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ABSTRACT

The early detection of skin cancer, particularly melanoma, presents a substantial risk to human health. This
study aims to examine the necessity of implementing efficient early detection systems through the utilization of
deep learning techniques. Nevertheless, the existing methods exhibit certain constraints in terms of accessibility,
diagnostic precision, data availability, and scalability. To address these obstacles, we put out a lightweight model
known as Smart MobiNet, which is derived from MobileNet and incorporates additional distinctive attributes. The
model utilizes a multi-scale feature extraction methodology by using various convolutional layers. The ISIC 2019
dataset, sourced from the International Skin Imaging Collaboration, is employed in this study. Traditional data
augmentation approaches are implemented to address the issue of model overfitting. In this study, we conduct
experiments to evaluate and compare the performance of three different models, namely CNN, MobileNet, and
Smart MobiNet, in the task of skin cancer detection. The findings of our study indicate that the proposed
model outperforms other architectures, achieving an accuracy of 0.89. Furthermore, the model exhibits balanced
precision, sensitivity, and F1 scores, all measuring at 0.90. This model serves as a vital instrument that assists
clinicians efficiently and precisely detecting skin cancer.
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1 Introduction

Skin cancer is a sort of cancer that occurs when abnormal skin cells develop without control. The
most common source of skin malignancy an injury to the skin’s Deoxyribonucleic acid (DNA) from
the sun’s harmful ultraviolet (UV) beams [1]. This damage can cause mutations in the skin cells that
lead to the formation of cancerous neoplasms [2]. Skin tumor is a frequent form of cancer that occurs
when skin cells undergo abnormal exponential growth. It is often triggered by prolonged vulnerability

https://www.techscience.com/journal/CMC
https://www.techscience.com/
http://dx.doi.org/10.32604/cmc.2023.042365
https://www.techscience.com/doi/10.32604/cmc.2023.042365
mailto:gnaldehim@pnu.edu.sa


3534 CMC, 2023, vol.77, no.3

to ultraviolet (UV) radiation from the sun and is one of the most prevalent forms of cancer around
the globe. Artificial intelligence (AI) has been increasingly predominant in the healthcare sector in
recent years, particularly in cancer diagnosis. AI, and more specifically deep learning has exposed great
promise in the early recognition and identification of skin cancer. Skin cancer is a dangerous medical
illness that, if untreated, can be fatal. There are different kinds of skin tumors however, melanoma is the
most deadly and assertive form of the disease [3]. Multiple devastating aspects can raise an individual’s
probability of developing skin cancer. These include excessive exposure to the sun, especially during
childhood and adolescence, living in sunny or high-altitude climates, having a personal background of
skin cancer or a family background of skin cancer, and having a weak immune system [4]. Excessive
exposure to the sun is one of the most hazardous factors for skin cancer. People who spend a lot of
time outdoors, especially without adequate protection, are more likely to develop skin cancer. The
sun’s UV rays can cause harm to the skin’s DNA, resulting in mutations that can result in skin cancer.
Living in sunny or high-altitude climates can also increase a person’s risk of growing skin cancer [5].
Medical practitioners often face difficulties while diagnosing such diseases due to human-related issues
like tiredness, excessive patient load, and limited ability. So, the machine learning and deep learning
community is trying hard to aid the doctors in correct diagnosis of such deadly diseases [6]. However, in
earlier approaches to skin cancer diagnosis, several limitations make Smart MobiNet a more effective
method. Some of these limitations include Lack of Accessibility [7], Diagnostic Accuracy [8], limited
Training Data [9], and Scalability [10]. By addressing these limitations, the proposed model offers
a more effective and practical solution for skin cancer diagnosis, improving accessibility, accuracy,
and scalability compared to earlier approaches. MobiNet is a deep-learning model that has been
specifically designed for the categorization of skin lesions. This is an innovative model that has shown
high accuracy in distinguishing between normal and cancerous skin lesions. Smart MobiNet is based
on the popular MobiNet architecture. The use of Smart MobiNet in skin cancer diagnosis has several
advantages. Firstly, it is a non-invasive and low-cost method of diagnosis, which makes it accessible to
a broader range of patients. Secondly, it has been shown significant performance in terms of accuracy,
specificity, and sensitivity in the detection of malignant skin lesions. The goal of the study presented in
this article is to analyze the use of deep learning MobiNet model, for the identification and diagnosis
of skin cancer. This study proposed a deep learning architecture for Smart MobiNet. The goal is to
develop a dependable and correct tool for early skin cancer detection that is accessible to a broader
range of patients, particularly those in rural or remote areas. The research aim is to present a detailed
analysis of the usage of deep learning with a focus on Smart MobiNet for the identification and
diagnosis of skin cancer. In addition, this paper contributes to the following areas.

