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ABSTRACT

With the rapid advancement of wearable devices, Human Activities Recognition (HAR) based on these devices
has emerged as a prominent research field. The objective of this study is to enhance the recognition performance
of HAR by proposing an LSTM-1DCNN recognition algorithm that utilizes a single triaxial accelerometer. This
algorithm comprises two branches: one branch consists of a Long and Short-Term Memory Network (LSTM),
while the other parallel branch incorporates a one-dimensional Convolutional Neural Network (1DCNN). The
parallel architecture of LSTM-1DCNN initially extracts spatial and temporal features from the accelerometer data
separately, which are then concatenated and fed into a fully connected neural network for information fusion.
In the LSTM-1DCNN architecture, the 1DCNN branch primarily focuses on extracting spatial features during
convolution operations, whereas the LSTM branch mainly captures temporal features. Nine sets of accelerometer
data from five publicly available HAR datasets are employed for training and evaluation purposes. The performance
of the proposed LSTM-1DCNN model is compared with five other HAR algorithms including Decision Tree,
Random Forest, Support Vector Machine, 1DCNN, and LSTM on these five public datasets. Experimental results
demonstrate that the F1-score achieved by the proposed LSTM-1DCNN ranges from 90.36% to 99.68%, with a
mean value of 96.22% and standard deviation of 0.03 across all evaluated metrics on these five public datasets-
outperforming other existing HAR algorithms significantly in terms of evaluation metrics used in this study. Finally
the proposed LSTM-1DCNN is validated in real-world applications by collecting acceleration data of seven human
activities for training and testing purposes. Subsequently, the trained HAR algorithm is deployed on Android
phones to evaluate its performance. Experimental results demonstrate that the proposed LSTM-1DCNN algorithm
achieves an impressive F1-score of 97.67% on our self-built dataset. In conclusion, the fusion of temporal and spatial
information in the measured data contributes to the excellent HAR performance and robustness exhibited by the
proposed 1DCNN-LSTM architecture.
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1 Introduction

HAR is a study of practical value, while its application range includes rehabilitation training,
building safety, outdoor activities, etc. According to the methods of data collection, HAR can be
divided into vision-based [1] and inertial sensor-based HAR [2], and additional research ideas have
the potential to inspire HAR, such as [3]. Vision-based HAR suffers from three problems, namely
privacy concerns, ambient light limitations, and high hardware cost. Inertial sensor-based HAR
mainly uses triaxial accelerometers to collect human activity data. This acquisition method has the
advantage of being easy to wear, low cost, and no privacy concerns. Therefore, a lot of research
on the HAR algorithm based on inertial sensors has been conducted by numerous scholars [4]. In
the field of inertial sensor-based HAR, the commonly used algorithms include traditional machine
learning algorithms (Decision Trees [5], Random Forest [6], and Support Vector Machines [7]), and
Deep Learning algorithms [8,9]. Among them, traditional machine learning algorithms require feature
engineering [10] to extract and screen features for the training of HAR algorithms. Feature engineering
normally requires human involvement, which limits the overall performance of HAR algorithms. In
recent years, with the continuous development of deep learning, more and more scholars are using
deep learning algorithms for HAR, for example, Convolutional Neural Network (CNN) [11], LSTM
[12], etc.

In the study of accelerometer-based HAR, the wear comfort of the hardware is a very important
practical consideration. Since having too many sensors certainly leads to reduced comfort and
increased deployment cost, this paper focuses on a HAR algorithm with one triaxial accelerometer.

In this paper, when 1DCNN is used for feature extraction, the extracted features are treated as
spatial features of an image consisting of sensor measurement samples, as if the samples are in a spatial
distribution relation rather than a time series relation. When LSTM is used, the LSTM extracts mainly
temporal features rather than spatial features through its memory capability, as memory is a time-based
mechanism. The memory capability of the LSTM is implemented by a gating mechanism that controls
the information accumulation rate by selectively adding and forgetting information.

Based on the above principles, in this paper, we propose an LSTM-DCNN algorithm for feature
extraction using 1DCNN and LSTM in parallel, where 1DCNN is used for spatial feature extraction
and LSTM is used for temporal feature extraction, which are then transmitted to a fully connected
neural network for information fusion and classification. To validate the performance of our LSTM-
1DCNN structure, LSTM-1DCNN is trained and evaluated using five publicly available datasets and
our self-built dataset. Furthermore, to validate the performance of the LSTM-1DCNN algorithm in
real-world applications, the trained HAR algorithm is deployed on Android phones. Experimental
results show that the proposed LSTM-1DCNN model can be well used for HAR and its HAR
performance can satisfactorily meet the actual requirements.

Section 2 of this paper reviews related work. Section 3 describes the proposed model structure.
Section 4 provides an analysis and discussion of the experimental results. Finally, Section 5 concludes
the paper.

2 Related Jobs

This section reviews related studies on HAR based on inertial sensors, focusing on two aspects:
data transformation and model structure.
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2.1 Data Transformation

The measured data sampled on the sensor needs to be transformed into an acceptable tensor,
which can then be handed over to the inertial sensor-based HAR algorithm to complete the training
and classification work. The CNN algorithm requires data transformation in two steps, including
alignment and mapping.

