified version of federated logistic regression (FLR)
that takes into account convergence latencies and the accuracy of the final FL model within healthcare networks. To
establish the FLR framework for mission-critical healthcare applications, we provide a comprehensive workflow in
this paper, introducing framework setup, iterative round communications, and model evaluation/deployment. Our
optimization process delves into the formulation of loss functions and gradients within the domain of federated
optimization, which concludes with the generation of service experience batches for model deployment. To assess
the practicality of our approach, we conducted experiments using a hypertension prediction model with data
sourced from the 2019 annual dataset (Version 2.0.1) of the Korea Medical Panel Survey. Performance metrics,
including end-to-end execution delays, model drop/delivery ratios, and final model accuracies, are captured and
compared between the proposed FLR framework and other baseline schemes. Our study offers an FLR framework
setup for the enhancement of real-time prediction modeling within intelligent healthcare networks, addressing the
critical demands of QoS reliability and privacy preservation.

KEYWORDS
Edge computing; federated logistic regression; intelligent healthcare networks; prediction modeling; privacy-aware
and real-time learning

1 Introduction

By enabling the interaction of exchanging model parameters using local on-device computation
and global server aggregation, federated learning (FL) presents a collaborative and privacy-preserving
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framework, which is cooperative for future digital healthcare systems that need assistance from
machine learning and deep learning [1,2]. FL has been widely adopted in privacy-sensitive fields like
smart healthcare services, where local participant devices such as the Internet of Healthcare Things
(IoHT) utilize the sharing-restricted data to compute the models. By keeping patient data locally,
healthcare institutions can uphold privacy regulations and maintain the trust of the patients while still
benefiting from collective knowledge through scalable parties/organizations gained with collaborative
model training. The main functionality phases of FL include 3 primary entities, including the
parameter server, edge aggregator node, and IoHT devices. The framework starts by distributing the
global model structure and parameters to the local participant, and then after the local computation,
the model aggregation between local and edge is executed to assist the resource-constrained IoHT
devices before updating to the global parameter server. The active status of local participants from the
previous learning iteration requires requesting establishment for next-iteration model learning. The
framework iteratively trains the model through multiple round communications until reaching the
final convergence points. FL ensures five primary beneficial factors as follows for digital healthcare
systems:

• Healthcare Privacy Protection: FL allows data to remain on local devices, ensuring internal
confidentiality. Since the data is not shared in a centralized manner, the model can be trained
on personal data locally without exposure to other parties.

• Sensitive Data Security: By keeping data decentralized, FL reduces the risk of data breaches
or unauthorized access. The risk of data exposure during transmission or storage is minimized.
FL safeguards patient information and protects against potential security vulnerabilities, which
is particularly important when dealing with sensitive data such as medical records or financial
information.

• Collaboration and Integration: FL enables the pooling of knowledge and data resources from
different parties and healthcare organizations. Each party can contribute their local knowledge
to the model while maintaining data control. The collaborative approach enhances the accuracy
and robustness of predictive models, allowing for improved decision-making.

• Massive Scalability: As the number of participating institutions increases, the collective dataset
grows larger, allowing for more diverse and representative training data. The scalability of FL
helps in developing more accurate and generalized models that can be applied to a wider range
of healthcare scenarios and populations.

• Regulatory Compliance: FL aligns with regulations such as the general data protection reg-
ulation (GDPR) and other data privacy and security standards [3,4]. The compliance factor
ensures that healthcare institutions can leverage the benefits of FL without compromising legal
and ethical obligations related to patient data handling.

In future digital healthcare systems, real-time disease prediction is one of the cutting-edge
approaches that need support from the FL architecture [5,6]. However, achieving an accurate final
learning model requires attention to several key aspects for sufficient real-time performance metrics,
such as communication and computation resource placement, client selection, model aggregation
scheduling, and offloading strategies. One of the key challenges in healthcare applications is the need
for real-time predictions with high accuracy and reliability. Quality-of-service (QoS) reliability is a
vital factor in healthcare because it directly affects the quality and timeliness of healthcare services
and decision-making.

Therefore, this paper aims to design a well-formulated objective function with system models
of complete FL interactions, termed federated logistic regression (FLR), that can deploy a real-time
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prediction model in intelligent healthcare networks and ensure maximum reliability with weighted
high-quality data contribution of IoHT participants. The integration of FLR in edge networks
enhances the accuracy and robustness of predictive models, thereby significantly impacting QoS
reliability in healthcare. The key contribution can be summarized as follows:

• We define the final predictive modeling problem by specifying three key components for each
healthcare service, including target variables, input variables, and optimization parameters.
After specifying the key components, edge aggregation is pairing for optimizing each service
following their QoS expectations and upper-bound threshold.

• Our system architecture provides an overview of the communication flow within the FLR
system in healthcare networks, spanning three crucial phases, including framework setup,
iterative round communications, and model evaluation and deployment. Furthermore, we
employ a dataset from the 2019 annual data (Version 2.0.1) of the Korea Medical Panel Survey,
a collaboration between the Korea Institute for Health and Social Affairs (KIHASA) and the
National Health Insurance Service (NHIS).