• This paper presents a new lightweight model, i.e., MobiNet based on CNN.
• The newly proposed MobiNet is used in healthcare to improve the prediction accuracy of skin

cancer using image datasets.
• This paper presents a data augmentation technique that combines the commonly used

approaches.

Thus, this study tries to contribute to the growing body of research in the application of AI and
deep learning in the healthcare sector, particularly in skin cancer diagnosis. An overview of existing
techniques is presented in Section 2. Section 3 presents the proposed deep learning architecture of
Smart MobiNet. The results of the research are presented with a discussion in Section 4.
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2 Related Work

A variety of techniques have been used by the research community for the identification of
skin cancer. These techniques can broadly be divided into two classes namely conventional machine
learning and deep learning techniques. The next subsections present an overview of the existing work
in the diagnosis of skin cancer.

2.1 Conventional Machine Learning

Conventional Machine Learning approaches have been widely used for computer-assisted cancer
identification through biological image study. In this part, some of the mechanisms completed in the
recent past for skin cancer diagnosis using machine learning techniques have been discussed as shown
in Table 1.

Table 1: Machine learning techniques for skin cancer detection

Reference Approach Data sets Results (%)

[11] Deep learning based neural networks
(DLNN) Hybrid AdaBoost algorithm
(SVM-AdaBoost).

Private
dataset

DLNN is 92.89%. ANN,
90.1%

[12] KNN, ANN Private
dataset

The confusion matrix
shows that the algorithm
classified correctly 93.60%
of the images

[13] Several features, including color, shape, and
clinical information, are retrieved from a
segmented image. Serial approaches are used
to combine the retrieved characteristics, and
the NCA (Necessary Condition Analysis)
method is then used to further decrease
them. Lastly, M-SVM is employed for
classification.

ISIC 2016 0.6 NPV (Net Present
Value)
0.8 FNR (False Negative
Rate)
0.005 FPR (False Positive
Rate) is reached on
M-SVM

[14] Gaussian filter is used to remove hair, grab
cut segmentation is used to segment the
region of interest, features like area,
perimeter, and eccentricity, are retrieved,
and SVM is used to classify.

ISIC For non-melanoma 75
(accuracy) and for
melanoma 80 (accuracy)

[15] Features like texture, Relative colors, and
geometrical features are extracted KNN
classifiers were used.

ISIC 85.22 (accuracy) using
KNN

Reference [16] used a wiener filter, a dynamic histogram equalization method, and an active
contour segmentation mechanism to take out features from skin cancer images. A Support Vector
Machine (SVM) binary classifier based on a gray-level co-occurrence matrix (GLCM) was adopted
to categorize the retrieved features. The authors reported an accuracy of 88.33%, 95% sensitivity,
and 90.63% specificity on a dataset of 104 dermoscopy pictures. Another study [11] presented a
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hybrid technique for skin cancer classification and prediction. They used Contrast Limited Adaptive
Histogram Equalization and meddle filter techniques for image consistency, and the Normalized-Otsu
algorithm for skin lesion segmentation. They extracted 15 features from the fragmented pictures and
fed them into a hybrid classifier including a neural network centered on deep learning and hybrid Ada-
Boost-SVM. They reported a classification precision of 93% on a dataset of 992 pictures belonging to
cancerous and normal lesions. However, the hybrid approach took a long time during the training and
testing phases. Reference [13] used a multilevel contrast stretching algorithm to separate the forefront
from the background in the first stage. They then used a threshold-based technique to extract features
like central distance, related labels, texture-feature analysis, and boundary connections in the second
phase. In the third phase, they introduced an enhanced feature extraction criterion and dimensionality
reduction, which combined conventional and current feature extraction techniques. They used an M-
SVM classifier and reached a good accuracy on the International Symposium on Biomedical Imaging
(ISBI) dataset.