Alignment: Alignment is a method to transform measurement data into an image by combining
measurements from multiple axes of a triaxial sensor in a certain order. For example, the literature
[13,14] combined sensor data in the order of X, Y, and Z axes to form an image, and then hands it
over to an algorithm for training and classification. Experimental results show that the recognition
rates of the two papers on the Wireless Sensor Data Mining (WISDM) dataset are 95.7% and 98.8%,
respectively. Literature [15] used both triaxial sensor data from multiple locations on the human body
and data from non-triaxial sensors, using a different combination approach than the previous two
papers. For the triaxial sensors, the literature [15] combined the measured data according to the axes of
the sensors and used a two-dimensional Convolutional Neural Network (2DCNN) to extract features.
For non-triaxial sensors, instead of combining, the features are extracted directly using 1DCNN. The
experimental results of literature [15] showed the F1-scores of 0.9207 on the OPPORTUNITY dataset
and 0.9637 on the SKODA dataset, respectively.

Mapping: Measurements from multiple axes of the sensor are converted into images according
to some mapping relations, and then feature extraction is performed using an algorithm such as
2DCNN. The literature [16] utilized the accelerometer data to generate spectrogram images, effectively
capturing both temporal and frequency fluctuations in the signals. Consequently, this transforms
one-dimensional temporal data into a two-dimensional representation in the frequency domain.
Subsequently, a 2DCNN is employed to automatically extract informative features from this input
representation, resulting in high classification accuracy of 95.57 ± 2.54 (%), 93.45 ± 3.55 (%), 93.38
± 2.67 (%), and 93.13 ± 3.5 (%) on four datasets respectively. The mapping relationship used in the
literature [17] is that the sums of the X-axis and Y-axis sampling points of the measurement data are
used as the X-coordinate values of the blank image, while the sums of the X- and Z-axis sampling
points of the measurement data are used as the Y-coordinate values of the blank image, and the
values of the combined acceleration of the measured data are taken as the pixel values of the image.
The experimental results show that the literature [17] achieved a recognition rate of 96.95% on the
WISDM dataset. The mapping relationship used in the literature [18] is that the X- and Y-axis data
of the measured data are used as the coordinates of the pixel points and the values of the combined
acceleration are used as the pixel values. The experimental results show that the literature [18] had an
average recognition rate of 97.6% for six activities.

Literature [17] and literature [18] achieved the transformation from sensor measurement data to
grayscale image data through mapping. Unlike the previous two papers, the literature [19] achieved
the transformation from sensor measurement data to color images. The mapping relationship used
in the literature [19] is that the X-axis of the sensor data is mapped to the red channel component
of the image, the Y-axis is mapped to the green channel component, and the Z-axis is mapped to
the blue channel component to achieve the transformation from sensor measurement data to color
images. The experimental results show that the literature obtains two F1-scores of 90% and 92% for
regular activities (sitting, standing, walking, etc.) and non-regular activities (opening doors, turning
off refrigerators, switching lights on and off, etc.) on the OPPORTUNITY dataset, respectively.

In this paper of our study, the measurements are aligned and the transformed results are fed to
1DCNN for feature extraction.
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2.2 Model Structure

In the field of HAR based on inertial sensors, scholars use deep learning algorithms including
CNN, LSTM, Gated Recurrent Neural Network (GRU) [20–23], etc. Different deep learning algo-
rithms have different advantages. For example, CNN has strong spatial feature extraction capability
while LSTM has feature extraction capability with additional emphasis on time. It is sensible to com-
bine the advantages of different deep learning algorithms, hence numerous scholars have attempted to
mix multiple deep learning algorithms or improve the existing structure by adding different modules
to obtain better recognition results in HAR.

A hybrid algorithm of CNN and GRU was used in the literature [24]. Feature extraction is first
performed using a convolutional neural network, and then the extracted features are passed to the
GRU layer. The experimental results in this paper show that it achieves 94.6% and 93.4% recognition
rates for periodic and nonperiodic activities, respectively, on the Extrasensory Dataset (ESD).

A mixture of both CNN and LSTM algorithms for HAR was adopted in literature [25,26].
Literature [25] used 1DCNN for spatial feature extraction and then the extracted features are passed to
LSTM for temporal feature extraction. Experimental results in this literature show that the proposed
method can improve the activity recognition accuracy, with a recognition rate of 92.13% on the
University of California, Irvine (UCI) dataset.

Another cascade CNN-LSTM algorithm was proposed in the literature [26]. The algorithm is
trained and then evaluated on the UCI dataset. Its experimental results show that the cascaded CNN-
LSTM algorithm achieves a recognition rate of 95.01% on the UCI dataset. In addition, this literature
compared the size of the storage space occupied by multiple deep learning algorithms as a function
of classification time. Its experimental results show that the classification time of its cascaded CNN-
LSTM is approximately constant as the storage space occupied by the algorithm increases, while the
classification time of the LSTM increases significantly.

A cascade algorithm of CNN and Bi-LSTM was used to extract features in the literature [27].
The experimental results in this paper show that the proposed method achieves a 97.98% recognition
rate on the UCI dataset. Feature extraction using CNN and classification using Extreme Gradient
Enhancement (XGB) were adopted in the literature [28]. The experimental results in the literature [28]
show that this method can improve recognition performance and achieves a recognition rate of 90.59%
on the SisFall dataset.

In literature [29], the 2DCNN and the fully connected neural network were connected in parallel.
First, the time domain and the frequency domain features are extracted from the data, and then the
time domain features are handed over to the Fully Connected Network (FCN), and the frequency
domain features are handed over to the 2DCNN. Experimental results in this literature show that this
algorithm achieves a recognition rate of 90.8 percent for eight activities. The literature [30] connected
CNN and GRU in series, its experimental results show that the algorithm achieves recognition rates
of 96.2% and 97.21% on the UCI and WISDM datasets.

