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ABSTRACT

Visual simultaneous localization and mapping (SLAM) is crucial in robotics and autonomous driving. However,
traditional visual SLAM faces challenges in dynamic environments. To address this issue, researchers have proposed
semantic SLAM, which combines object detection, semantic segmentation, instance segmentation, and visual
SLAM. Despite the growing body of literature on semantic SLAM, there is currently a lack of comprehensive
research on the integration of object detection and visual SLAM. Therefore, this study aims to gather information
from multiple databases and review relevant literature using specific keywords. It focuses on visual SLAM based
on object detection, covering different aspects. Firstly, it discusses the current research status and challenges in this
field, highlighting methods for incorporating semantic information from object detection networks into mileage
measurement, closed-loop detection, and map construction. It also compares the characteristics and performance
of various visual SLAM object detection algorithms. Lastly, it provides an outlook on future research directions
and emerging trends in visual SLAM. Research has shown that visual SLAM based on object detection has
significant improvements compared to traditional SLAM in dynamic point removal, data association, point cloud
segmentation, and other technologies. It can improve the robustness and accuracy of the entire SLAM system and
can run in real time. With the continuous optimization of algorithms and the improvement of hardware level, object
visual SLAM has great potential for development.
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1 Introduction

SLAM (Simultaneous localization and mapping) can help robots achieve the task of obstacle
avoidance and navigation in unknown environments and is an indispensable component of robot
intelligence. Its localization and mapping functions are widely used in various fields such as augmented
reality [1,2], driverless [3], logistics navigation [4], medical devices [5,6], and map reconstruction [7,8].

There are two mainstream SLAM techniques, namely Lidar SLAM and visual SLAM (VSLAM).
The basic principle of Lidar SLAM is to acquire the depth information of the environment by Lidar
sensors and then use this information for simultaneous localization and map building. Its main steps
include scan matching, feature extraction, data association, state estimation, and map update. The
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LiDAR sensor can calculate the accurate distance information of all objects through the laser round-
trip time, so high localization and map-building accuracy can be achieved. In addition, Lidar is
more stable in environments with changing lighting conditions, low light, or darkness. Lidar uses its
light source to emit the laser beam and is therefore not disturbed by external light. Visual SLAM
derives its information from cameras, which have low manufacturing costs and real-time access to
the surrounding information, so visual SLAM has developed rapidly in recent years. Visual SLAM
calculates the actual distance and direction of an object based on its position in the images. There
are also many SLAM systems incorporating IMU sensors [9], which utilize the visual localization
information to estimate the zero-bias of the IMU and reduce the cumulative error of the IMU caused
by the zero-bias; on the contrary, the IMU can provide the vision with localization during fast
motion as well as preventing the vision from tracking failures due to image occlusion, so the IMU
and the camera can perfectly complement each other’s strengths. Traditional visual SLAM treats the
nearby environment as static, which brings him a great limitation in dynamic environments, such as
pedestrians on the street side and vehicles running on the highway, and these dynamic objects can
seriously affect the accuracy of localization and cause bias in environment building. In addition, in
the case of sparse or occluded feature points, visual SLAM will lose tracking and have poor loop
closure detection.

Since visual SLAM alone has many drawbacks, many scientists and scholars try to incorporate
semantic information into visual SLAM to improve the localization accuracy and robustness greatly,
and the commonly used methods based on deep learning to extract image semantic information
include object detection [10–12], semantic segmentation [13,14] and instance segmentation [15], as
shown in Fig. 1, all three techniques in visual SLAM have notable performance in visual SLAM. For
example, Zhang et al. [16] used the YOLOv3 [17] object detection algorithm to detect potential objects
by first obtaining the object region using RGB images, then using k-means clustering for the object
region in the depth map to obtain the object mask, and finally using a multi-view geometric approach
to determine the motion of the object. Han et al. [18] filtered dynamic objects by adding a new semantic
segmentation thread. PSPNet-SLAM rejects dynamic feature points in two steps, firstly, optical flow
is calculated for all feature points, and those with optical flow values greater than a certain range
are set as dynamic points, the second step is to use the semantic segmentation network to obtain
dynamic object masks to remove the feature points remaining in the dynamic object region, and after
two screenings, complete static feature points are obtained, which improves the localization accuracy
of SLAM in dynamic environments. Reference [19] used the more effective 2D instance segmentation
module to extract the semantic information of potential dynamic objects, and in order to achieve the
real-time requirement, the neural network is trained offline first then the real-time image is processed
online, and finally the multimodal fusion module is used to further enhance the segmentation effect
and remove the dynamic objects, which has excellent robustness in complex environments.

The advantage of object detection over semantic segmentation and instance segmentation is
reflected in its real-time nature, which is one of the reasons why it is widely used in SLAM systems.
The combination of target detection and visual SLAM also faces many difficulties, and the target
detection algorithm based on deep learning is limited by external conditions and has a large upside
from hardware to algorithms. The following are the challenges of deep learning-based target detection
and the research difficulties of object SLAM, respectively.
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Figure 1: Semantic information acquisition

The application of deep learning in the field of object detection has made significant progress, but
it also faces some challenges:

(1) Requires a large amount of annotation data: Deep learning requires a large amount of
annotation data for training, but obtaining annotation data requires manual participation, which is
time-consuming, labor-intensive, and costly.

(2) The generalization ability of the model is limited: the deep learning model is prone to
overfitting, that is, it performs well in training data, but poorly in test data.

(3) There are many types and quantities of targets: Deep learning object detection algorithms
require recognition and localization of different types and quantities of targets, which puts higher
demands on the complexity and computational resource requirements of the model. In complex scenes,
multiple target objects may appear simultaneously, which makes target localization and recognition
more difficult.

(4) The shape and scale of the target vary greatly: the same object can also change in its shape and
appearance at different scales, and deep learning models need to have a certain degree of robustness
to cope with such changes.

SLAM based on object detection is a method that combines object detection and SLAM
technology, which faces the following challenges:

(1) Difficulty in meeting real-time requirements: target detection and SLAM often need to operate
under real-time requirements, especially in applications such as robot navigation and autonomous
driving. Real-time requirements mean that the algorithms need to process a large amount of sensor
data and output accurate target detection and localization results in a limited amount of time, thus
requiring efficient data processing and algorithm implementation.

(2) Difficulty in data association: data association is the process of matching and associating target
detection results with maps in SLAM. This is a difficult task because target detection and SLAM use
different data representations, time steps, and coordinate systems, and problems such as target ID
matching, target identification, and trajectory inference across time steps need to be addressed.