In recent work, reference [17] used Generative Adversarial Networks (GANs) for skin lesion
classification. To improve the GAN, they enforced the data augmentation concept. Based on the
experiment, the average specificity score was 74.3%, sensitivity score was 83.2%. These works show that
Conventional Machine Learning techniques can be effectively used for skin cancer diagnosis. However,
there are two major drawbacks of Conventional Machine Learning. First, it needs manual feature
extraction, which can be a time-consuming and tedious process. Second, it may not perform well
on large datasets. The subsequent section elaborates the discussion on how deep learning techniques
overcome these limitations.

2.2 Deep Learning

In the present years, the potential of artificial intelligence (AI) to enhance or replace current
screening techniques for skin cancer has been explored by researchers. Convolutional neural networks
(CNNs), which are a sort of deep neural network, have confirmed high accuracy in visual imaging
challenges and are commonly used in clinical photo analysis and cancer detection as shown in Table 2.
The advantages of using CNNs for skin cancer detection are mentioned, including their automatic
feedback training and automatic feature extraction capabilities. The passage also includes specific
examples of studies that have used CNNs for skin cancer detection. Reference [18] used an in-depth
learning approach to extract Ad hoc customized features from pictures and merge them with an in-
depth learning technique to learn added functions. They then classified the whole feature set into
cancerous or noncancerous lesions using a deep learning approach, achieving an accuracy score of
82.6%, sensitivity score of 53.3%, 78% AUC (area under the curve), and specificity of 89.8%, on the
ISIC dataset. But their sensitivity and specificity rates were low. Reference [19] developed a CAD
(Computer Aided Diagnosis) system using 19,398 pictures, achieving a mean specificity of 81.3% and
sensitivity of 85.1%. Reference [20] categorized malicious skin cancer with 92.8% sensitivity and 61.1%
specificity using CNN on the publicly available dataset ISIC with 12,378 dermoscopy images. However,
several training parameters take a prolonged period to train the model and needed a dominant GPU
(Graphical Processing Unit), creating the method impracticable.
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Table 2: Deep learning techniques for skin cancer

Reference Methodology Data set Results (%)

[18] Deep learning technique
merge with local binary
patterns and handcrafted
RSurf features

ISIC 82.6 (accuracy)
89.8 (specificity) 53.3
(sensitivity) 78.0 Area under
the Curve (AUC)

[19] Handcrafted Features ISIC Dermoscopy
Archive

66.0% accuracy

[20] CNN ISIC 92.8 (sensitivity) 61.1
(specificity)

[21] Skin cancer detection relying
on artificial intelligence

ISIC 89.4 (sensitivity) 64.4
(specificity)
76.9 ROC (Receiver Operating
Characteristic)

[22] Deep Convolution Neural
Network (DCNN)

ISIC 82 (melanoma)
83 (intraepithelial carcinoma)
30 (squamous cell carcinoma)
68 (Basal cell carcinoma)
65.7 (overall accuracy)

[23] CNN ISIC Dermoscopic
Archive

69.4 ± 0.8 (accuracy)

MobileNet 75% accuracy

Finally, references [24–26] presented a DCNN solution for automatic skin lesion diagnosis, which
includes three key stages: feature extraction with the Inception V3 model, contrast enhancement, and
lesion boundary extraction with CNN.

3 Methodology

This section presents an overview of the proposed technique for skin cancer classification as shown
in Fig. 1. ISIC [27] 2019 dataset is collected from International Skin Imaging Collaboration (ISIC).
Dataset anomalies were eliminated using rescaling and normalization. To avoid model overfitting,
several traditional data augmentation techniques have been applied. The data was then divided into
a 70:30 ratio for training and testing, respectively. Three architectures including CNN, MobiNet, and
Smart MobiNet for the identification of skin cancer have been applied in the experiments.