• The experiment of our prediction model was conducted on a Mininet testbed to represent the
model flows in communication networks, and from another perspective, we focused on the
final model on hypertension prediction, considering factors such as age, gender, diabetes status,
physical activity, smoking habits, occupation, and education level to develop a comprehensive
policy.

2 Related Works

Healthcare institutions deal with highly confidential information related to patient’s medical
conditions, treatments, and personal details. Therefore, it is crucial to safeguard this data and ensure
its privacy protection throughout the learning process. Practical FL needs to be flexible in a resource-
constrained and scalable environment, which provides self-organizing capabilities in terms of resource
awareness, personalization, incentive awareness, etc. [7–9]. Distributed edge FL plays a vital role
in offering the mentioned capabilities by leveraging edge aggregation processes within micro data
centers or other access points (equipped computing servers) [10–12]. These edge aggregators act
as intermediaries that facilitate the aggregation of locally computed updates without exposing the
raw data.

The healthcare domain has witnessed extensive exploration of FL, particularly in real-time
medical data processing and applications such as brain tumor segmentation [13,14]. The ability to learn
from distributed data sources while preserving privacy has opened up new avenues for improving med-
ical diagnostics and treatment outcomes. FL harnesses the concept of learning over networks, allowing
healthcare institutions to collaborate and share knowledge intelligently. Furthermore, bandwidth
efficiency is a key aspect, especially when integrating FL with the message queuing telemetry transport
(MQTT) protocol. MQTT, known for its lightweight and efficient messaging capabilities, facilitates
seamless communication between the central server and local clients. This protocol minimizes the
overhead associated with data transmission, enabling faster and more efficient model updates [13].

The integration of real-time medical data processing within the FL architecture has proven to be
highly signification. By continuously incorporating subsets of medical data with varying timestamps
and conditions, the models can adapt to dynamic healthcare scenarios and improve their diagnostic
capabilities [14]. The workflow procedures involve multiple data rounds, where streaming data is
collected in each iteration. The model stages leverage the FL paradigm to aggregate and average
between the old-timeslot and new-timeslot models, allowing for incremental learning and continuous
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improvement. Exemplar stages help establish a new set of exemplars based on the previous diagnosis
model, contributing to the ongoing refinement and accuracy of the model [14].

The proposed solution in [6] leverages homomorphic encryption to implement logistic regression
for vertical FL and model prediction. By designing a privacy-preserving logistic regression training
scheme based on homomorphic encryption in vertical FL, the paper contributes to improving security
while maintaining an acceptable level of efficiency. The scheme overcomes limitations of existing
approaches, such as protecting gradient information during training, avoiding the leakage of party
labels, and significantly safeguarding data features of the host. The authors also introduce a multi-
party vertical FL framework that eliminates the need for a third-party to address the multi-party
logistic regression problem. The proposed framework enables effective model training among multiple
participants while ensuring privacy and data protection. By removing the reliance on a trusted third-
party coordinator, the proposed framework simplifies the complexity and enhances security.

The aforementioned studies collectively emphasize the critical significance of FL in the context
of real-time healthcare services. The ability to leverage distributed data while maintaining privacy and
confidentiality enables healthcare networks to unlock new possibilities for improving patient care,
medical research, and decision-making processes. However, to harness the full potential of FL in
prediction modeling within healthcare systems, it is essential to converge the FL system architecture
with logistic regression. Logistic regression is a well-established and interpretable machine learning
technique, particularly suited for binary classification tasks common in healthcare, such as disease
prediction. Combining FL with logistic regression allows us to leverage the strengths of each approach:
(1) FL facilitates collaborative learning from distributed data while preserving privacy, and (2) logistic
regression provides transparent and interpretable models crucial for gaining medical professional
trust. Therefore, the concept of convergence enables real-time and incremental learning, which is
crucial in healthcare where data continually evolves. Logistic regression within FL ensures that models
adapt incrementally to changing healthcare scenarios while maintaining accuracy.

3 System Architectures and Models for Federated Logistic Regression

Resource-constrained and mission-critical healthcare environments pose unique challenges to the
FL framework, requiring efficient management of communication resources and modification of real-
time prediction performance. In this section, the network setup, system architectures, and models for
the proposed FLR are presented. Table 1 presents the key notations and its description used in this
paper.

Table 1: Definition of symbols

Notations Descriptions

N = {1, 2, . . . , n} Set of local participants
T = {1, 2, . . . , t} Set of round communications in FLR participant-server
W T

G = {
w0

G, w1
G, . . . , wt

G

}
Set of global models in a centralized parameter server

wT
l(n)

= {
w0

l(n)
, w1

l(n)
, . . . , wt

l(n)

}
Set of local models from participant-n

α Learning rate
ω (n, s) Weighted metric of participant-n contributing to building the

model in healthcare service-s

(Continued)
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Table 1 (continued)

Notations Descriptions

Ys = {
y1

s , y2
s , . . . , yi

s

}
Set of target variables consists of i-labels in healthcare modeling of
service-s

