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ABSTRACT

The South Indian mango industry is confronting severe threats due to various leaf diseases, which significantly
impact the yield and quality of the crop. The management and prevention of these diseases depend mainly on their
early identification and accurate classification. The central objective of this research is to propose and examine
the application of Deep Convolutional Neural Networks (CNNs) as a potential solution for the precise detection
and categorization of diseases impacting the leaves of South Indian mango trees. Our study collected a rich dataset
of leaf images representing different disease classes, including Anthracnose, Powdery Mildew, and Leaf Blight.
To maintain image quality and consistency, pre-processing techniques were employed. We then used a customized
deep CNN architecture to analyze the accuracy of South Indian mango leaf disease detection and classification. This
proposed CNN model was trained and evaluated using our collected dataset. The customized deep CNN model
demonstrated high performance in experiments, achieving an impressive 93.34% classification accuracy. This result
outperformed traditional CNN algorithms, indicating the potential of customized deep CNN as a dependable tool
for disease diagnosis. Our proposed model showed superior accuracy and computational efficiency performance
compared to other basic CNN models. Our research underscores the practical benefits of customized deep CNNs
for automated leaf disease detection and classification in South Indian mango trees. These findings support deep
CNN as a valuable tool for real-time interventions and improving crop management practices, thereby mitigating
the issues currently facing the South Indian mango industry.
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1 Introduction

Mango, sometimes called the “King of Fruits,” is a precious fruit crop grown in many nations. It is
widely consumed and valued for its economic and nutritional significance. India is a major producer;
approximately 40% of the world’s mangoes come from India, making it the leading country. However,
mango crops face significant challenges due to pests and diseases, which result in substantial yield
losses estimated at around 30%–40% [1]. Mango leaves, in particular, are susceptible to various diseases
that significantly impact mango production. Mango cultivation is a vital agricultural activity in South
India, contributing significantly to the region’s economy. However, the growth and productivity of
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mango trees are often hampered by various leaf diseases. These diseases can lead to significant
crop losses and reduced fruit quality if not detected and managed promptly. Manual inspection and
diagnosis of leaf diseases are time-consuming, labor-intensive, and prone to errors, necessitating the
development of automated and accurate disease detection systems [2]. Thus, the need for autonomous,
precise, rapid, and cost-effective plant disease identification technology is developing. Image process-
ing and machine learning classify leaf diseases. Deep learning, a machine learning branch, has garnered
attention and found practical applications. It uses deep neural networks to provide a helpful tool
for diagnosing and categorizing plant diseases. Deep learning, especially Deep Convolutional Neural
Networks (CNNs), has benefited image analysis tasks like disease diagnosis and plant categorization.
CNNs can automatically learn the discriminative features required for complex pattern recognition
tasks from the raw input images [3].

The fundamental goal of this study is to use Deep Convolutional Neural Networks to identify and
categorize mango tree illnesses affecting leaves in the South Indian climate. By utilizing these advanced
machine learning algorithms, we aim to develop an efficient and accurate system to aid farmers and
agricultural experts in timely disease identification and management. The proposed system will involve
the collection of a comprehensive dataset of mango leaf images, encompassing various disease classes
prevalent in South Indian mango trees, such as Anthracnose, Powdery Mildew, and Leaf Blight. The
dataset will be pre-processed to enhance the quality and consistency of the images, ensuring optimal
input for the CNN model.

We plan to develop and fine-tune a customized deep CNN architecture to detect and categorize
mango leaf diseases. After numerous convolutional and pooling layers, the CNN model will employ
fully connected layers to classify the input. After prolonged training, the model could correctly identify
the various diseases present in mango leaves by extracting essential features from the photos. We will
do extensive experiments on the amassed dataset to assess the efficacy of our proposed approach.
Classification accuracy and loss will be used to evaluate the customized deep CNN model’s disease
detection and classification performance. Our proposed method will also be measured against other
CNN approaches to leaf disease detection and classification through comparative analyses. This will
shed light on the accuracy, robustness, and computing efficiency advantages of deep CNNs. This
study’s anticipated conclusion is an automated and trustworthy approach for identifying leaf diseases
in South Indian mango trees. Improved crop output, fewer economic losses, and more sustainable
agricultural practices are all possible thanks to early and precise disease detection that allows farmers
to execute tailored disease management measures. Basic preliminaries and associated work are
discussed in Section 2, an optimized CNN model is offered in Section 3, results and discussion are
described in Section 4, and the conclusion and future work are presented in Section 5, followed by
references.

2 Basic Preliminaries and Related Works

Several diseases may infect mango trees and cause serious harm to the plants, reducing the yield
and quality of the mango fruit produced [4]. Fungal, bacterial, or viral pathogens and environmental
factors can cause these diseases. Mango leaf diseases manifest as visual symptoms on the leaves, such
as discoloration, spots, lesions, deformities, or wilting. These symptoms vary by disease and infection
stage. Some common mango leaf diseases include Anthracnose, powdery mildew, leaf blight, bacterial
black spot, and mango malformation. Anthracnose is a common and economically significant disease
in mango trees, caused by the fungal pathogen Colletotrichum gloeosporioides. It results in leaf spots,
fruit rot, and blossom blight. Powdery mildew, caused by Oidium mangiferae, leads to a white powdery



CMC, 2023, vol.77, no.3 3595

growth on the leaves, affecting photosynthesis. Leaf blight, caused by Pestalotiopsis mangiferae, causes
irregular-shaped lesions, leading to defoliation and reduced vigor. Bacterial black spot, caused by
Xanthomonas campestris pv. mangiferaeindicae causes dark necrotic spots on leaves and can spread to
fruits.