The literature [31] added the attention mechanism to 2DCNN in expecting a better performance.
The experimental results presented in this paper show that the proposed algorithm achieves F1-score
of 0.8064 and 0.9569 on UCI and WISDM datasets, respectively. In literature [32], three CNNs were
connected in parallel, and these three CNNs use different convolutional kernel sizes. Experimental
results show that the proposed algorithm achieves a 97.49% recognition rate on the UCI dataset.
Literature [12] used residual blocks to extract the spatial features of sensor signals and a Bi-LSTM
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to extract the anterior-posterior correlation of the feature sequences. Experimental results show that
the proposed algorithm achieves a recognition rate of 97.32% on the WISDM dataset.

In summary, most of the current work on HAR focuses on data transformation and model
structure. The purpose of data transformation is normally the transformation of measurement data
to image data. As for the work done on model structure, mainly algorithmic mixing, it originates from
a variety of principles and purposes, which are not discussed in detail here. In this paper, by referring
to the aforementioned research work, we revisit the data transformation and model structure and
propose the LSTM-1DCNN algorithm, which is expected to extract their spatial and temporal features
from the measured data to improve the recognition effect.

3 Methods

This section describes the basic structure and fundamentals of the proposed LSTM-1DCNN
algorithm.

3.1 1DCNN

CNN is a type of neural network that specializes in processing array structured data, such as image
data. 2DCNN has achieved a series of significant achievements in the image domain, and 1DCNN
has achieved excellent evaluation metrics in time series classification, but 1DCNN has been applied
relatively less than 2DCNN, thus scholars know more about 2DCNN than 1DCNN.

The main difference between 1DCNN and 2DCNN is the way the convolution kernel is moved.
2DCNN performs convolution operations along the vertical and horizontal directions of the image,
hence it is referred to as 2D convolution. However, when the 1DCNN performs the convolution oper-
ation, the convolution kernel is only convolved in one dimension, hence it is called one-dimensional
convolution. The one-dimensional convolution moves in the manner shown by the blue rectangular
box in Fig. 1. Again, the most significant difference between 1D and 2D pooling is the difference in
the shift dimension of the pooling window, and there is no essential difference between the two pooling
operations.

Figure 1: Schematic of the principles of 1DCNN and Maxpooling1D
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3.2 LSTM

LSTM is a variant of Recurrent Neural Network (RNN), which implements information protec-
tion and control through three basic structures: forgetting gate (red rectangular part in Fig. 2), input
gate (green rectangular part in Fig. 2), and output gate (yellow rectangular part in Fig. 2), and the
principle schematic of LSTM is shown in the diagram of Fig. 2.

Figure 2: Schematic of the LSTM architecture in principle

How much information can be retained from the internal state Ct−1 at the previous moment is
determined by the forgetting gate. How much information from the candidate state �Ct can be retained
at the current moment is determined by the input gate. How much information is output from the
internal state Ct to the external state ht is determined by the output gate.

3.3 LSTM-1DCNN

Feature extraction is particularly crucial for HAR. To be able to extract temporal and spatial
features of the measured data, we propose an LSTM-1DCNN algorithm that extracts temporal and
spatial features in parallel through two branches; the structure of LSTM-1DCNN is shown in Fig. 3.

Each block of 1DCNN in Fig. 3 includes a convolutional layer, a batch normalization layer, an
activation function, and a maximum pooling layer, the structure of which is shown schematically in
Fig. 4.

Figure 3: The principle schematic of LSTM-
1DCNN

Figure 4: Block structure of 1DCNN

The first branch of the LSTM-1DCNN is the 1DCNN for extracting spatial features. This branch
consists of a stack of five convolutional layers, pooling layers, etc. The pattern in the first branch is
that the number of convolutional kernels is 32, 64, 128, 256, and 512, respectively, and the size of the
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convolutional kernels is kept constant at 9 for all. The 1DCNN branch constructed according to this
schema allows the convolutional layer at the top of the algorithm to have a larger receptive field, which
improves the ability of the algorithm for spatial feature extraction.

The second branch of LSTM-1DCNN is the LSTM for temporal feature extraction, which
consists of two LSTM layers, both of which use 100 hidden layer nodes. The LSTM contains a
mechanism to carry information across multiple time steps, allowing information to be saved for later
use and thus preventing the problem of early signal fading during signal processing.

1DCNN and LSTM are two deep learning algorithms with completely different principles, which
extract data features from a spatial and temporal perspective, respectively. The parallel connection of
the two algorithms enables parallel extraction of spatio-temporal features, which are passed to the
fully connected neural network after concatenation.

The spatial and temporal features contained in the data are equally relevant, and the temporal
and spatial features obtained by LSTM-1DCNN are based on the following considerations.

Temporal features are those obtained by sequentially computing all samples in the measured data
using an LSTM, which constructs a corresponding number of recurrent cells according to the number
of samples and computes the samples according to their order. Each loop cell accepts the internal state
and hidden layer state of the previous loop cell, as well as the information of the current sample, and
selectively adds and forgets information to control the information accumulation rate. In this paper,
we choose as output the hidden layer state of the last recurrent unit, which includes the information
of all previous recurrent units and samples. Therefore, in this paper, we consider that LSTM is able to
extract temporal features of measured data.

Spatial features are those obtained by the 1DCNN operating on an image composed of mea-
surements. Unlike LSTM, 1DCNN does not consider the temporal relationship between two samples
before and after convolution when using convolution kernels for feature extraction, and essentially
operates the measured data as an image, so the extracted features are spatial. In this paper, we argue
that 1DCNN can extract spatial features of measurement data by sliding convolution.