(3) Dynamic environment processing: the combination of target detection and SLAM requires
the processing of targets in dynamic environments, such as moving vehicles, pedestrians, or other
obstacles. This requires effective target tracking and modeling methods to adapt to target motion
and state changes. The difficulty is due to the uncertainty, occlusion, and diversity of motion patterns
of dynamic targets, requiring the design of robust target-tracking algorithms and motion models.

There are numerous reviews on semantic SLAM [20–22]. Li et al. [23] made a detailed analysis
and summary of semantic SLAM, reviewing the advantages of semantic SLAM from three aspects:
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semantic segmentation, target detection, and instance segmentation, and analyzing the improvement
of semantic information on the accuracy and robustness of SLAM systems, but the article did not
make a detailed description of the application of target detection separately. In previous articles, they
were put together and discussed, but no comparison was made between target detection and semantic
segmentation, as well as instance segmentation, which could not clearly reflect their respective
characteristics and advantages. This paper reviews the visual SLAM technique based on target
detection. Chapter 2 introduces the current mainstream target detection networks and traditional
visual SLAM algorithms, listing some of the latest algorithms; Chapter 3 introduces various methods
for fusing target detection techniques in SLAM, discussing the problems solved by these methods as
well as their advantages and disadvantages, Chapter 4 compares target detection-based visual SLAM
with other popular visual SLAM techniques, Chapter 5 looks at the object SLAM development trend,
and finally concludes the whole paper.

2 Overview of Visual SLAM System Based on Object Detection
2.1 Basic Framework of Visual SLAM

Visual SLAM is a key technology in the field of robotics and computer vision for realizing
the ability of a mobile robot or camera to simultaneously localize its own position in an unknown
environment and construct a map of the environment. The process is similar to a human walking in
an unfamiliar place while simultaneously recognizing its surroundings and confirming its position.
The main goal is to capture real-time image information by using a camera or other vision sensor to
determine the position and orientation of the robot or camera in 3D space and to construct a map in the
process, sometimes with the assistance of an IMU for localization. Visual SLAM includes techniques
such as feature extraction and matching, data association, motion estimation, and loop detection. As
shown in Fig. 2, in the traditional visual SLAM [24] framework, there are five important components,
firstly, it relies on the sensors to obtain the environment information, which is usually an image or a
video stream; in the front-end part, these data are needed to be preprocessed, and then based on the
feature-point matching technique to calculate the camera’s displacement with respect to the previous
frame to get the robot’s current position, which is also known as the position estimation; in the back-
end, the filtering method is used or nonlinear optimization method for attitude correction, to get more
accurate motion trajectory and position; the role of loopback detection is to reduce the estimation error
accumulated over a long period of time, to determine whether the current frame has appeared in the
previous one, and if it has, it means that it is back to the origin, and it can be reevaluated and optimized
for the trajectory; the last step is to build a map, according to the position of each object in the image
in the world coordinate system, and use the coordinate system of the transformation technology to
reason out the position of the surrounding objects in our map, to construct a two-dimensional map or
three-dimensional map.

The current mainstream visual SLAMs are ORB-SLAM2 [25], DM-VIO [26], Dso-SLAM [27],
ORB-SLAM3 [28], and VINS-Mono [29]. ORB-SLAM3 is the first feature-based tightly coupled
[30] VIO system that introduces maximum a posteriori estimation in the initialization part of the
IMU. Relying on maximum a posteriori estimation and MLPnP [31] for bit-pose estimation, it is
the most widely used visual SLAM framework with the highest accuracy. The classical visual SLAM
development history is shown in Fig. 3. This article describes several common traditional SLAM
systems as follows.
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Figure 2: The framework of VSLAM

Figure 3: Classical visual SLAM development history

ORB-SLAM2 is a real-time, robust, and highly accurate visual simultaneous localization and
mapping (SLAM) algorithm. It was introduced in 2016 by Mur-Artal et al. [25]. ORB-SLAM2 uses a
combination of ORB (Oriented FAST and Rotated BRIEF) features and the extended Kalman filter
to estimate the pose of a camera and create a 3D map of the environment. It can handle various
types of camera motions, including rotation, translation, and scale changes, and can be used with
both monocular and stereo cameras. One of the key features of ORB-SLAM2 is its ability to handle
large-scale environments with high accuracy and robustness, even in challenging conditions such as
low light or dynamic scenes. It also includes loop closure detection and relocalization capabilities,
which help to correct drift and maintain accurate localization over time.

DSO-SLAM is a real-time visual SLAM algorithm that was introduced in 2016 by Engel et al.
[27]. DSO-SLAM uses direct image alignment, which means it directly minimizes the photometric
error between two consecutive images, without the need for feature detection or tracking. This allows
DSO-SLAM to operate with high efficiency and accuracy, even in low-texture environments. One of
the key features of DSO-SLAM is its ability to estimate the depth of the scene in real time. DSO-SLAM
uses a depth filtering technique that combines depth estimates from multiple frames to produce a more
accurate and robust depth map. It has also been extended and improved upon by researchers, such as
with the introduction of Semi-Direct Visual Odometry (SVO) and Stereo DSO.

OpenVSLAM is an open-source feature point-based framework that supports multiple sensors,
including monocular, binocular, and RGB-D cameras, giving it flexibility across a variety of devices
and scenarios. OpenVSLAM uses incremental and global optimization algorithms to improve the
accuracy of maps and camera poses. It provides camera localization, map construction, closed-loop
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detection, and optimization with the capability of a complete visual SLAM system. However, when
dealing with some complex scenes and fast movements, localization errors, and map drift may occur,
and further algorithm improvements and optimization are needed.

ORB-SLAM3 (Fig. 4) is the latest version of the ORB-SLAM series, which has higher accuracy,
better robustness, and faster operation speed than the previous versions. ORB-SLAM3 supports
multiple sensors, including a monocular camera, binocular camera, RGB-D camera, and lidar. It
implements multi-threaded optimization, which uses a multi-threaded approach to achieve map
optimization and bit pose estimation to improve the system’s operation speed. ORB-SLAM3 provides
a visual interface that displays information such as maps, camera trajectories, and detected feature
points in real-time, making it easy for users to observe and debug. Overall, ORB-SLAM3 is an
efficient, accurate, and robust visual SLAM system that has been widely used in robot navigation,
augmented reality, autonomous driving, and other fields.