Xn(s) = {
x1

n(s), x2
n(s), . . . , xj

n(s)

}
Set of input variables consists of j-labels from participant-n in
healthcare modeling of service-s

τ ∀n
s = {

τ 1
s , τ 2

s , . . . , τ n
s

}
Set of optimization parameters in health modeling of service-s
from all participants (∀n) that jointly trained in that particular
round communication

Dn
M = {

dn
1 , dn

2 , . . . , dn
m

}
Set of feeding data batches in each local participant

θ n
M = {

θ n
1 , θ n

2 , . . . , θ n
m

}
Set of model parameters that outputted by different m data batches
in each local participant-n

L (.) Loss function
Ttotal

n(t)

(
Tloc

n(t), Toff
n(t), Tcomp

n(t)

)
Total time completion of local model requirements, including local
execution times to obtain θ n

m, offloading times, and computing
times

ϕ
(
wt

l(n)

)
, β

(
wt

l(n)

)
, f

(
R; wt

l(n)

)
Model parameter sizes, required resources, and allocated resources
in aggregator node in processing of local models

3.1 Algorithm Objections

The proposed system defined the final predictive modeling problem by determining the 3-tuple
information for each healthcare modeling in service-s: (1) target variables consist of i-labels, (2) input
variables consist of j-labels from participant-n, and (3) optimization parameters for prediction on that
particular service labeling from participant-n, which are denoted as a set of (1) Ys = {

y1
s , y2

s , . . . , yi
s

}
,

(2) Xn(s) = {
x1

n(s), x2
n(s), . . . , xj

n(s)

}
, and (3) τ ∀n

s = {
τ 1

s , τ 2
s , . . . , τ n

s

}
, respectively. Eq. (1) describes in terms of

prediction of target variables ŷi
s based on the input variables from all selected participants in that round

iteration index, denoted as ∀n (t). By using sigmoid function as expressed in Eq. (2), the relation with
the parameter vector in FLR can be described in Eq. (3) for prediction from all the training samples in
n-participants using all the gathered features at point k. With given input features from all participants
at each round iteration, the predicted probability of the target variable is formulated.

p
(
ŷi

s = i
) = p

(
Xn(s)|∀n (t)

)
(1)

p
(
Xn(s)|∀n (t)

) = 1

1 + e−τ∀n
s Xn(s)

(2)

∑
n ∈ ∀n(t)

∑
k ε K

log

[
p

(
ŷi

s = i | xk
n(s)

)
1 − p

(
ŷi

s = i | xk
n(s)

)]
=

∑
n ∈ ∀n(t)

[
τ n

s ∗ Xn(s)

]
(3)

For input variables from multi-participants, all the features are mostly not complete/matching
and consist of null values, which requires a collaborative normalization process from experience
feature batch from global server. Healthcare feature normalization is formulated as a problem with
the solutions by standard scaling or imputation technique. Edge-assisted data feature filtering can be
used to expedite the preprocessing. At the output layer of FLR, sigmoid function is employed, which
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requires the utilization of optimal τ ∀n
s parameters with full awareness from all selected participant

models. Eqs. (4) to (7) present the flow of formulating parameter valuation as the objective of
prediction algorithm learning, which is later used to approximate the output likelihood that resulting
the label class of healthcare services. yi

s (k) represents the actual label value of that FLR-enabled service
at point k.

f l
(
τ ∀n

s

) =
∑

k ∈ K
yi

s (k) log
(
p

(
ŷi

s = i |xk
n(s)

)) + (
1 − yi

s (k)
)

log
(
1 − p

(
ŷi

s = i |xk
n(s)

))
(4)

=
∑

k ∈ K
yi

s (k) log
(

1

1 + e−τ∀n
s xk

n(s)

)
+ (

1 − yi
s (k)

)
log

(
e−τ∀n

s xk
n(s)

1 + e−τ∀n
s xk

n(s)

)
(5)

=
∑

k ∈ K
yi

s (k)

[
log

(
1

1 + e−τ∀n
s xk

n(s)

)
− log

(
e−τ∀n

s xk
n(s)

1 + e−τ∀n
s xk

n(s)

)]
+ log

(
e−τ∀n

s xk
n(s)

1 + e−τ∀n
s xk

n(s)

)
(6)

=
∑

k ∈ K
yi

s (k) τ ∀n
s xk

n(s) + log
(

1

1 + eτ∀n
s xk

n(s)

)
(7)

The objectives of this proposed prediction algorithm using FLR are expressed in Eqs. (8) and (9)
by optimizing the reliability of prediction output measuring by cost function, normalization of collab-
orative input features per services, and optimization of argument τ ∀n

s to maximize the log-likelihood
of parameter vector τ̂ ∀n

s . Model parameters of participant-n, denoted as θ n
M = {

θ n
1 , θ n

2 , . . . , θ n
m

}
, are

differed within the same round training by different feeding data batches, represented as Dn
M ={

dn
1 , dn

2 , . . . , dn
m

}
.