Overall, the features obtained by LSTM and 1DCNN do not have a similar clear physical meaning
as those obtained by traditional feature engineering. However, the above understanding of temporal
and spatial features in this paper has an unambiguous physical meaning.

The purpose of the proposed LSTM-1DCNN algorithm is to achieve the highest possible HAR
performance when collecting data using a single triaxial accelerometer. Currently, some scholars
use 1DCNN and LSTM to make a serial information fusion for HAR. However, we believe that
serial processing of spatio-temporal information leads to information disorder since serial processing
violates the physical relation between time and space. Therefore, in this paper, we propose parallel
extraction of temporal and spatial features to obtain as much valid information as possible on
raw measurement data and improve the recognition effect of HAR. This approach is more in line
with the fundamental principles of joint temporal and spatial analysis and has further potential for
development.

3.4 Data Pre-Processing

After data collection, the data needs to be preprocessed, which includes steps such as window
partitioning, filtering, and data normalization. The data preprocessing procedure is shown in Fig. 5.
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Dataset Window partitioning Filtering Normalization
 

Figure 5: Pre-processing of the data

Currently, two types of time windows are commonly used in the field of HAR, one is a short
time window of 1 to 3 s [33–36], and the other is a prolonged time window of 10 s or more [37,38],
with the former being more commonly used. The study mentioned in reference [36] explores the
impact of different sliding window lengths on evaluation metrics for classification algorithms, with
a specific focus on the effect on F1-scores. Eight sliding window lengths ranging from 0.5 to 4 s with
0.5-s intervals were analyzed, and their effects on the evaluation metrics were examined. Experimental
results show that when the window length is less than 3.5 s, the F1-score also increases with the window
length. However, when the window length is larger than 3.5 s, the F1-score decreases as the window
continues to increase. Therefore, literature suggests that results are better when the sliding window is
3 s, and that long or short time windows lead to a reduction in evaluation metrics.

Given the sampling frequency of the datasets used in this paper, we decided to use 2.56 s as the
length of the sliding window, with a sliding window overlap rate of 50%. A schematic of the sliding
window is shown in Fig. 6.

Figure 6: Schematic of a sliding window

Some algorithms are particularly sensitive to data normalization, such as neural networks and
Support Vector Machine (SVM), while decision trees and random forests do not have a mandatory
requirement. Considering that the algorithms used in this paper include multiple algorithms such
as decision trees and SVM, which require normalization of the data, this paper uses max-min
normalization to scale the data.

Various types of noise are unavoidable during data collection. Some scholars use filtering
algorithms to minimize the contamination of the sampled data by noise as much as possible. Common
filtering algorithms include sliding median filtering [19], mean filtering [35], and Butterworth low-pass
filtering [39]. To suppress the effect of noise on the data, median filtering is used to reduce noise.

Normalization typically refers to the method of converting data features to the same scale,
such as mapping data features to [0,1] or following a standard normal distribution with a mean of
0 and a variance of 1, etc. Common normalization methods include max-min normalization and
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standardization, among others. Some algorithms are extremely sensitive to data normalization, such as
neural networks and SVM, while decision trees and random forests have no mandatory requirements.
Considering that the algorithms used in this paper include multiple algorithms such as decision trees
and SVM, which require normalization of the data, this paper uses max-min normalization to scale
the data.

4 Experiments and Discussions

This section describes the following four aspects:

1.Basic information on the five publicly available datasets and the self-constructed dataset used
in the experiments of this paper.

2. Performance of the proposed LSTM-1DCNN algorithm on various datasets.

3. Comparison of HAR performance of different algorithms and different scholars on publicly
available datasets.

4. The deployment of the training results of the proposed LSTM-1DCNN algorithm proposed in
this paper on Android phones.

4.1 Datasets

Human activity is extremely complex. When performing data collection on human activity,
measurements can be affected by numerous factors. These influence factors include the sampling
frequency of the sensor, the position of the fixation, the degree of fixation, and whether the activity
of the experimenter is tightly constrained. The quality of the data itself can considerably affect the
evaluation metrics of the recognition algorithms.

In order to evaluate the performance of the proposed LSTM-1DCNN algorithm, five commonly
used public datasets in the field of HAR and a few self-built datasets are used for algorithm
performance evaluation. The five publicly available datasets include: the UCI dataset [39], the WISDM
dataset [40], the MotionSense dataset [41], the PAMAP2 dataset [42], and the MHEALTH dataset
[43,44]. The basic information of the six datasets is described below.

The UCI dataset contains inertial measurements generated from 30 volunteers aged 19 to 48
who performed a total of six daily life activities: standing, sitting, lying, walking, going upstairs and
downstairs. The inertial data were collected using a triaxial accelerometer and a triaxial gyroscope
embedded in a smartphone (Samsung Galaxy SII) which is fixed to the volunteers’ waist. The sensors
are sampled at 50 Hz to collect triaxial acceleration signals and triaxial angular velocity signals
generated during human activity.

The WISDM dataset contains triaxial acceleration data from 36 volunteers performing activities
that were collected in the categories of walking, jogging, walking upstairs, walking downstairs, sitting,
and standing. To collect the data, the volunteers placed their smartphones in their trouser pockets
and the sensors were sampled at 20 Hz to collect the triaxial acceleration signals generated by their
activities.

The MotionSense dataset collected data from 24 volunteers of different genders, ages, weights,
and heights for six activities, including walking upstairs and downstairs, walking, jogging, standing,
and sitting under the same conditions. During data collection, all volunteers had their smartphones in
their trouser pockets and the sensors were sampled at 50 Hz.
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The PAMAP2 dataset collected acceleration data from 9 volunteers for 18 activity types. The
dataset collected acceleration data from three different locations on the human body (chest, hand,
and ankle) at a sampling frequency of 100 Hz.