Figure 4: Main system components of ORB-SLAM3
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2.2 Overview of Visual SLAM Based on Object Detection Networks

An object detection network is a model that implements modern target detection techniques, and
its core task is to recognize targets in an image into specific categories while providing information
about their location in the form of bounding boxes. Target detection networks are generally based
on neural network techniques, specifically Convolutional Neural Networks (CNNs). CNNs are able
to learn the features in an image by continuously training the dataset. The trained neural network
can extract information from the image and identify and localize the targets. This paper summarizes
two types of deep learning-based object detection networks, one is called a two-stage object detector,
based on CNN as a feature extractor, which first determines the candidate region of the image and
then detects the region, i.e., generating alternative frames in the image in advance, and then classifying
the objects in the selected alternative frames, and also optimizing the position of the alternative frames,
which mainly includes region proposal and detection. The classical algorithms include R-CNN, Fast
R-CNN Faster R-CNN, etc. The other one is a single object detector, which directly predicts and
classifies the candidate regions at each position of the image or video frame, without generating
alternative recognition frames in advance. Including YOLO series [32–34], SSD [35], PP-DicoDet
[36], etc. The recent YOLOv7 [37] improves the network architecture based on YOLOv5 with more
advanced methods for both loss functions and label assignment mechanisms, which surpasses all
previous detectors in terms of speed and accuracy. For the real-time requirements in specific scenarios,
many researchers have proposed lightweight target detection networks.

As Fig. 5 shows the development history of object detection, the second stage object detection
network was more popular mainly in 2014–2015. Since YOLOv1 was proposed in 2015, people
recognized the speed advantage of the first-stage object detector, especially the YOLOv3 model with
superior performance soon received wide attention, and the YOLO series and SSD series developed
rapidly. Meanwhile, in order to meet the increasingly high-speed requirements, from 2017 onwards,
researchers have proposed object detection based on improvements, replacing the backbone network
with some lightweight networks, or using more lightweight convolutional modules, resulting in many
lightweight object detection networks, and as of now lightweight object detection networks are still a
research hotspot.

Figure 5: History of object detection network development

It is well known that traditional visual SLAM is less robust in dynamic and complex environments,
so visual SLAM based on target detection network aims to improve the robustness and accuracy
of visual SLAM with the help of target detection technology, as shown in Fig. 6, which is a rough
block diagram of visual SLAM based on target detection network. The visual SLAM based on the
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target detection network has at least one target detection network, which can be a 2D target detection
network or a 3D target detection network, which is used to obtain semantic information such as
bounding boxes and categories, and the semantic information can play a great role in tasks such as
dynamic point culling, data correlation, and point cloud segmentation of the SLAM system, so as to
improve the system accuracy.

Figure 6: Visual SLAM framework based on object detection network

3 Visual SLAM Algorithm Based on Object Detection

In recent years, computer vision and deep learning have been combined with each other, leading to
a huge improvement in the actual performance of vision-related tasks in terms of accuracy, execution
efficiency, and robustness. Visual SLAM systems are based on computer vision, which provides a lot
of room for the application of neural networks in this field. Object detection network, as one of the
representatives of deep learning, can provide semantic information for traditional visual SLAM, and
the semantic information can be flexibly applied to various parts of the SLAM system, its combination
with visual SLAM has the following advantages: The visual SLAM system based on target detection
has strong generalization ability and can work in complex environments; it is more effective in
recognizing and processing dynamic targets. A data-driven approach is used to train the model, which
is more in line with human-environment interaction; provides more semantic features, and improves
the accuracy of closed-loop detection. The literature sources for this article include databases such
as Web of Science, CNKI, Weipu, IEEE Electronic Library, and B Springer, including conference
papers, journal papers, and degree papers. Firstly, a preliminary screening was conducted by searching
for keywords such as Visual SLAM, Semantic SLAM, YOLO, Object detection, and autonomous
driving in various databases, and obtained nearly 5907 articles. At this point, some articles have low
relevance to our research, so it is necessary to quickly browse the titles and abstracts of the literature
again to determine whether they are relevant to our research topic, and to exclude duplicate articles.
After re-screening, there are still 965 articles left. Then, 304 articles were selected from several aspects
such as language, publication year, and relevance to our research. Finally, a full-text reading of 304
literature was conducted, and 98 pieces of literature were selected for analysis from the perspectives of
data integrity and algorithm innovation, including 4 review papers and 94 research papers, of which
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7 were data papers introducing important datasets. During the data extraction of literature, the main
information extracted was the author’s name, publication year, core work, algorithm advantages and
disadvantages, and applicable scenarios. Subsequently, the data was organized.

3.1 Visual Odometer Based on Object Detection

Visual odometry, also known as inter-frame motion estimation, is the process of determining the
robot’s pose and orientation by analyzing the multi-view geometric relationships between the associ-
ated camera images and can be used as a front-end to visual SLAM. Traditional inter-frame estimation
methods based on sparse features or dense features require feature matching and complex geometric
operations. Often, in practical applications, especially in outdoor dynamic environments, there are
many dynamic objects, and dynamic features must be filtered out to build a complete environment
map. The method based on object detection to remove dynamic objects has the characteristics of good
real-time performance and high accuracy, which is also popular among researchers at present. Based
on object detection to detect dynamic objects and remove outliers, this step is very important for the
whole SLAM system and affects the performance of the whole system.

In dynamic scenes, some moving objects tend to interfere with object class judgment, i.e., to
effectively filter out dynamic feature points while keeping the static environment as intact as possible,
which is difficult to achieve in traditional SLAM. Many researchers have done a lot of experiments
combining object detection networks. Detect-SLAM [38] is one of the first visual SLAM systems based
on object detection networks. To eliminate the influence of dynamic objects in SLAM, the semantic
bounding boxes of potential dynamic objects are obtained using SSD object detection networks,
and then the features of potential object regions such as people, dogs, cats, and cars are excluded.
Wang et al. [39] also combined the SSD network with ORB-SLAM2 to detect potential dynamic
objects, and then calculated the basis matrix to obtain the polar line equation, according to the
geometric constraint, the distance between the feature point and the polar line is greater than the
threshold then it is a dynamic point and needs to be eliminated. The above SSD network is slow in
detecting objects and is not suitable for application in scenarios with high real-time requirements. In
contrast, the YOLO object detection network is quickly gaining attention due to its fast speed and
high accuracy. Reference [40] directly used YOLOv3 to detect all semantic bounding boxes containing
people and then rejects the feature points inside the boxes. Li et al. [41] used YOLOv3 to detect dynamic
objects, using a priori information to reject feature points in the frame and set strict rules for keyframe
selection, those with missing detection cannot be used as keyframes, and the number of feature points
in keyframes must be within a certain range, this method avoids excessive computation caused by
keyframe redundancy. This method of directly eliminating all feature points within the bounding box
is shown in Fig. 7, and it has many drawbacks. The object detection network can only get the object
category, and can not determine the dynamic objects, for example, sitting people and parked cars on
the roadside are eliminated, this reduces the number of static feature points, especially when there
are more objects of this category in the field of view, which greatly affects the localization accuracy.
Another disadvantage is that all feature points inside the frame will be removed, then the interior
points inside the frame but not on the dynamic object will also be eliminated as exterior points, which
likewise reduces the number of interior points and affects the accuracy of the positional calculation.