L
((

θ n
m

)∗) = arg min
θn
m

[
yi

s (k) − p
(
ŷi

s = i |xk
n(s)

)]2
(8)(

τ ∀n
s

)∗ = arg max
τn
s

∑
n ∈ ∀n(t)

f l
(
τ n

s

)
(9)

3.2 Working Flow

This section introduces the communications flow for FLR systems in healthcare networks, encom-
passing three key phases: framework setup, iterative round communications, and model evaluation and
deployment. Framework setup introduces the involved entities and controlling policies for optimal
FLR initialization. Iterative round communications include the global model distribution, local
model computation (missing input values handling), local model transmission, secure aggregation
and updates, and global model re-distribution in the next round of communication. Finally, model
evaluation and deployment cover the efficiency weighting of trained FLR models and decide based
on evaluation metrics before whether to re-train or compress for final implementation. This section
primarily presents the objective in communication networking perspectives in the execution of FLR for
reliable healthcare QoS requirements, which essentially aims for minimizing the latency in constructing
the final converged FLR model. Fig. 1 illustrates the interactions between the key entities and
execution functions in the FLR system, which describes the overall functionalities formulated in the
following sub-sections.

3.2.1 Framework Setup

The collaborative FLR framework involves two essential entities, namely (1) the locally selected
participants that compute the local model wt

l(n)
by feeding data batches dn

m, including IoHT, and (2)
the global parameter server G that initialize the model W T

G = {
w0

G, w1
G, . . . , wt

G

}
for every collaborative
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local-global round communication. The interactions between these two entities are bound by com-
munication and resource orchestration policies. The participant selection and scheduling policies of
joint model training within each round of communications are required to be identified by the central
controller including the model distribution and partition strategies among entities.

FLR global server

Model averaging/aggregationLocal IoHT participant

Input data batch

Local FLR computation Model parameter optimization

Efficient
 resource?

Edge aggregator

converged? Deployment phase

Service experience batch
(handlers for missing values)

(optimal training feature variables)

(initializing)

(true)

(true)

(false)

(false)

(feeding)

(performing)

(advancing)

(uploading)
(collaborative 

computing)

(uploading)

(saving converged model)

(distributing)

(storing for real-
time execution)

Figure 1: Working flow of the proposed FLR framework

The decision on whether to perform central model aggregation and averaging in the cloud, at the
edge, or through a hybrid approach requires adaptability from the controller. In order to accommodate
the heterogeneity of the IoHT environment, where participants and services may have varying features
and labels, multi-service containers are employed. To be selected as an IoHT participant, certain
criteria must be met, including computation capabilities, secure communications, and the ability to
provide high-quality data. If these requirements are not met, edge-assisted model computation is
employed to aid in the training and computing processes, ensuring effective FL. The setup of the
FLR framework includes the following major procedures:

• Network Topology: In the context of FLR, network topology refers to the structure of connec-
tions among the participating IoHT devices and other nodes, which interact by two topology
settings. 1) Centralized topology, where the central server acts as the coordinator of the FLR
execution. The participating IoHT devices n communicate with the central server G to exchange
model updates

(
wt

l(n)
, wt+1

G

)
by following the orchestration policies. The coordination mechanism

requires a reliable and scalable healthcare system installation rule with a stable connection to the
server G. 2) Decentralized topology, where IoHT node n communicates to horizontal FLR with
other nodes and alleviates the need for a central server G and distributes the coordination tasks
among the devices. Decentralized networks are resilient but may struggle with global feature
normalization. The setup relies on factors like system scale and coordination needs, enabling
edge-assisted model processing in FLR frameworks.

• Participant Selection: The framework controller determines which IoHT devices will participate
in communication rounds based on various selection metrics, such as device heterogeneity,
healthcare data privacy, connectivity and availability, and representativeness. These metrics
ensure that the chosen devices meet specific criteria to ensure the effectiveness of the FLR
process for healthcare prediction services.

• Data Batch Partitioning: FLR policy settings ensure the completion time of local training to
avoid heavy delays on model updates and later affect the global convergence speed. The partition
process divides the training data batches into smaller subsets and assigns each subset dn

m for
feeding to local model training wt

l(n)
. If the training dataset features have class imbalances for
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fitting the requirement of healthcare service prediction algorithm, the framework controlling
platform essentially ensures a fair distribution of data subsets across selected IoHT devices. The
hyperparameter in model structures requires a deep understanding of experienced completion
times, which can be listed in terms of batch sizes, number of training epochs, and number of
layers.

• Model Initialization: w0
G serves as the starting point from the global server to distribute in the first

index round communication. The pre-trained FLR model is used with initialized model layer
structures and hyperparameter settings. The global model is initialized with random parameter
values, depending on the availability of pre-trained models, the complexity of the learning task,
and the expected convergence latencies for each healthcare service.

3.2.2 Global Model Distribution

The central server fine-tunes the model architectures, hyperparameters, and target use cases as a
global learning model during the initial iteration, aiming to distribute it to chosen IoHT participants.
When it comes to multi-service IoHT prediction, the diverse models endure the deployment process by
considering participant clustering, service prioritization, and aggregation strategies. The models are
distributed to selected IoHT participants with matching services and enable the structure for the next
phase of local model computation.