The MHEALTH dataset collected acceleration data from 10 volunteers for 12 different activities.
The types of activities included standing, sitting, cycling, and jogging. The dataset collected accel-
eration data of human activities at three locations (chest, right wrist, and left ankle) at a sampling
frequency of 50 Hz.

The self-built dataset in this paper collected acceleration data from three volunteers for seven
typical human activities. Activity types include sitting, standing, walking, lying, walking upstairs,
walking downstairs, and running. The datasets were collected by mobile phones (HONOR V30Pro)
in the volunteers’ trouser pockets using a sampling frequency of 50 Hz.

The problem studied in this paper is typical of HAR algorithms using a single triaxial accelerom-
eter, but the aforementioned datasets contain measurements from multiple sensors, multiple mount
locations, and multiple human activities. Therefore, these datasets were split and selected for use in
this paper, with only a subset of the activity samples selected from the publicly available datasets. The
data for some of the activities used in this paper are given in Table 1.

Table 1: Data from some of the activities in the publicly available datasets used in this paper

UCI WISDM MotionSense PAMAP2 MHEALTH Paper (self-built)

Standing √ √ √ √ √ √
Sitting √ √ √ √ √ √
Lying √ × × √ √ √
Walking √ √ √ √ √ √
Jogging × √ √ × √ √
Upstairs √ √ √ √ √ √
Downstairs √ √ √ √ × √
Cycling × × × √ √ ×
Running × × × √ √ ×

Of the six datasets mentioned above, UCI, WISDM, MotionSense, and the self-built dataset in
this paper use a single body location to collect acceleration data. As the PAMAP2 and MHEALTH
datasets use three body locations to collect acceleration data, a total of 10 body locations of
acceleration data are available for training and evaluation. In Table 1, blanks with a check mark (√)
indicate that the dataset contains the data of that activity and is used in this paper, and blanks with a
cross mark (×) indicate that the dataset does not contain the data of that activity and is not used in
this paper.

In this paper, the datasets are divided into several recognition cycles using a sliding window of
length 2.56 s with a 50% overlap. The data are divided into training sets and test sets according to the
75% and 25% ratio. The number of samples is given in Table 2.
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Table 2: Number of recognition cycles in each dataset

UCI WISDM MotionSense PAMAP2 MHEALTH Paper (self-built)

Train 7724 32748 16154 7412 2820 16287
Test 2575 10916 5385 2471 940 5430
Total 10299 43664 21539 9883 3760 21717

4.2 Evaluation Metrics

The numbers of samples in the HAR public datasets are different, and to accurately evaluate
the HAR algorithm proposed in this paper, the macro-average F1-score was used in this paper as an
evaluation metric, evaluation metrics for comparison between the LSTM-1DCNN in this paper and
other common algorithms, as shown in Table 3.

Table 3: F1-scores of different algorithms on the 5 datasets

Decision tree Random forest SVM 1D CNN LSTM LSTM-1DCNN

MHEALTH
Chest 96.69% 99.58% 89.6% 97.37% 95.32% 98.42%
Wrist 95.04% 97.65% 90.1% 99.79% 98.63% 99.68%
Ankle 97.76% 98.83% 91.03% 97.9% 98.95% 99.27%

PAMAP2
Chest 90.08% 93.79% 85.41% 92.4% 90.54% 92.82%
Wrist 84.17% 90.73% 69.85% 90.36% 88.3% 90.36%
Ankle 87.22% 92.41% 84.12% 91.53% 90.21% 92.02%

UCI 76.04% 79.78% 83.06% 95.97% 96.43% 96.52%
WISDM 86.95% 93.94% 85.74% 97.58% 97.7% 97.87%
MotionSense 85.24% 91.84% 78.75% 96.72% 97.7% 97.23%
Paper (self-built) 93.93% 97.72% 89.92% 97.70% 97.79% 98.02%
Average 89.31% 93.63% 84.76% 95.73% 95.16% 96.22%
Std 0.06 0.05 0.06 0.03 0.03 0.03

The average recognition rate, macro-average precision, macro-average recall, and macro-average
F1-score (hereafter they refer to as Accuracy, Precision, Recall, and F1-socre) are used to evaluate the
performance of the HAR algorithm constructed in this paper on several publicly available datasets, as
shown in Table 4. These metrics are defined below.

Table 4: Evaluation results of the proposed LMST-1DCNN based on each dataset

MHEALTH PAMAP2 UCI WISDM Motion-
Sense

Paper
(self-built)Chest Wrist Ankle Chest Wrist Ankle

Accuracy 98.4% 99.68% 99.26% 91.87% 90.41% 92.55% 96.31% 98.49% 97.57% 98.16%
Precision 98.44% 99.69% 99.27% 92.50% 90.66% 93.55% 96.52% 97.79% 97.38% 98.00%
Recall 98.42% 99.68% 99.27% 91.64% 90.16% 92.28% 96.52% 97.97% 97.10% 98.05%
F1-score 98.42% 99.68% 99.27% 92.02% 90.36% 92.82% 96.52% 97.87% 97.23% 98.02%
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Average recognition rate: the number of accurately predicted samples divided by the number of all
samples. The formula is given in Eq. (1).

Accuracy = TP + TN
TP + TN + FP + FN

(1)

Precision: it describes how many of the samples predicted to be positive are positive. It is computed
as in Eq. (2).