In view of these drawbacks, some researchers have proposed to combine YOLO object detection
network with optical flow or geometric methods. Chen et al. [42] proposed a method to reject dynamic
points using a combination of optical flow and object detection, adding the process of rejecting
dynamic feature points based on ORB-SLAM [43]. First, dynamic objects in key frames are detected
using YOLOv4 network, and then, dynamic feature points in the scene are further identified and
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rejected based on optical flow detection. Finally, the camera is tracked using static feature points
to achieve highly robust monocular visual SLAM. To improve the speed of visual SLAM, researchers
have continuously improved the YOLO object detection network, and Wu et al. [44] have improved
the YOLOv5s network by replacing the backbone network of YOLOv5s with a lightweight network
MobileNetV3, greatly improving the inference speed of object detection. After obtaining the semantic
boundary box through YOLOv5s, the LK optical flow [45] values of all feature points within the
semantic boundary box are calculated. If the optical flow value of the feature point is greater than
the threshold, it is considered that the feature point is a dynamic point that needs to be removed.
This method is fast and can run in real-time on the CPU, which improves the positioning accuracy by
80.16% compared to ORB-SLAM3. Others have used a combination of object detection network and
geometric consistency for better detection of dynamic points, and in 2022, Ye et al. [46] added object
detection threads to the VO of ORB-SLAM2, and in the paper, the YOLOv5s network was improved
by using the ShuffleNetv2 network to replace the original backbone network, named YOLOv5s-L. The
visual odometry improved by YOLOv5s-L is shown in Fig. 8, which first detects potential dynamic
objects and then removes dynamic points accurately using limiting geometric constraints. However,
both optical flow and geometric consistency are subject to errors. The effectiveness of the optical flow
or geometric method is affected by the quality and characteristics of the input data, which may affect
the accuracy of the optical flow or geometric method if the input data has problems such as noise,
motion blur, or geometric distortion. Feature points on dynamic objects may also be judged as static
points, so some people want to obtain the contours of dynamic objects and then remove them as a
whole. Li et al. [47] proposed a SLAM algorithm based on deep learning and edge detection, which uses
the Canny operator to calculate the contour edges of potential dynamic objects, and then calculates
the optical flow of feature points inside the contour, sets a threshold value, and if the object contains
dynamic feature points larger than the threshold value, it is designated as a dynamic object, and this
method can remove the whole dynamic object while retaining the object contour beyond. This method
can remove the whole dynamic object and keep the static points outside the object outline. However,
it is difficult to extract the edges of the object with low accuracy, and it is difficult to extract the object
outline completely in a complex environment, and there are errors. Therefore, it is more common to
extract object contours from depth images.

Figure 7: Eliminate dynamic points based on bounding box

Combining depth information with object detection to determine foreground objects is a more
applied method, for example, Rong et al. [48] used the YOLOv4 model to detect object objects
from RGB images and K-means to compute object masks from depth maps, and finally combined
with multi-view geometric methods to identify moving objects in dynamic environments and segment
moving foregrounds. However, the K-means algorithm alone has limited effectiveness in segmenting
images. Therefore, Fang et al. [49] first obtained the object bounding box by YOLOV3 and then used
K-means clustering within the corresponding depth image bounding box, and they determined the
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score of each cluster by the average depth value and the number of pixels, and since the object should
be used as the foreground and occupy most of the pixels in the bounding box compared with the
background elements, the cluster with smaller depth value and more pixels was taken as the object
segmentation result. Finally, the feature points in the segmented motion foreground are removed. The
improved K-means algorithm segmented the foreground significantly better. Of course not only the k-
means algorithm can achieve foreground segmentation of depth images, Hu et al. [50] proposed CFP-
SLAM, the framework of CFP-SLAM is shown in Fig. 9, which uses DBSCAN clustering instead
of the traditional K-means algorithm, DBSCAN clustering [51] can cluster data of arbitrary shape
and can find anomalies while clustering, compared to the human pixels in-depth images clustering
works better and the obtained contours are more in line with expectations. It can be seen that
foreground segmentation is the focus of using depth information, and most of them use the clustering
algorithm or GrabCut algorithm. The k-means algorithm does not have high segmentation accuracy,
GrabCub algorithm is time-consuming, these algorithms still have a lot of room for improvement,
and in practical applications, researchers will make improvements according to different scenarios for
foreground segmentation.

Figure 8: Visual odometer improved by YOLOv5s-L

Figure 9: Dynamic point rejection method for CFP-SLAM. The image is from X. Hu’s paper “CFP-
SLAM: A real-time visual SLAM based on coarse-to-fine probability in dynamic environments” [50]
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Also, some scholars have recently started to consider combining object detection networks with
semantic segmentation networks, because semantic segmentation based on deep learning has better
segmentation results than clustering. In 2021, Zheng et al. [52] proposed to add a dynamic object
detection thread on ORB-SLAM2, and the steps of dynamic object detection are as follows: first, the
object detection is performed on the RGB map to get the a priori information, and then the semantic
segmentation is performed to segment the object, and the object is judged as a dynamic object directly
based on the a priori information, and this method does not use optical flow method or geometric
consistency test, so it has certain For example if the prior information of a chair is static, it will still be
calculated as a static object when it is artificially moved. To avoid this situation, Xu et al. [53] proposed
RDTS-SLAM, as shown in Fig. 10, which improves YOLOv5 by adding a segmentation head to the
original decoder so that it has both object detection and semantic segmentation functions, and after
object detection and semantic segmentation of RGB images, local optical flow is calculated for the
points within the anchor frame of object detection to determine the object in the anchor frame is
determined whether the object is moving or not. Table 1 lists four visual odometers that fuse object
detection networks.