3.2.3 Local Model Distribution

Once the chosen IoHT nodes receive the distributed model w0
G, the nodes utilize the data available,

namely dn
m, at that specific timeslot to train the local prediction models. Eq. (10) presents the local

model updating wt+1
l(n)

relevant to the optimization by loss alleviation. Each local IoHT node possesses
distinct data characteristics and continuously collects/generates data at different timeslots. The local
data batches dn

m are fed into the received model wt
G, initiating the training process for the local prediction

model wt+1
l(n)

with iterative learning. α represents the learning rate. By using gradient optimization
algorithm, model parameters are iteratively updated in direction to alleviate the error and biases.
Eq. (12) presents the objective of all selected IoHT participant-n is to find the optimal parameter
θ n

m (t)∗ at the next-index round that minimize the cost function. Later, the updated and optimal local
parameters are transmitted to the aggregation node.

wt+1
l(n)

← wt
G − α	L

[
wt

l(n)
; dn

m (t)
]

(10)

θ n
m (t)∗ = arg min

θn
m(t)

L
(
wt

l(n)

)
(11)

3.2.4 Local Model Transmission

Once the optimal parameter θ n
m (t)∗ and the model with the minimal loss is determined, the chosen

IoHT participants, as per defined iteration, can proceed to update the model for aggregation in the
FLR server. This update process adheres to the specified update scheduling and aggregation policies.
In the context of edge-assisted procedures, the diversity of system capabilities and the number of
direct round communications are mitigated by leveraging the edge server’s capacities for aggregating
service labels near the local nodes. The transmission process encompasses various steps, including
the initial handshake for client selection, distribution of the global model, training and optimizing
local prediction models, scheduling updates for models, and implementing aggregation policies. The
proposed FLR is to minimize the completion time Ttotal

n(t) , expressed in Eqs. (12) to (14), which can be
described in wireless networks by the offloading time and edge computation time, denoted as Toff

n(t), and
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the local computation time to obtain the optimal parameter in t-round, denoted as Tloc
n(t). Starting from

expressing the uplink data rate Un(t)
θ of uploading the local model parameters, the proposed system

formulates the execution time by model parameter sizes, required resources, and allocated resources
in aggregator node, denoted as ϕ

(
wt

l(n)

)
, β

(
wt

l(n)

)
, and f

(
R; wt

l(n)

)
, respectively. The completion time and

key parameters to consider in the phase of local model transmission are mentioned in the equations
below:

Toff
n(t) = ϕ

(
wt

l(n)

)
/Un(t)

θ
(12)

Tcomp
n(t) = β

(
wt

l(n)

)
/f

(
R; wt

l(n)

)
(13)

Ttotal
n(t) = Tloc

n(t) + Toff
n(t) + Tcomp

n(t) (14)

3.2.5 Global Model Aggregation/Updates and Re-Distribution

In the aggregation process, a weighted metric ω (n, s) is employed as an influential factor for
IoHT participant-n that contribute a larger quantity or higher-quality data features to the FLR
systems in service-s. Each participant’s contribution is assigned different weight classes to enhance
aggregation strategies and prioritize factors critically to achieve an optimized final accuracy. To ensure
FLR reliability in specific scenarios such as communication-critical, computation-intensive, or energy-
constrained situations, a balancing strategy is applied. Weighted sum models, which consider multiple
objectives, provide near-optimal solutions for balancing performance and optimizing the process
through iterative iterations. Eq. (15) presents the generic loss optimization in a global server as a
part of model parameter aggregation objectives, using each local model wt

n based on the valuation of
parameter estimation f l

(
τ n

s

)
, updated optimal model parameter θ n

m (t)∗, and the weight metric ω (n, s).
The next-round global model wt+1

G is obtained after averaging aggregation, as described in (16).

L
(
wt

G

) = 1
∀n (t)

∑
n ∈ ∀n(t)

L
(
wt

n|.f l
(
τ n

s

)
, θ n

m (t)∗ , ω (n, s)
)

(15)

wt+1
G = 1∑

n ∈ ∀n(t+1)
dn

m

∑
n ∈ ∀n(t+1)

dn
mwt+1

n (16)

This phase of the proposed FLR system aims to achieve several functionalities, including (1)
promotes collaboration and knowledge sharing among the IoHT participating devices leading to a
collectively improved global model, (2) allows for privacy-preserving learning and adaptive exchanges
of model updates, and (3) enables continuous learning and adaptation, as the global model is refined
over multiple iterations, capturing weight factors from various IoHT participants and data sources.

3.2.6 Model Evaluation and Deployment

Once the FLR process is complete, the system evaluates the performance of the trained global
model using appropriate metrics and saves the converged model for the deployment phase, which can
be handled using a held-out validation set. If the model is not converged following the expectation
metrics of particular healthcare service requirements, false conditions lead to the distribution of the
global model to local IoHT participants for next-round communication training.