Precision = TP
TP + FP

(2)

Recall: it characterizes how many positive samples are predicted to be positive. It is computed as
shown in Eq. (3).

Recall = TP
TP + FN

(3)

F1-score: harmonic mean of precision and recall. The formula for its computation is given in
Eq. (4).

F1 − score = 2 ∗ precision ∗ recall
precision + recall

(4)

In the above equations, True Positive (TP) indicates the number of samples in which positive cases
are predicted to be positive, True Negative (TN) indicates the number of samples in which negative
cases are predicted to be negative, False Positive (FP) indicates the number of samples in which negative
cases are predicted to be positive, and False Negative (FN) indicates the number of samples in which
positive cases are predicted to be negative.

4.3 Experimental Analysis

All experiments were run on a Dell T640 workstation with a 24 GB NVIDIA RTX6000 video card
and 256G RAM, and all algorithms were run on Python 3.6, Tensorflow 2.1.0, and Keras 2.3.1.

The algorithmic hyperparameters of LSTM-1DCNN are introduced in the order from the bottom
layer to the top layer. The 1DCNN branch of LSTM-1DCNN uses a convolutional kernel size of 9,
and the number of convolution kernel is 32, 64, 128, 256, and 512, respectively. The number of hidden
layer nodes of the LSTM branch is 100. The number of hidden layer nodes of the fully connected
neural network layer is 128, 64, 8, or 6, respectively (the number of hidden layer nodes of the fully
connected neural network near the top layer depends on the type of activity in the dataset), the two
fully connected neural network layers near the bottom use the Relu activation function, and the fully
connected neural network layer near the top uses the Softmax activation function. The batch size of
LSTM-1DCNN is 128, the number of iterations (epochs) is 240, the verification set proportion is 20%,
the optimizer is Adam, and the learning rate reduction mechanism is used. The monitoring metric is
set to val_loss, which decreases the learning rate when val_loss does not shift within 10 epochs.

4.3.1 Experimental Results

To enable a comprehensive evaluation of the LSTM-1DCNN algorithm, the LSTM-1DCNN is
trained and evaluated on six datasets using the same algorithm structure and hyperparameters.

As shown in Table 4, the proposed LSTM-1DCNN algorithm is able to achieve excellent recogni-
tion results on six datasets. The F1-score on publicly available datasets ranges from 90.36% to 99.68%.
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The F1-score on the self-built dataset is 98.02%. Experimental results show that the evaluation metrics
of the proposed LSTM-1DCNN algorithm significantly outperform the results of most known studies.

Table 4 shows that the PAMAP2 dataset has significantly lower evaluation metrics compared to
the other four datasets. With the exception of the PAMPA2 dataset, the F1-score ranges from 96.52%
to 99.68% for the other five datasets.

The most significant difference between PAMAP2 and the other four datasets was the sampling
frequency of the sensors (As for other factors, we cannot confirm. For example, in the process of data
collection, whether the activities of the experimenter are strictly regulated and whether the sensor is
firmly fixed). The HAR research does not have a strict requirement for the sampling frequency of
the sensors, so the sampling frequency used varies from dataset to dataset. For example, the sensor
sampling frequency of the PAMAP2 dataset is 100 Hz, and the sampling frequencies of the other
datasets are 20 and 50 Hz.

What difference will the different sampling frequencies make? For HAR algorithms, the division
of the recognition period is a key step in the data processing, and different sampling frequencies lead to
different numbers of samples within the same recognition period. We compared the different sampling
frequencies through the following set of experiments, thereby verifying whether the sampling frequency
of the PAMAP2 dataset is too high, which leads to the degradation of the evaluation metrics of the
proposed LSTM-1DCNN.

In the following confirmation experiments, the sensor data of the PAMAP2 dataset are downsam-
pled to obtain PAMAP2 with sampling frequencies of 20 and 50 Hz, and the proposed LSTM-1DCNN
is trained and evaluated on the downsampled data. The evaluation results for the PAMAP2 dataset at
different frequencies are shown in Table 5, and the F1-score pairs are shown in Fig. 7.

Table 5: Metrics evaluated at different sampling frequencies for the PAMAP2 dataset

20 Hz 50 Hz 100 Hz

Chest Wrist Ankle Chest Wrist Ankle Chest Wrist Ankle

Accuracy 91.26% 88.39% 91.5% 91.42% 90.73% 92.35% 91.87% 90.41% 92.55%
Precision 91.99% 88.36% 92.69% 92.02% 91.05% 93.26% 92.5% 90.66% 93.55%
Recall 91.2% 87.89% 91.16% 91.14% 90.28% 92.03% 91.64% 90.16% 92.28%
F1-score 91.54% 88.05% 91.8% 91.52% 90.59% 92.55% 92.02% 90.36% 92.82%

Figure 7: Comparison of F1-scores for different sampling frequencies
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As shown in Table 5 and Fig. 7, there is no significant difference in the evaluation metrics using
the proposed LSTM-1DCNN at the sampling frequencies of 20, 50, and 100 Hz. This indicates that
for the proposed LSTM-1DCNN, the effect of sampling frequency on the recognition results is minor
and does not lead to significant performance gains or losses. Therefore, the main difference between
the PAMAP2 dataset and the others, namely the sampling frequency of 100 Hz, is not the main
reason for its significantly lower evaluation metric. Since this phenomenon occurs only in the PAMPA2
dataset and is not consistent with the phenomenon shown in other datasets, it can be assumed that
it is caused by some proprietary factor in the PAMPA2 dataset, which cannot be confirmed by some
known factors.