Figure 10: RDTS-SLAM system framework
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Table 1: Summary of visual odometry methods based on object detection networks

Year Core work Disadvantages

Detect-SLAM [38] 2018 Use the SSD network to get the
semantic bounding box of potential
dynamic objects, and reject the
features of potential object regions
such as people, dogs, cats, and cars

Slow SSD network operation

Text [41] 2019 Dynamic objects are detected using
YOLOv3 and a proposed new
keyframe selection strategy is
presented.

Some of the inner points in the
semantic framework have also
been removed

Text [44] 2022 Replace YOLOv5s backbone network
with a lightweight network
MobileNetV3, removing feature
points with optical flow values
greater than a threshold

LK optical flow has errors,
dynamic point rejection is
incomplete

Text [49] 2021 Segmentation of motion prospects
using YOLOv3 and k-means
clustering

Poor splitting effect

3.2 Loop Closure Detection and Relocation Based on Object Detection

Loop closure detection is an important component of a visual SLAM system. Visual odometers
generate accumulated errors during long-term positioning and navigation, and without loop closure
detection, deviations will grow as the system operates, and loop closure detection is equivalent to
playing a role in periodic correction. Efficient and accurate loop closure information can help SLAM
systems suppress the effects of drift and eliminate the cumulative errors of long-term calculations.
However, how to achieve correct loop closure detection is a major challenge at present. Traditional
loopback detection uses BOW and some improved algorithms for probability, which are computa-
tionally intensive and have limited accuracy. After the rise of deep learning-based object detection
networks, many researchers have combined semantic information of object detection to improve the
accuracy of loop closure detection. This is also the future trend and direction of loop closure detection.

The core of loop closure detection is the matching of keyframes. Traditional loop closure detection
calculates the matching score between the feature points of the current frame and the feature points
of the previous frames, and the higher the score the more similar, and if the similarity exceeds the
threshold, it is judged to be back to the original position. Since the manually defined feature points
are easily affected by environmental changes and generate matching errors, fused object-level matching
is more adaptable to various changing scenes. Zheng et al. [54] proposed a loop closure detection
method incorporating semantic maps, as shown in Fig. 11, first semantic annotation of single-frame
images by YOLOv3, then ORB feature points are extracted for keyframes, static scene segmentation
is performed using semantic annotation information, and static ORB feature points are added to the
bag-of-words model. This approach reduces the dynamic point information of loop closure detection
and the score of similarity calculation is more reliable. The loop closure detection of Shi et al. [55] is
divided into three steps. First is the object detection thread, in order to improve the detection speed
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without affecting the accuracy, the training weights of YOLOv4 are model pruned, and in addition, in
order to avoid overcomplete network training, a sparsity penalty function is added to the loss function,
and then the number and class of objects obtained from the object detection thread are vectorized, so
that many feature vectors are generated, and finally, the similarity is computed using a locally sensitive
hash function to reduce the dimensionality of the high-dimensional vectors and calculate the cosine
distance between each image frame to determine the loop, the algorithm has very good accuracy and
real-time performance. Fang et al. [56] proposed a loop closure detection algorithm in May 2022,
which constructs image semantic features using bounding boxes and compares them with historical
frames to query similar keyframes in the loop closure detection stage, As shown in Fig. 12, which is fast
and has less memory occupation compared with the visual bag-of-words method. In September of the
same year, Soares et al. [57] and others classified objects based on YOLOv4 extended the Kalman filter
[58] and short-term data association, and filtered static key points based on “DOC threshold” pairs.
Static and change sequences are used to determine which objects need to be detected by loopback.
Loopback detection based on object detection requires data association and matching, i.e., matching
the same target in different frames. This may face challenges such as consistency problems of target
IDs across frames, target occlusion, and deformation, which impose certain requirements on the design
and implementation of the algorithm. Table 2 lists some of the loop closure detection based on object
detection networks.

Figure 11: Semantic loop closure detection block diagram

Figure 12: Loopback detection based on semantic bounding boxes
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Table 2: Summary of loop closure detection methods based on object detection network

Year Core work Disadvantages

Text [54] 2020 Improving the dictionary method based
on semantic annotation information of
keyframes, combined with the idea of
motion feature point removal

Not very real-time

Text [55] 2021 The YOLO4 model optimized by loss
function is used to perform object
detection on the images acquired by the
camera; then, the high-dimensional data
is downscaled using a locally sensitive
hash function, and the loop is
determined based on the cosine distance

Poor loop closure effect in
complex scenes

DyOD-SLAM [56] 2022 In the loop closure detection stage,
image semantic features are constructed
using bounding boxes and compared
with historical frames to query similar
keyframes, which is faster and less
memory intensive than the visual
bag-of-words method

Distinguish moving objects only
based on semantic information,
there is the case of missing
dynamic feature points

Changing-SLAM [57] 2022 Filtering static key points based on
“DOC threshold” pairs, using static and
change sequences to determine which
objects need to be loop closure detected

High calculation volume

Relocalization refers to the ability to reacquire the robot’s positional position after tracking loss.
Xiang et al. [59] proposed a robot relocalization enhancement method, combining SSD network and
particle filtering algorithm, dividing the environment into multiple subregions, using SSD to obtain
the semantic information of the environment, matching the semantic information with the subregions
based on the great likelihood estimation to complete the coarse positioning of the robot, constraining
the particle filtering to the subregion most likely to be located in the subregion, and then determine
the specific location of the robot in that subregion, which can effectively re-localize the robot but
runs slowly. Mahattansin et al. [60] addressed the drawback that the number of candidate frames to
be matched is too many for traditional re-localization, add semantic information detected by YOLO
to the bag-of-words model, use semantic features to quickly filter out similar candidate frames, and
calculate the current bit pose by the feature points in the candidate frames and the basis matrix,
which greatly improves the execution speed compared with the traditional relocation method, but
it does not support object-level map reconstruction. In the recent OA-SLAM [61], a fully automated
SLAM system is constructed that can automatically relocate and supports semantic map construction,
which combines object and feature points to calculate the poses and can achieve positional recovery
accurately in real-time.

With the development of deep learning, the speed and accuracy of object detection have been
improved, and semantic features are more stable than feature points under strong illumination changes,
making image matching no longer limited to matching using only traditional feature points, and both
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loop closure detection and relocation need to match image frames, so fusion with object detection is
an effective way to improve performance, both for loop closure detection and relocation.