The optimal trained global model
(
wt

G

)∗
is stored for making predictions on new unseen data

features of assigned healthcare service in real-time, and the proposed FLR system ensures to maintain
privacy and handle the missing values of low-quality IoHT data batches by synchronizing the
feature normalization module. The procedure of FLR outlines the implementation details, which vary
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depending on the prediction labels, and the quality-of-service requirements. Fig. 2 presents the flow of
evaluation to gather network metrics and FLR objective values before exploiting the service optimal
replays. Deployment is primarily presented in software-defined healthcare networking.

Figure 2: Flow for evaluation and primary deployment execution

4 Performance and Evaluation
4.1 Experiment Setting

The dataset utilized in this research is derived from the 2019 annual data (Version 2.0.1) of the
Korea Medical Panel Survey, a collaborative effort between KIHASA and NHIS. The focus of the
prediction model developed in this study is on hypertension, incorporating factors such as age, gender,
diabetes status, physical activity, smoking status, occupation, and education level. By using this dataset
and selected features, we aim to measure and identify the coefficient weights in each category and the
high/low capability of current risk analysis, providing a foundation and recommendation for future
health improvements. The selection of features is partially influenced by previous studies addressing
risk factors related to hypertension prediction [15–17], which highlights the importance of critically
examining the performance of existing hypertension risk models.

The proposed FLR method is compared to two baseline approaches that utilize computation-
intensive mechanisms to guide the policies of FL networks, termed CI-FL and Conv-FL. Fig. 3 is
given as a FLR network topology representation. The employed topology is primarily based on
Mininet software-defined networking (SDN) emulator and RYU controller (using Python-based
custom scripts) [18–22], utilizing a testbed that supports programmable networking as follows:

• CPULimitedHost is used to configure the 5 participants (P1 to P5) and 1 global parameter
server (G1) with IoHT capacities for simulating resource-constrained hosts with limited CPU
capacity. The setting parameter determines the maximum CPU utilization allowed for the host
and specifies the 70% of CPU resources that the host is allowed to utilize in the FLR execution.

• Open vSwitch (OVS) and RYU adjusts the functionalities and uses TCIntf with OVSIntf in
topology settings and flow entry management. OVSIntf offers the creation and management of
virtual switches, ports, and flows within the proposed FLR topology. The bridge name, ports,
VLANs, flows, and QoS settings are assigned. TCIntf configures the control parameters on
bandwidth, delay, loss, jitter, txo, rxo, and max_queue_size. The port configurations and other
OVS-specific settings are set within OVSIntf. This functionality serves as a crucial component
in our framework, simulating the behavior and functionality of edge devices in a controlled
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environment. While it may not replicate all aspects of real-world devices, it allows us to assess the
impact of edge-structured functionality on the FLR framework and evaluate the contribution
to real-time aspects.

• FL Setting partially follows the integration process with TensorFlow-Federated to capture
the results and execute the FL aspect. However, this paper extends the contribution by
introducing FLR models and IoHT nodes to evaluate the resource-constrained and mission-
critical healthcare metrics with real-time prediction models and new dataset distribution as non-
IID. The hyperparameters of forecasting and deep learning [23–25], applied for the proposed
FLR method are set to 0.01 for the learning rate α, and t-numbers of round communications
are set to 2500.

• Hosting Server in the experiments is equipped with an Intel(R) Xeon(R) Silver 4280 CPU @
2.10 GHz, 128 GB memory, and an NVIDIA Quadro RTX 4000 GPU.

Figure 3: Representation of FLR network topology

4.2 Result and Discussion

Data preprocessing involves the use of an imputation technique, resulting in a reduction of null
target classes from 14,741 to 13,834. Then, FLR is employed to determine the essential coefficients.
The selected features, descriptions, and coefficients after the final FLR prediction model are given
in Table 2. The results of coefficients represent the relationship between the independent variables
(features of patient information) and the log-odds of the dependent variable (target variable of
hypertension status) being in a particular category. The coefficient value indicates the direction and
strength of the association between a specific independent variable from a given patient condition
and the log-odds of the target variable. A positive coefficient suggests the value increment of the
independent variable is related to the increment of target variable log-odds being in the hypertension
status class. Otherwise, a negative coefficient suggests that the value increment of the independent
variable is related to the decrement of the target instead. The magnitude of the coefficient indicates
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the strength of the relationship. Larger coefficient values indicate a stronger association between the
independent variable and the log-odds. In other words, a larger coefficient implies a larger impact of
the independent variable on the predicted hypertension outcome (0 to 1). Additionally, the coefficient
values can be used to interpret the odds ratio associated with each independent variable. The odds
ratio is calculated by exponentiating the coefficient value. For example, if the coefficient of physical
activity is −0.2326, the odds ratio would be exp(−0.2326), which represents the multiplicative change
in the odds of the target variable for a one-unit increase in the independent variable.