4.3.2 Comparison Experiments

To compare the different performances of the proposed LSTM-1DCNN algorithm with other
HAR algorithms, different algorithms are trained and evaluated on the same datasets in this section.
The results of the comparison are shown in Table 3.

When comparing experiments using decision trees, random forests, and SVM, feature engineering
of sensor measurements is required and then the features are given to the algorithm for training.
In this paper, the X-axis, Y-axis, Z-axis, and the space vector’s amplitude of triaxial acceleration

(Acc =
√

A2
x + A2

y + A2
z) are selected to extract 56 time-domain features. The extracted features

include mean, variance, percentile, kurtosis and skewness, among others. It is expected that these time-
domain features can characterize the differences between different activities and enhance the model
performance.

Table 3 shows the evaluation metrics of different algorithms on different datasets. To facilitate the
evaluation of the F1-score of different algorithms on different datasets, we calculate the mean and
standard deviation of the F1-score of different algorithms on different datasets.

Based on the mean and standard deviation of the F1-score of the same algorithm on different
datasets, it can be seen that the proposed LSTM-1DCNN algorithm performs the best with a mean of
96.22% and a standard deviation of 0.03. The highest mean and standard deviation of the F1-score of
the three traditional machine learning algorithms on different datasets is 93.63% and 0.05, respectively.
This shows that the performance robustness of the three traditional machine learning algorithms on
different datasets is relatively poor. This paper argues that the fundamental reason for this situation is
that all three machine learning algorithms require feature engineering, and it is difficult to ensure that
the features designed by humans in feature engineering can identify the differences between different
activities. However, what distinguishes deep learning from traditional machine learning is its ability to
automatically extract features, which is the main reason why deep learning algorithms perform better
than traditional machine learning algorithms.

When training and evaluating 1DCNN and LSTM on different datasets, the mean and standard
deviation of the optimal F1-score are found to be 95.73% and 0.03, which is slightly worse than the
evaluation metric of the LSTM-1DCNN algorithm. We conclude that the proposed LSTM-1DCNN,
which can extract both temporal and spatial features, can outperform both 1DCNN and LSTM
algorithms.

To facilitate a visual comparison of the performance differences between the different algorithms,
Fig. 8 compares the F1-score of the different algorithms. As shown in, the F1-score of deep learning
algorithms fluctuates considerably less than traditional machine learning algorithms. For example,
the random forest algorithm achieves superior F1-score on the MHEALTH and PAMAP2 datasets,
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but lower F1-score on datasets such as UCI, and the performance fluctuates more across datasets.
Deep learning algorithms can guarantee a steep F1-score on each dataset, with less fluctuation in
performance across different datasets. Moreover, the comparison of the six algorithms shows that
LSTM-1DCNN performs the best on the six datasets, achieving the highest mean F1-score and the
lowest F1-score standard deviation.

Figure 8: Comparison of evaluation metrics for various algorithms on six datasets

To compare with the results of different scholars in the field of HAR in recent years, Table 6
collects the recognition results of some scholars on five publicly available datasets. The proposed
LSTM-1DCNN algorithm uses the same algorithmic structure and hyperparameters on different
datasets. Under this premise, the performance of the proposed LSTM-1DCNN algorithm is at a strong
level among peer studies. Therefore, it can be shown that the proposed LSTM-1DCNN algorithm is
state-of-the-art and reasonable.

Table 6: Comparison of accuracy of some recent papers based on 5 datasets

MHEALTH PAMAP2 UCI WISDM Motion-
SenseChest Wrist Ankle Chest Wrist Ankle

Literature [12] – – – 97.15% – 97.32% –
Literature [24] – – – – – – 92.13% – –
Literature [25] – – – – – – 95.01% – –
Literature [26] – – – – – – 97.98% – –
Literature [30] – – – 95.27% 96.20% 97.21% –
Literature [32] – – – – – – 97.49% – –
Literature [45] 98.76% – – – 93.11% – –
Literature [46] 91.66% – – – – – –
Literature [47] 99.8% – – – – – –

(Continued)
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Table 6 (continued)

MHEALTH PAMAP2 UCI WISDM Motion-
SenseChest Wrist Ankle Chest Wrist Ankle

Literature [48] – – – 91.66% 93.21% – –
Literature [49] – – – 96.70% – – –
Literature [50] – – – 94.16% – – –
Literature [51] – – – 91.25% 91.83% – 92.16%
Literature [52] – – – – – – – – 95.01%
Literature [53] – – – – – – – – 93.16%
This paper 98.40% 99.68% 99.26% 91.87% 90.41% 92.55% 96.31% 98.49% 97.57%

Different datasets contain different types of activities, which will affect the number of nodes in
the fully connected layer near the top layer (the number of nodes is consistent with the number of
classification categories), so that the number of algorithm parameters in different data sets is different,
as shown in Table 7.

Table 7: Comparison of the number of parameters

MHEALTH PAMAP2 UCI WISDM MotionSense

Literature [12] 185376 71462
Literature [45] 634052 634052
Literature [54] 1176972
Literature [55] 3510000
Literature [56] 686628
Literature [57] 189446 189446
This paper 1782472 1782472 1782342 1782342 1782342

4.4 Model Deployment

Deployment of HAR algorithms is an influential part of HAR research. In this paper, model
deployment is performed using the Simulink tool of Matrix Laboratory (MATLAB) software. MAT-
LAB’s Simulink has a greatly powerful capability to generate Android programs for data acquisition
and simple display of smartphone built-in sensors, so this paper only needs to consider the deployment
of the forward computation process of our algorithm to smartphones.