3.3 Object Detection-Based Mapping

Maps are the basis for the robot to achieve navigation, and the robot should have the ability to
understand its environment centered on itself; it needs to distinguish between rooms and corridors or
record the state of different objects [62]. Traditional visual SLAM systems assume that the environment
is static and extract only geometric feature information, and the settings of these features are artificially
designed by experts, like ORB features and SURF features, which are difficult to represent in the map
in dynamic scenes or in case of lighting changes. To overcome the drawbacks of traditional point
cloud maps with much noise, some researchers have used target detection networks to build object-
level semantic maps [63]. Galindo et al. [64] were the first to point out in their paper that incorporating
semantic information in maps to help robots obtain information such as attributes and categories of
objects has great scope for tasks such as navigation and obstacle avoidance.

Semantic maps can understand deep information in the environment [65], and usually, semantic
maps are divided into scene-oriented building and object-oriented building, as shown in Fig. 13.
Scene-oriented building refers to pixel-level building of 2D images, extracting semantic information
of object detection and fusing with point clouds to build a full-scene map. Object-oriented building
means that the map contains only some of the required objects and uses object detection to find
the required objects, such as tables and walls while ignoring other irrelevant objects, which improves
the building’s efficiency. Reference [66] proposed a scene-oriented semantic map-building algorithm
based on RTABMAP [67], using YOLOv2 for object detection, and then combining the Canny
operator and region-growing algorithm to achieve accurate segmentation of objects. Finally, static
semantic information is fused with 3D point clouds to construct a full-scene map. The method can
build static backgrounds completely but slowly, while the object-oriented building algorithm has
a natural advantage in terms of speed and can be well applied to scenarios with high real-time
requirements. Reference [68] used integrated data association with a combination of nonparametric
and parametric tests, fused bounding boxes and labels, and improved the association success rate
using nonparametric tests for non-Gaussian distributed objects. The experimental results show that
the constructed point cloud maps are clearer and the point locations are more accurate compared
to ORB-SLAM2. Maolanon et al. [69] in order to enable the service robot to navigate well indoors,
object-oriented map building is required, using a lightweight YOLOv3 network to classify and localize
various furniture in the house, and dividing the map into multiple grids, keeping only those of interest
containing furniture such as sofas, and then annotating semantic information on the map, which
improves the speed of map building.

The scene-oriented building method based on object detection can eliminate dynamic objects and
build a comprehensive static scene map, while object-oriented building builds only maps of objects of
interest, such as tables, computers, sofas, etc. The object-oriented building method is able to accurately
locate and track objects because it focuses on tracking and localizing objects. This can provide more
reliable information in robot navigation and path planning. In contrast to the object-oriented building
method, the scene-oriented building method can handle unknown objects or objects that have not been
detected. It can build and update the structure and features of the scene, rather than relying solely on
object detection results. Object-oriented and scene-oriented mapping each have some advantages and
disadvantages. In practical applications, these factors can be weighed as needed to select the most
appropriate building method.
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Figure 13: Object-oriented building (left) and scenario-oriented building (right). The left image is from
Niko Süderhauf’s paper “Meaningful maps with object-oriented semantic mapping” [70]. Right image
from Jakob Engel’s paper “LSD-SLAM: large-scale direct monocular SLAM” [71]

The maps are divided into two-dimensional and three-dimensional maps according to the number
of dimensions, as shown in Fig. 14. The two-dimensional map is generally used to represent tangent
information, commonly with a top view, and is also widely used in the navigation tasks of various
service robots, especially for robots such as sweeping robots that only move in this plane on the ground.
Three-dimensional maps, on the other hand, can be applied to navigation tasks that move in three
dimensions and are more suitable for UAVs and industrial robots. Qiu et al. [72] constructed a semantic
map in three steps, first using the gmapping [73] algorithm to construct a 2D raster map, then using
YOLOv3 to obtain semantic information to get the location and category of the objects, and finally
mapping the semantic information to the 2D raster map to form a 2D semantic map. Semantic labels
can also be mapped to 3D maps, and Hu [74] constructed a 3D dense point cloud map, which did object
regularization to get more accurate physical labels based on YOLOv3 detection, and fused it with the
dense point cloud obtained by ORB-SLAM2 to get a point cloud semantic map. Ju et al. [75] added
semantic information to the point cloud map of ORB-SLAM2 by first detecting the objects in the
RGB map with YOLOv5, then completing the semantic labeling on the point cloud map, and finally
using VCCS clustering to achieve point cloud segmentation, where different objects are represented
by different colors and VCCS clustering increases the accuracy of segmentation and constructs an
efficient 3D point cloud map. The above several articles fully demonstrate the role of object detection
in SLAM map building, whether it is scene or object-oriented, and whether it is a 2D or 3D map,
integrating semantic information of object detection can make the accuracy of the map improve.

The 2D raster map is fast and can quickly determine the object position by target detection,
but the vertical information in the map is lost, and the height information and stereo sense cannot
be well represented in the 2D raster map. Compared with a 2D raster map, a 3D point cloud
map uses the detected target object information and adds their position and geometric features
in a 3D point cloud to the established map, it can capture more detailed information and can
represent the three-dimensional structure of the environment more accurately, which makes it more
advantageous in dealing with the environment with complex geometric features and identifying objects.
The computational complexity of a 3D point cloud is high, and the sparsification or quadtree methods
are generally adopted to reduce the computational effort. Table 3 shows the comparison of several
algorithms for building graphs based on target detection.
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Figure 14: 2D raster map (left) and 3D point cloud map (right). The left image is from P. Maolanon’s
paper “Indoor room identify and mapping with virtual-based SLAM using furniture and household
objects relationship based on CNNs” [69]. The right image is from X. Hu’s paper “Semantic SLAM
based on visual SLAM and object detection” [50]

Table 3: Summary of object detection network-based map-building methods

Year Core work Disadvantages

Text [68] 2020 It is based on ORB-SLAM2 and
YOLOv3, combining bounding boxes
and semantic labels to construct
mappings.

Difficult to estimate accurately
for large objects

Text [69] 2019 After learning the CNN detectors for
furniture and objects, they are
combined with SLAM algorithms via
ROS. SLAM maps and simultaneous
room detection can be automatically
generated in unknown environments.

Less training data

Text [74] 2021 Generate dense point cloud labels with
semantic information to obtain point
cloud semantic maps.