Table 2: Coefficient results of the proposed FLR-based hypertension prediction model

In-dataset features Descriptions Coefficient

BIRTH_Y Birth year 0.0798
CD1_DM Diabetes conditions (0 or 1) 1.1276
D4 Drinking assessment per year 0.0150
D5 Age of start drinking −0.0064
ECO2 Employment conditions −0.0408
EDU Educational conditions 0.1061
P3 Cost of physical activity −0.2416
P3_1 Whether to register for an exercise program −0.0582
P3_2 Whether to use sports facilities −0.0599
P3_4 Other physical activities −0.2326
S1 Condition of smoking experience −0.1748
S2 Age of start smoking 0.0038
S3 Current smoking level (every day, often, quit) −0.0707
S4 (Every day) number of cigarettes smoked per day −0.0089
S5 (Often) number of days smoking −0.0496
S6 (Often) time of smoking 0.00329
SEX Gender −0.0028

Overall, the coefficient values from FLR provide insights into the direction, strength, and
magnitude of the relationship between the independent variables in the general dataset features and
the log-odds of the predicted target variable of hypertension status, allowing for an understanding of
the impact of each variable on predicted disease likelihood.

In FLR communication perspective, IoHT nodes in the Mininet network represent resource-
constrained devices, and their configuration is designed to exceed the maximum resource threshold.
The proposed offloading strategies and fast-convergence FLR aim to highlight the significance of
reliable model flows by incorporating congestion and resource limitations. Selected performance
metrics include the local model update delivery/drop ratios, end-to-end execution latencies, and final
accuracies per round communication. Each metric is presented as follows:

• Local model update delivery/drop ratio: the delivery ratio refers to the ratio of model updates that
are successfully transmitted or delivered from the local IoHT nodes (P1 to P5) to the central
server G1 during the FL process. This indicator measures the effectiveness of communication
and data transmission between the local devices and the central server. A higher drop ratio
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indicates a higher rate of unsuccessful transmission, which can be due to network congestion,
limited resources, or other computation-intensive modeling issues. A higher delivery ratio
suggests a reliable and efficient transmission of local model updates and leads to applicable
FL in healthcare.

• End-to-end execution latencies: this metric measures the time the system takes for the entire
round communication to complete, from the initialization to the ending round point, until
the model reaches a satisfactory level of accuracy. The end-to-end latency Te2e

n(t) includes the
time taken for local devices to perform local computations Tloc

n(t), model updating/offloading
Toff

n(t) + Tqueue
n(t) , controlling policy delay Tc

n(t), and time for the central server to aggregate and update
the global model, as Tcomp

n(t) . Lower execution latencies indicate faster and more efficient FL,
allowing for quicker model convergence and more timely updates. Eq. (17) is given to illustrate
this metric.

Te2e
n(t) = Tloc

n(t) + Toff
n(t) + Tqueue

n(t) + Tc
n(t) + Tcomp

n(t) (17)

• Final model accuracies: to evaluate the final FL model performance in predicting the target
hypertension condition, the training and testing phases are captured for accuracy measurement.
Higher model accuracies indicate a better predictive performance and a more reliable model.
Assessing the final model accuracies helps evaluate the effectiveness of the FL approach in
improving the predictive performance of healthcare.

In FLR architectures, the consideration of local-global model communications leads to the
possible drop of local model updates based on simulated resource efficiency and offloading scheduling,
which severely affects the reliability of the system, particularly in real-time healthcare applications.
The development of optimal prediction modeling and network topology setup have to be balanced
for practical systems in real-world scenarios that can be highly congested, communicating/computing
resource constraints, multi-personalized systems, or energy limitations. Fig. 4a presents the results
on delivery ratios within 270 s of simulation throughout 3 different congestion states, from 30 to
270. The results show an average output of 99.96% for the proposed FLR, which is 0.06% and
0.1% higher than CI-FL and Conv-FL, respectively. The primary reason of CI-FL for aiming high
delivery ratio is the target setting on resource-intensive computations. CI-FL prioritized delivering
updates from resource-efficient nodes or with less computational load. While CI-FL ensures efficient
communication, it leads to a high delivery ratio by favoring nodes that can handle computation-
intensive tasks effectively. However, delivery efficiency comes at the expense of scalability and
adaptability to resource-constrained devices, which may not perform well in real-time healthcare
scenarios. Conv-FL demonstrates a high delivery ratio, but it appears to perform the least efficiently
among the three approaches. The reason behind the delivery ratio of Conv-FL is attributed to its
conventional communication strategies. Conv-FL is not adapted as well to network congestion or
resource limitations. Consequently, while it maintains a high delivery ratio, it might be less suitable
for real-time healthcare applications due to longer communication latencies. In the context of FL
model communications, a high delivery ratio refers to a high proportion of successfully transmitted
or delivered model updates, which indicates that the majority of the model updates sent by the local
devices have reached the intended destination for aggregation/averaging without being lost or dropped
during transmission. A high delivery ratio is desirable and achieved in the proposed FLR because the
controlling policies and weight ω (n, s) placement signifies the high-quality contribution of different
nodes and sets the priority level in serving resources. The missing features can be adapted following
the high-weight nodes, which enhances the final predictive learning model. This result of efficient
FLR in delivery ratio also comes from robust network infrastructure and connectivity, efficient
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data transmission protocols, optimized resource allocation, and effective loss/error mechanisms for
logistic regression integration. By achieving the maximization of the delivery ratio, the proposed FLR
can leverage a larger volume of diverse and distributed data from the local IoHT nodes, leading
to improved global model accuracy and generalization. Contrary to delivery ratios, the proposed
FLR, CI-FL, and Conv-FL reached the average drop ratios of 0.04%, 0.1%, and 0.14%, respectively,
illustrated in Fig. 4b.
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Figure 4: Results of proposed and baseline schemes on (a) delivery ratios of local model update,
(b) drop ratios of local model update, (c) end-to-end execution latency, and (d) final model accuracies