3.1 ISIC-2019

The International Skin Imaging Collaboration created the ISIC dataset, a global warehouse for
Dermoscopic images, to enhance access to innovative knowledge. Hosting the ISIC Challenges, it was
created to encourage technical research in automated algorithmic analysis and for clinical training
purposes. Several Dermoscopic image databases make up the ISIC-2019 Challenge’s training data
set. The most typical skin lesions include squamous cell carcinoma, basal cell carcinoma, seborrheic
keratosis, actinic keratosis, dermatological lesions, and solar lentigo. There are 25,331 images in all,
grouped into 8 categories, available for training. The test database holds 8,238 images whose labels
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are not widely available. Additionally, an isolated outlier class that was not found in the training set
is present in the test data set and needs to be recognized by generated techniques. An automated
assessment method analyzes predictions on the ISIC-2019 test data set as shown in Table 3. The
ISIC-2019 Challenge aims to categorize skin-surface microscopy images into nine different diagnostic
groups namely Basal cell carcinoma (BCC), Melanoma (MEL), Benign keratosis (BKL), Melanocytic
nevus (NV), Actinic Keratosis (AK), Dermatofibroma (DF), Vascular Lesion (VASC), Squamous cell
carcinoma (SCC).

Figure 1: Proposed methodology

Table 3: Data set description of ISIC-2019

Dataset ISIC challenge 2019

Type Dermoscopic
Image size 1022 pixels × 767
Number of images 25,333
Images type Joint Photographic Experts Group (JPEG)

Red Green Blue (RGB)

(Continued)
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Table 3 (continued)

Dataset ISIC challenge 2019

Class labels 0 Basal Cell Carcinoma
1 Melanoma
2 Actinic Keratosis
3 Melanocytic Nevus
4 Squamous Cell Carcinoma
5 Vascular Lesion
6 Dermatofibroma
7 Benign Keratosis

3.2 Preprocessing

Pre-processing refers to the modifications needed to data before the algorithm receives it. A
procedure for altering messy data into clean data sets is data pre-processing. In a different sense, when
data are gathered from diverse sources, it is done so in a raw method that makes analysis difficult.
In machine learning tasks, the data format needs to be accurate to obtain more effective outcomes
from the applied model. Image normalization and image rescaling are being utilized in this study. In
rescaling the original image is converted into 224 × 244 to minimize computation cost.

3.3 Data Augmentation

Modern deep-learning model advancements are attributed to the abundance and variety of
available data. Substantial amounts of data are needed to enhance the results of machine learning
models. However, collecting such massive amounts of data is time- and money-consuming. Data
augmentation was applied to inflate the dataset. Without gathering new data, it is a method that
allows us to significantly increase the diversity and amount of data that is available. It is a widespread
practice to train huge neural networks using a variety of approaches, such as adding noise, padding,
cropping, horizontal flipping, and adjusting brightness, to create new data using the augmentation of
images. The training images in this project are augmented to make the model more adaptive to new
input, which improves testing accuracy as shown in Table 4. These parameters are selected to generate
a diversified set of images that will overcome the issue of model overfitting, generalization, and validity
of the model. The resultant dataset will have a randomly rotated image with 10 degrees, zoom with
0.1 ratio, can be vertically or horizontally flipped, or height or width shift with 0.1 ratio. In addition,
the image can be generated with a single technique or any combination of these techniques. These are
commonly used techniques [28] which are combined in this article.

Table 4: Data augmentation parameters

Techniques Range

Rotation range 10
Zoom range 0.1

(Continued)
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Table 4 (continued)

Techniques Range

Vertical flip True
Horizontal flip True
Height shift range 0.1
Width shift range 0.1

3.4 Convolutional Neural Networks

CNN is a deep learning technique that is commonly used in image processing applications such as
skin cancer detection as shown in Fig. 2. The convolutional layer, pooling layer, activation layer, and
dense layer are the main components of ConvNets.