Cannot run in real time

Text [75] 2021 Semantic point cloud segmentation is
performed using VCCS algorithm to
construct 3D point cloud maps.

The use of YOLOv5s detection
effect is general

4 Datasets and Object Visual SLAM
4.1 Comparison of SLAM Datasets

Due to the need for high-precision measurement equipment to test the performance of SLAM
systems in the real world, the operation is complex and the cost is high. Therefore, in order to detect the
performance of visual SLAM systems, open-source datasets are usually used for evaluation. Choosing
a suitable dataset is an important task that requires reasonable selection based on the applicable
scenario of the system and the sensors used. This article lists 7 commonly used datasets for SLAM
systems. References [76–82] provided a detailed introduction to each dataset, and Table 4 lists the main
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features of each dataset. The sensor type is an important indicator for selecting a dataset. For depth
cameras, the TUM dataset can be selected, and for binocular vision SLAM, KITTI, EuRoC, etc., can
be selected. For certain visual SLAM systems that require IMU information fusion, EuRoc, and TUK
Campus datasets can be selected. In addition, for different experimental scenarios, different indoor
and outdoor lighting conditions and whether it is a dynamic scene are also important considerations.
For datasets in outdoor environments such as streets and Railways, the scene is a dynamic scene with
a large number of moving people and vehicles. TUM RGB-D has both dynamic and static sequences,
and different experimental scenario data needs to be selected based on the experimental purpose. For
SLAM systems that require testing of loop detection accuracy, New College and Nordland annotate
loop information and annotate all loop frames, which can be used to separately test the accuracy of
loop detection in the system. The KITTI and TUK Campus datasets are relatively friendly to visual
SLAM based on object detection. These two datasets have label information for object detection.
KITTI not only has 2D boxes labeled, but also annotates 3D boxes, which is also practical for
performance detection of 3D object SLAM. Of course, there are still many open-source datasets that
have not been listed here. In short, researchers need to choose datasets based on actual application
scenarios, sensor types, and task requirements.

Table 4: Comparison of common SLAM datasets

Dataset Year Camera IMU LiDAR Environment Mark loop
detection

Object detection
label

New College [76] 2009 Stereo — √ Campus, park √ —
KITTI [77] 2012 Stereo — √ Street, road — 2D & 3D boxes 8

categories
TUM RGB-D [78] 2012 RGB-D — — Indoors — —
Nordland [79] 2013 Mono — — Railway,

outdoors

√ —

EuRoC [80] 2016 Stereo √ — Indoors — —
Oxford RobotCar [81] 2017 Stereo

fisheye
— √ Street, highway — —

TUK Campus [82] 2021 Stereo √ √ Campus — 2D boxes 4
categories

4.2 Comparison of Visual SLAM Based on Object Detection Networks

Sixteen SLAM algorithms based on object detection are compared in Table 5, including their main
methods and applicability to dynamic scenes. Most of the inputs to the visual SLAM system in the table
are RGB-D cameras, while reference [83] utilized IMU to overcome the drawbacks of scale ambiguity
and environmental sensitivity of monocular cameras. All SLAMs based on object detection networks
use SSD or YOLO series networks. Some systems replace the backbone network with MobileNetV3
or directly use lightweight versions of models such as YOLOv5s and YOLOv3 tiny to enable real-
time object detection, such as [44,69]. If the system needs to adapt to dynamic environments, it can be
combined with the optical flow method to detect dynamic points and remove them, such as [44,83], or
dynamic objects can be segmented using segmentation methods. Reference [49] used k-means to cluster
the depth map and segment the parts belonging to humans on the depth map. Reference [84] directly
used DeeplabV3+ to semantically segment the RGB image, which can accurately obtain the masks of
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humans and cars, thereby removing dynamic objects. In references [68,69,74,75], these systems do not
process dynamic targets in visual odometry, and they cannot adapt to dynamic scenes. They mainly
use object detection to construct semantic maps, which provide important information for navigation.
The dataset generally uses TUM and KITTI the most, and if experimental conditions are available,
it can also be run in actual indoor and outdoor scenes. The real-time performance mainly depends
on two aspects: the speed of image construction and the speed of object detection. Dense point cloud
images and semantic point cloud images take a long time. If the system does not require high map
accuracy, only semi-dense or sparse maps need to be constructed, such as [68,85,86]. Object detection
often uses lightweight methods to improve detection speed.

Table 5: Comparison of visual SLAM based on object detection networks

Algorithm Input Method Dynamic
scene

Map Dataset Real-time

Detect-SLAM [38] RGB-D SSD + Grab−Cut √ Object map TUM
RGB-D + real
indoor

√

Text [41] RGB-D Yolov3 √ Point cloud maps TUM RGB-D √
Text [44] RGB-D MobileNetV3-

YOLOv5s + Optical
flow

√ Sparse map TUM RGB-D √

Text [49] RGB-D YOLOv3 + k-means √ Semantic point
cloud maps

TUM RGB-D √

Text [54] RGB-D YOLOv3 + semantic
Bag-of-words

√ Semantic point
cloud maps

TUM
RGB-D + real
indoor

—

Text [55] RGB-D YOLOv4 + Locality
Sensitive Hash
function

— Dense point
cloud maps

TUM
RGB-D + real
indoor + New
College

—

DyOD-SLAM [56] RGB-D YOLOv4 + Otsu √ Sparse map TUM RGB-D √
Changing-SLAM [57] RGB-D YOLOv4 + Kalman

Filter

√ Semantic point
cloud maps

TUM RGB-
D + PUC-USP

√

Text [68] RGB-D Yolov3 — Semi-dense
semantic point
cloud maps

TUM
RGB-D + real
indoor

√

Text [69] RGB-D
+Laser

YOLOv3 tiny — Semantic raster
map

Real indoor √

Text [74] RGB-D YOLOv3 — Semantic point
cloud map

TUM RGB-D √

Text [75] RGB-D YOLOv5s — Semantic point
cloud map

TUM RGB-D √

Mod-SLAM [83] MONO
+IMU

YOLOv2 + Optical
flow

√ Sparse map Self-record √

Text [84] RGB-D YOLO
v5x + DeeplabV3+

√ Semantic point
cloud map

KITTI —

(Continued)
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Table 5 (continued)
Algorithm Input Method Dynamic