The LSTM-1DCNN algorithm is first built using the MATLAB deep learning toolbox, where
the structure and hyperparameters of the algorithm are the same as in the previous sections, and then
re-trained and evaluated on a self-built dataset, after which the weights of each layer of the training
results are saved.

The process of classifying a fresh set of measurements by the LSTM-1DCNN algorithm is the
forward computation process of the LSTM-1DCNN, which is essentially the operation between the
weight matrix of each layer of the algorithm and the measurements. The focus of the algorithm
deployment is on how to implement the sampling of the data and the forward computation of the
algorithm on the device.

In Simulink, the convolutional layer and pooling layer of the LSTM-1DCNN algorithm is firstly
encapsulated into nine modules, and the trained weights are loaded in each module, and then the nine
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modules are called and connected several times according to the algorithm structure, to realize the
forward computation process of LSTM-1DCNN algorithm, as shown in Fig. 9. Finally, the Android
program is generated and deployed on a smartphone. The running interface of the Android program
is shown in Fig. 10.

Figure 9: Structure of the LSTM-1DCNN algorithm in Simulink

Figure 10: Deployment of LSTM-1DCNN on a smartphone

All previous algorithmic comparison works were implemented with Python programming, and
the MATLAB platform was only used in the deployment work. To ensure that the deployment results
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are consistent with previous work, this paper compares two means of implementing the algorithm in
Python and MATLAB. As shown in Table 8, both implementations have the same recognition rate.

Table 8: Evaluation metrics on self-built datasets for MATLAB and Python

Activities Python MATLAB

(Metrics) Precision Recall F1-score Precision Recall F1-score

Jogging 98.41% 98.80% 98.61% 99.20% 98.80% 99.00%
Upstairs 94.57% 97.75% 96.13% 91.58% 97.75% 94.57%
Downstairs 100.00% 97.53% 98.75% 98.73% 96.30% 97.50%
Walking 99.47% 98.95% 99.21% 99.47% 98.43% 98.95%
Lying 96.51% 96.30% 96.41% 96.72% 96.09% 96.40%
Standing 97.70% 97.53% 97.62% 97.88% 97.53% 97.70%
Sitting 99.33% 99.47% 99.40% 99.87% 99.34% 99.60%
Macro avg 98.00% 98.05% 98.02% 97.56% 97.82% 97.67%

Accuracy 98.16% 98.16%

In practice, the confusion matrix of HAR for mobile phone applications is shown in Table 9, and
the evaluation metrics of the proposed LSTM-1DCNN algorithm are computed in Table 10.

Table 9: Confusion matrix of the algorithm under practical tests

Identified activities

Jogging Walking Upstairs Downstairs Standing Sitting Lying

Actual
activities

Jogging 166 0 2 0 0 0 0
Walking 0 141 5 10 2 0 0
Upstairs 0 0 81 1 0 0 0
Downstairs 0 0 2 61 1 0 0
Standing 0 0 2 0 214 0 0
Sitting 0 0 2 0 0 255 0
Lying 0 0 2 0 0 0 349

As can be seen from Table 10, in practice the accuracy is 84.38% for going upstairs, 84.72% for
going downstairs, and 98.62% above for other activities. In addition, the F1-score for the downstairs
was the lowest at 89.71%, while for the other activities it was above 91.01%. Therefore, the recognition
rate of the proposed LSTM-1DCNN algorithm proposed in this paper to identify the above seven
human activities is 97.76%. Therefore, it is reasonable to assume in this paper that this mobile
application is capable of performing HAR accurately and that the deployment has achieved its
intended goal.
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Table 10: Evaluation metrics of LSTM-1DCNN under practical tests

Precision Recall F1-score

Jogging 100% 98.81% 99.4%
Walking 100% 89.24% 94.31%
Upstairs 84.38% 98.78% 91.01%
Downstairs 84.72% 95.31% 89.71%
Standing 98.62% 99.07% 98.85%
Sitting 100% 99.22% 99.61%
Lying 100% 99.43% 99.71%
Accuracy 97.76%

5 Conclusions

In this paper, we propose an LSTM-1DCNN algorithm for HAR using a triaxial accelerometer.
The algorithm contains two branches to extract both temporal and spatial features of the measured
data. The algorithm is compared with five additional HAR algorithms (Decision Tree, Random Forest,
Support Vector Machine, 1DCNN, and LSTM), and the algorithm is trained and evaluated on five
publicly available datasets and self-built datasets. The evaluation metrics show that LSTM-1DCNN
outperforms the remaining five algorithms in terms of recognition performance.

Moreover, the evaluation metrics of the LSTM-1DCNN algorithm are excellent when compared
to related studies by other scholars. The reason for the excellent evaluation metric of LSTM-1DCNN
is that the algorithm is able to extract both temporal and spatial features of the measured data and
achieve joint temporal-spatial analysis.

To validate the performance of the LSTM-1DCNN algorithm in practice, the training results of
the proposed algorithm are deployed in Android phones, and the actual tests show that the LSTM-
1DCNN algorithm can accurately recognize seven typical human activities.

Currently, HAR is mainly performed on typical human activities, including walking, running,
standing, sitting, lying, going upstairs, going downstairs, etc. The recognition of human events (falls,
collisions, rollovers, etc.) and transitional activities (sitting to walking, walking to running, etc.) is
expected but barely performed yet. Therefore, the LSTM-1DCNN algorithm will be applied to other
HAR tasks.

In addition, the LSTM-1DCNN algorithm with joint temporal-space analysis capability can be
applied to many additional domains, such as classification of sensor signals, mental state detection,
physiological state detection, and mechanical vibration detection.
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