Figure 2: Classification of skin cancer using CNN

The convolution of two equations f and h in the continuous domain is stated as follows:

(f ∗ h) (t) =
∫ ∞

−∞
f (r) h (t − r) (1)

=
∫ ∞

−∞
f (t − r) h (r) dr (2)

For discrete signals, the comparable convolution operation is defined as

(f ∗ h) (n) =
∞∑

m=−∞
f (m) h (n − m) (3)

∞∑
m=−∞

f (n − m) h (m) (4)

This situation of 1D convolution for 2D convolution is described by:

(f ∗ h) (x, y) =
M∑

m=−M

N∑
n=−N

f (x − n, y − m) h (n, m) (5)



CMC, 2023, vol.77, no.3 3541

In this scenario, function h is considered as a filter (kernel), and it is used to convolute over
image f . At each pixel location, the kernel and picture are convoluted, and the result is a two-
dimensional array known as a feature map. The convolution layer output is activated using a non-
linear activation layer such as Parameterized Rectified Liner Unit (PReLU), Rectified Linear Unit
(ReLU), SoftMax, Arbitrary-sized Leaky Rectified Liner Unit (RLReLU), Exponential Linear Units
(ELU), and Leaky Rectified Liner Unit (L-ReLU). Deep learning methods require activation functions
to perform properly. These calculations are used to figure out the correctness, the model’s output,
and the impact on the model’s efficiency. Convergence and convergence speed are influenced by these
functions. Later the convolutional layer, a pooling layer is typically used. Down-sampling using spatial
pooling while keeping the most prominent features. To prevent over-fitting, it decreases the number of
parameters. Sum pooling, average pooling, max pooling, and are some examples of pooling processes.
In addition to selecting various pooling filters, you can also define the stride and kernel size. The final
layer is known as the dense layer. The ConvNet model’s prediction is provided by this layer.

Max pooling is a discretization algorithm that uses samples. Applying an N × N max filter to
the picture creates the feature map by choosing the highest pixel value in each stride. As in sum and
average pooling, the sum and average of the pixel values are added to the feature map Fig. 3 illustrates
the operation of Max Pooling.

Figure 3: Max pooling operation

To feed feature maps to Artificial Neural Network ANN, a single column vector of the image
pixels is needed. Therefore, the feature maps were flattened to get column vectors as shown in Fig. 4.

Figure 4: Flattening operation

When the fully connected layer is applied, it receives input from the convolution/pooling layer
above and creates a vector of N-dimensional, where N stands for the number of classes to be identified.
As a result, based on the probability of the neurons, the layer selects the properties that relate to a
certain class the most.
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3.5 Smart MobiNet

Smart MobiNet is a novel architecture that aims to enhance the accuracy and efficiency of skin
cancer detection. This architecture is an extension of the MobiNet framework and integrates added
features and optimizations to further enhance its performance. One of the key features of Smart
MobiNet is its multi-scale feature extraction approach. This involves the incorporation of multiple
convolutional layers with different kernel sizes and strides as shown in Fig. 5, which operate on various
levels of image resolution. This enables the network to better capture fine-grained details and patterns
in skin lesion images, which are critical for the right diagnosis. Another critical aspect of Smart
MobiNet is the incorporation of attention mechanisms, which enable the network to selectively focus
on important regions of the image while ignoring irrelevant information. This is achieved through
attention modules that dynamically adjust the importance of different feature maps based on their
relevance to the task at hand. This approach enables the network to better distinguish between benign
and malignant skin lesions, even in cases where the lesions are small or subtle.

Algorithm: Smart MobiNet Algorithm
Input:

Get IMG (shape, num_classes)
DepthMUL = MUL filters num in each layer

Smart MobiNet
Generate Smart mobilenet (shape, num_classes, depthMUL):
Model = initialize Model (shape)
model.add(convolutional_layer(kernel_size, stride))
model.add(batch_normalization_layer())
model.add(relu_activation_layer())
Build the stem block.

for each depthwise separable convolution block do
model.add(depthwise_convolution(kernel_size, stride))
model.add(batch_normalization_layer())

Figure 5: An illustration of smart MobiNet
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Smart MobiNet also incorporates various optimizations for efficiency, such as depthwise separa-
ble convolutions, which reduce the number of parameters and computations needed while keeping high
accuracy. Additionally, the architecture includes various regularization techniques, such as dropout
and weight decay, to prevent overfitting and improve generalization performance.

Smart MobiNet is a promising approach to skin cancer detection, combining the accuracy and
efficiency of MobiNet with advanced features and optimizations for improved performance. Its
multi-scale feature extraction and attention mechanisms enable the network to better capture critical
information from skin lesion images, which can potentially lead to a faster and more correct diagnosis
of skin cancer.