scene
Map Dataset Real-time

Text [85] Stereo YOLOv5s + Optical
flow

√ Sparse map KITTI √

Text [86] Stereo YOLOv5 + k-best
assignment
enumeration

√ Sparse map KITTI √

5 Future Outlook
5.1 Higher Performance Lightweight Object Detection Network

The use of lighter and more accurate backbone networks is one of the trends in lightweight
object detection networks. Backbone networks are the basic feature extractors for object detection
tasks and largely affect the speed and accuracy of object detection. Therefore, many people have
researched various efficient backbone networks, and the mainstream ones are currently ShuffleNetV2
[87], MobileNetV2 [88], MobileNetV3 [89], and GhostNet [90], these lightweight networks make it
possible for object detection to run in real-time on the CPU. Qian et al. [91] then used the MobileNetV2
lightweight network instead of the traditional VGG network for feature extraction, which greatly
improves the detection speed of the SSD object detection network. Qiu et al. [92] improved YOLOv5
by replacing the original residual block with the GhostBottleneck module, reducing the number of
parameters. It can be seen that in order to meet the real-time requirements, more and more researchers
choose to use lightweight feature extraction networks to replace the original deep networks. In
addition, in order to enhance the small object detection capability, Li et al. [93] added a channel
attention mechanism to YOLOv5 and changed the loss function to the CIoU loss function. The
attention mechanism increases the local feature extraction capability of YOLOv5, so it has a better
detection effect on small objects. In practical situations, the object detection network can enhance the
feature extraction effect of edge or small objects by incorporating the attention mechanism. Nowadays,
more and more efficient networks are proposed, and high accuracy and efficiency will be the continued
development of object detection networks direction.

5.2 Data Association Based on Object Detection

Accurate data association is still a key concern for visual SLAM systems, and traditional visual
SLAM systems use only geometric feature association, which is poorly robust and cannot distinguish
similar features well. Wang et al. [94] used ORBSLAM2 as the basis and added semantic features using
YOLOv3 in order to obtain better data association results, and the process of fusing ORB features
and semantic features is to use semantic bounding boxes as constraints for ORB feature matching,
which eliminates the mismatching of similar features between different categories and improves the
data association accuracy. However, this method is difficult to judge when there are a large number
of objects of the same category, and it also increases the error in the case of occlusion. The current
semantic data association all face similar problems, therefore, it is necessary to study in depth how to
obtain more semantic information in complex environments and use potential semantic information
to improve data association.
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5.3 Autonomous Robot Navigation

The application of semantic information in the direction of autonomous navigation is also
currently a popular one. Visual simultaneous localization and map building have intrinsic limitations
that come from a purely environmental understanding based on the geometric features of images.
However, semantic SLAM features high-level environment perception, thus opening a new door, and
thus a new development ecology for autonomous robot navigation. Chen et al. expressed their vision
of the future of autonomous navigation robots [95] based on the semantic ORB-SLAM2 algorithm
for autonomous navigation of mobile robots and their extensive work to apply semantic SLAM to
autonomous navigation with good results. Li [96] used YOLOv4-tiny to color-code different objects
in the point cloud map to build a clear semantic map, which helped the UAV to plan the path better
and enhanced the obstacle avoidance effect of the UAV in autonomous navigation. This shows that
object SLAM will definitely play an important role in the field of autonomous robot navigation in the
future.

5.4 3D Object SLAM

Many researchers found that 2D target detection is difficult to solve the problem of repeated target
occlusion and to obtain a more robust visual SLAM system, more and more researchers are trying
to increase the system’s perception of 3D objects in the environment using 3D target detection.

3D object SLAM requires the integration of information from individual vertices or edges of a 3D
object into the map to ensure that the object’s position and appearance in the map is accurate,
and 3D semantic information presents better generalization performance in 3D map building and
data association. Yang et al. [97] associated feature points with objects in different viewpoints up
with optical flow tracking for common feature points, while triangulating 3D objects to improve the
accuracy of bit-pose calculation for outdoor SLAM. smSLAM+LCD [98] added 3D object detection
to loopback detection, obtained 3D models of objects by improved YOLOv3, and compared edges
and vertices of 3D semantic information during loopback detection, with similar candidate frames
for better differentiation effect. Many experiments show that relying on 3D road signs to establish
VSLAM with 3D object constraints can yield higher odometry accuracy and can build more detailed
semantic maps of the environment. However, the current accuracy of 3D object detection is limited and
requires high computational performance of the machine, so the algorithm needs to be continuously
optimized.

6 Conclusion

This article covers the fundamentals, methods, and challenges of VSLAM using object detection.
It discusses the current development status and difficulties faced, outlines the VSLAM framework,
and analyzes the pros and cons of each algorithm for visual odometer, loop detection, positioning, and
map construction. Besides, various visual SLAMs based on object detection networks are compared
with their characteristics analyzed. Finally, based on the current research status, I draw the following
conclusion:

1) The running speed of visual SLAM systems based on object detection networks is greatly
affected by the speed of object detection. Real-time goals can be achieved by replacing the backbone
network of the object detection network with a lighter network, such as MobilNets and GhostNet.

2) Combining object detection with optical flow or geometric consistency methods is beneficial
to remove dynamic feature points. Additionally, a segmentation method can effectively remove all
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feature points on an entire object. This approach allows for obtaining a mask of the object within the
bounding box and subsequently removing all feature points within that mask. Considering the specific
circumstances, the combination can effectively accomplish the desired task.

3) To obtain better data association results, there are several methods: the target detection network
assigns a unique ID to each target, which can be used to match targets between different time steps;
Using a Kalman filter to infer the state of the target between different time steps and perform data
correlation; Combining depth image information for target matching.

4) When performing loop detection in complex scenes, calculating the cosine distance of semantic
bounding boxes for different image frames as part of similarity calculation can greatly improve the
robustness of loop detection.

5) In the mapping task, to obtain an accurate and complete static background map, after detecting
the object boundary box, combining parameter testing or clustering methods to segment point clouds
can improve the accuracy of the map.

The main difficulty of the current object detection SLAM development is that the limited
computational resources cannot meet the increasing computational resource needs of the algorithm,
which will lead to the constraint of the SLAM system real-time, and deep learning requires high
hardware, so the computational cost increases, which is a major reason why the object detection SLAM
has not been widely used in the industry yet. In addition, the accuracy and robustness of the semantic
SLAM system depend on the accuracy of environmental semantic information extraction, and with
the continuous optimization of the target detection network and further expansion of the data set, the
level of semantic information extraction will gradually rise, which will further promote the integration
of target detection and visual SLAM.
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