The end-to-end execution latency is illustrated in Fig. 4c, which determines the total time for
the FL operation to finish within each round of communication. The proposed scheme achieved an
average latency of 14.8 ms, which is 26.2 and 41.1 ms faster than CI-FL and Conv-FL, respectively.
This low latency output can be attributed to several factors. Firstly, FLR employs efficient controlling
policies and weight placement (ω) strategies. The controlling measurement optimized communication
between local devices and the central server. Secondly, the emphasis of FLR on high-quality data
contribution from different nodes ensures that communication is streamlined, and data transmission
is efficient. Thirdly, robust network infrastructure and efficient data transmission protocols play a
role in reducing latency. Overall, FLR is designed to perform communication and computation tasks
efficiently, allowing for rapid progress in each round of iteration. For CI-FL, it obtains higher end-
to-end latency, which indicates that its resource-intensive computation methods contribute to longer
communication times. While CI-FL excels in computational tasks, this approach might introduce
latency when transmitting updates between nodes and the central server, which is due to the heavy
computational load on resource-constrained devices, leading to slower communication. For Conv-FL,
it also experiences relatively high end-to-end latency, which is attributed to its reliance on traditional
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communication methods that are not as efficient as the communication infrastructure employed by
FLR. While Conv-FL maintains reliability in data transmission, it obtained results in longer latencies.

Low end-to-end execution latency in completing FL model communications in each round
iteration refers to the short amount of time it takes for the entire process of transmitting and updating
the model between the local devices and the central server to occur. This metric improvement indicates
that the communication and computational tasks involved in healthcare FL systems are performed
efficiently, enabling rapid progress in each round of iteration. The proposed FLR allows a better
connection between healthcare entities for a seamless and fast exchange of information, facilitating
the aggregation and integration of the local models into the global prediction model. The proposed
FLR is particularly significant in real-time applications of healthcare networks, where the availability
of up-to-date models is crucial for timely decision-making and accurate predictions.

Fig. 4d shows the final model accuracies per 250 rounds of the proposed and baseline schemes.
The proposed FLR reached the final accuracy at the 2500-th round with 99.97%, which is attributed
to the efficient communication and aggregation strategies. The baseline schemes, namely CI-FL and
Conv-FL, can only reach 92.92% and 87.09% only for this hypertension prediction problem, which
is not efficient enough. The resource-intensive computation of CI-FL contributed to lower accuracy
compared to FLR, as it could prioritize computation over edge placement and aggregation methods.
For Conv-FL, it obtained less efficient data exchange and model aggregation. Conv-FL struggled to
adapt to the evolving data landscape and real-time healthcare demands, which resulted in reduced
accuracy. These results highlight the effectiveness of the proposed FLR architecture in terms of
accuracy, convergence time, and resource utilization in the restricted healthcare environment.

5 Conclusion and Future Works

This paper aims to minimize the latency in constructing the final converged FLR model while
ensuring reliable healthcare QoS requirements. The interactions between key entities and execution
functions in the FLR system were illustrated, highlighting the functionalities and the topology
deployment phase. The results demonstrated the effectiveness of the proposed FLR architecture in
terms of drop/delivery ratios of local model update, end-to-end execution latency, and final model
accuracies. The proposed scheme achieved significantly lower latency compared to baseline schemes,
with an average latency of 14.8 ms. We indicated that the communication and computational tasks
involved in healthcare FL systems are performed efficiently by enabling rapid progress in each round
of iteration. The proposed FLR architecture facilitated a seamless and fast exchange of information
allowing for the aggregation and integration of local models into a reliable and real-time global
prediction model. Furthermore, the proposed FLR architecture achieved better accuracy compared
to baseline schemes. The final accuracy of the proposed FLR reached 99.97% after 2500 rounds,
surpassing the baseline schemes, which achieved 92.92% and 87.09% for this particular hypertension
prediction dataset. Overall, the proposed scheme offered beneficial factors in healthcare networks in
terms of latency reduction, improved accuracy, and efficient utilization of resources. The integration
of FLR into healthcare networks has the potential to enhance real-time prediction-based applications,
ensuring timely decision-making and accurate modeling.

In future studies, the testbed platform for federated servers will be further developed to integrate
our systems to serve more deep learning-based modeling in IoHT services. Furthermore, we will deploy
fine-tuning edge aggregator components to better emulate real-world edge devices and patterns within
healthcare networks. Performance metrics on (1) convergence speed, (2) resource consumption, and (3)
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energy consumption will be optimized in further study as a joint reward function in deep reinforcement
learning agents. Autonomy and long-term sufficiency will be appended to the FLR framework.
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