Input depth for depthwise convolution with one filter per input channel is defined as:

Gk,l,m =
∑

i,j

Ki,j,m . Fk+i−1 , l+j−! , m (6)

where the mth filter in K is employed to the mth channel in F to form the mth channel of the filtered
output feature map G, and K is the depthwise convolutional kernel of size SK × SK × M. The
computational cost of depthwise convolution is:

SK . SK . M. SF . SF (7)

In comparison to conventional convolution, depthwise convolution is incredibly efficient. How-
ever, it does not combine input channels to produce new features; it just filters the input channels. To
create these new features, an added layer that calculates a weighted sum of the results of depthwise
convolution using 1 × 1 convolution is needed.

Depthwise separable convolution, which was first introduced in, is the result of combining
depthwise convolution and 1 × 1 (pointwise) convolution. The computational cost of depthwise
separable convolution is:

SK . SK . M. SF . SF + M. N. SF . SF (8)

which is the addition of the depthwise and pointwise 1 × 1 convolutions. Convolution can be presented
as a two-step filtering and combining process, which resulting in a computation reduction of:

SK . SK . M. SF . SF + M. N. SF . SF

SK . SK . M. N . SF . SF

(9)

As compared to conventional convolution, depthwise convolution is extremely effective. However,
it does not merge input channels to create new features; it just simply filters the input channels shown in
Table 5. To create these newest features, an added layer that calculates a weighted sum of the depthwise
convolution results using 1 × 1 convolution is needed.

Smart MobiNet incorporates multiple convolutional layers for fine-grained detail capturing at
different image resolutions, while traditional architecture does not emphasize multi-scale feature
extraction to the same extent. The proposed architecture integrates attention modules to focus on vital
image regions, aiding in distinguishing normal and abnormal tissues. Moreover, Smart MobiNet uses
depth wise separable convolutions and other optimizations to reduce parameters and computational
load. Ordinary architecture lacks these optimization measures.



3544 CMC, 2023, vol.77, no.3

Table 5: Smart MobiNet architecture

Layer type Stride type Filter shape Input size

Convolution (2, 2) 3 × 3 × 3 × 32 112 × 112 × 32
Depthwise (1, 1) 3 × 3 × 32 × 1 112 × 112 × 32
Convolution (1, 1) 1 × 1 × 32 × 16 112 × 112 × 16
Depthwise (2, 2) 3 × 3 × 16 × 1 56 × 56 × 16
Convolution (1, 1) 1 × 1 × 16 × 32 56 × 56 × 32
Depthwise (1, 1) 3 × 3 × 32 × 1 56 × 56 × 32
Convolution (1, 1) 1 × 1 × 32 × 32 56 × 56 × 32
Depthwise (2, 2) 3 × 3 × 32 × 1 28 × 28 × 32
Convolution (1, 1) 1 × 1 × 32 × 64 28 × 28 × 64
Depthwise (1, 1) 3 × 3 × 64 × 1 28 × 28 × 64
Convolution (1, 1) 1 × 1 × 64 × 64 28 × 28 × 64
Depthwise (2, 2) 3 × 3 × 64 × 1 14 × 14 × 64
Convolution (1, 1) 1 × 1 × 64 × 128 14 × 14 × 128
Depthwise (1, 1) 3 × 3 × 128 × 1 14 × 14 × 128

3.6 Performance Metrics

For performance evaluation of the work at hand, the following metrics have been used:

Accuracy = TP + TN
TP + TN + FP + FN

(10)

Precision = TP
TP + FP

(11)

Sensitivity = TP
TP + FN

(12)

F1 score = 2 ∗ Precision ∗ Recall
Precision + Recall

(13)

In the above equations TP represents True Positive predictions, TN represents True Negative
predictions. FP represents False Positive and FN represents the number of False Negative predictions.

4 Results and Discussion

The results produced in this research are presented in this section. Python is used for experiments.
For skin cancer detection experiments were performed using CNN, MobiNet, and the proposed Smart
MobiNet.

The following analysis and graphical explanations highlight the significance of the performance
metrics used to compare the new and existing techniques, including accuracy, recall, precision, and F1
score. In terms of different performance indicators, Tables 6 and 7 present the outcomes.
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Table 6: Performance indicators of CNN

Technique Performance metrics Performance outcomes

Accuracy 0.86
CNN Precision 0.82

Sensitivity 0.83
F-measure 0.82

Table 7: Reported results of smart MobiNet

Technique Performance metrics Performance outcomes

Proposed (Smart MobiNet)

Accuracy 0.89
Precision 0.90
Sensitivity 0.90
F-measure 0.90

CNN demonstrated a classification accuracy of 0.86, suggesting a high level of precision.
Furthermore, the study shows a precision rate of 0.82, a sensitivity of 0.83, and an F-measure of
0.82, so illustrating its efficacy in accurately detecting true positives while simultaneously achieving
a harmonious equilibrium between precision and sensitivity.

The above table displays the performance metrics pertaining to the proposed Smart MobiNet. The
model demonstrated a high level of accuracy, with a classification rate of 0.89, indicating a significant
number of correctly identified instances. The precision, sensitivity, and F-measure all exhibit a value
of 0.90, which signifies a high level of accuracy in correctly detecting actual positive instances and
achieving a harmonious trade-off between precision and recall. In general, the Smart MobiNet exhibits
a robust performance in the identification of skin cancer.

The accuracy, precision, F1 score, and recall, performance results of the proposed and current
approaches are revealed in Table 8. This table presents a comparative analysis of performance
outcomes expressed as percentages, encompassing accuracy, precision, F1 score, and recall, across
different methodologies. The Smart MobiNet approach exhibits improved performance across all cri-
teria in comparison to alternative models, including Resnet50, VGG16, MobileNet, and a traditional
CNN. The proposed technique demonstrates superior performance in terms of accuracy, precision,
F1 score, and recall compared to the other models mentioned above, hence emphasizing its efficacy in
the identification of skin cancer.

The significance of the proposed skin tumor lesion model is classifying the three distinct types
including basal cell carcinoma, melanoma, and nevus. Fig. 6 labels the confusion matrix using training
data for the proposed model of Skin cancer lesion classification.

Fig. 7 demostrates the Area Under the Curve (AUC), which provides an overview of the ROC
curve, and shows the high achieved accuracy of BCC, Melanoma, and nevus.
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Table 8: Comparison of reported results of smart MobiNet with existing state-of-the-art techniques

Techniques Performance outcomes (%)

Accuracy Precision F1 score Recall

Resnet50 [9] 0.85 0.86 0.85 0.85
VGG16 [9] 0.87 0.87 0.87 0.87
MobileNet [29] 0.75 0.70 78.4 0.82
CNN [30] 0.65 0.64 0.70 0.72
Proposed 0.89 0.90 0.90 0.90

Figure 6: Confusion matrix

Figure 7: AUC for BCC, Melanoma, and Nevus
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5 Conclusions

Skin tumor is one of the most prevalent kinds of cancer among all the other types. Melanoma is
among the most dangerous kinds of skin tumors. If this kind of skin cancer is detected promptly, it can
be completely treated. However, it will not be able to treat if it gets destructive and spreads to other
organs of the body. Therefore, early identification of melanoma can improve a person’s chances of
recapturing and stop transmission to others. From the medical point of view, a diverse range of factors
should be considered for diagnosis and treatment of skin cancer. Still, deep-learning communities are
trying hard to aid medical practitioners in the right and prompt diagnosis. For small-to-large-size
medical images, a capable system with ample accuracy and speed has been developed. Deep learning
algorithms can assist dermatologists and medical professionals in enhancing current solutions and
making quick, inexpensive diagnoses. The goal of this project was to develop the Smart MobiNet
network, CNN, that can effectively diagnose melanoma. The proposed Smart MobiNet method was
implemented on the ISIC 2019 skin cancer dataset. Results showed that the proposed method proves
higher accuracy. One limitation of the Smart MobiNet model is its susceptibility to dataset bias. If
the training dataset used to develop the model lacks diversity in terms of skin types, populations,
or geographical regions, it may result in a biased model with limited generalizability. In such cases,
the model’s performance may not be dependable when applied to skin cancer detection in different
populations or with varying skin types. To overcome this limitation, it is essential to ensure a more
diverse and representative dataset during the model training phase to enhance its effectiveness and
applicability across various real-world scenarios.
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