Mango malformation, caused by Fusarium mangiferae, affects tree growth and development, caus-
ing abnormal inflorescences and leaf malformation. Mango leaf infections must be detected quickly
and accurately to be managed effectively. Image processing and machine learning algorithms are
examples of cutting-edge technologies. have been increasingly used to develop automated systems for
disease detection and classification [4]. These systems analyze digital images of mango leaves to identify
diseases, enabling timely intervention and precise management. Farmers and plant pathologists can
use these technologies to implement appropriate practices such as pruning, sanitation, and targeted
chemical applications. This proactive approach improves crop health and productivity by controlling
the spread and severity of mango leaf diseases. Farmers can minimize crop losses, ensure better fruit
quality, and enhance mango orchards’ overall productivity and profitability by effectively detecting
and managing mango leaf diseases.

2.1 Types of Mango Leaf Diseases

Numerous diseases can impact mango leaves [4], and here are a few common ones: Numerous
diseases can affect mango leaves [4], and here are a few common ones:

1) Anthracnose: This fungal disease is caused by Colletotrichum gloeosporioides, leading to dark,
sunken lesions on mango leaves. It can also affect other parts of the tree, including fruits and flowers.

2) Powdery Mildew: The fungus Oidium mangiferae is responsible for powdery mildew. It results
in a white, powdery growth on the surface of mango leaves, affecting their ability to carry out
photosynthesis.

3) Leaf Spot: Leaf spot diseases are caused by various fungal pathogens, like Cercospora
mangiferae and Pestalotiopsis mangiferae. They cause the formation of small to large spots on the
leaves, which may be brown, black, or gray.

4) Bacterial Black Spot: This bacterial disease is caused by Xanthomonas campestris pv. mangifer-
aeindicae. It leads to the development of dark, necrotic spots on mango leaves, which can also affect
the fruits.

5) Mango Malformation: Mango malformation is a disease caused by a phytoplasma pathogen
called Fusarium mangiferae. It results in abnormal growth patterns, distorted leaves, and deformed
inflorescences.

6) Rust: Mango rust is caused by the fungus Puccinia mangiferae. It leads to rust-colored pustules
on the undersides of mango leaves.

7) Dieback: Dieback is characterized by the progressive death of branches or twigs. Various factors,
including fungal infections, nutrient deficiencies, or environmental stress, can cause it.

8) Sooty Mold: This fungal disease causes a black, sooty coating on the leaves and stems of mango
trees, often as a result of insect infestations.

9) Phoma Blight: Phoma blight is a plant disease that affects various crops, causing significant
damage and yield loss.



3596 CMC, 2023, vol.77, no.3

These are just a few examples of the many diseases affecting mango leaves [5]. Proper disease
identification and timely management are crucial for maintaining the health and productivity of
mango trees. Fig. 1 shows the sample images of South Indian mango tree leaf diseases.

Anthracnose Apoderus Good Leaves

Gummosis Leaf Webber Mango Sooty

Multi-Disease Nutrition Deficiency Phoma

Powdery Red Rust Scale Insects

Sooty Weaver Ant

Figure 1: South Indian mango tree leaf diseases

2.2 Literature Review on Mango Leaf Disease Detection and Classification

Investigating and detecting plant diseases using machine vision is a significant area of study,
particularly in agriculture. Traditional approaches rely on conventional algorithms; manual feature
creation CNNs have changed that and revolutionized crop disease identification. However, identifying
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diseases in complex natural environments poses challenges due to lesion size, type, and low contrast
variations. Nevertheless, modern techniques like machine learning and computer vision offer accurate
and consistent results, reducing the risk of misdiagnosis. This improves decision-making for farmers,
leading to higher profits and a more sustainable agriculture industry.

Plant disease detection is crucial for effective agricultural disease management [6]. Automated
leaf disease identification can reduce monitoring efforts on large farms and enable early and accurate
detection of mango leaf diseases, which is vital for plant nutrition [7]. Traditional disease management
methods involving manual diagnosis and pesticide application are time-consuming, challenging, and
prone to errors [7]. CNNs are inspired by biological nerve and visual systems, offering supervised deep-
learning classification with high accuracy [2]. Their complex structure with multiple layers enables
feature learning from training data, although they require substantial data for training [2,8].

A recent study [9] suggested employing a deep CNN model to identify and classify leaf diseases—
54,306 Plant Village pictures in 38 classes, including 14 crop species and 26 disease variations.
ReLU(Rectified Linear Unit) activation and batch normalization gave the CNN model accurate and
efficient recognition. We checked mango leaves for Leaf Webber, Alternaria leaf spots, leaf gall, leaf
burn, and Anthracnose. CNN extracted and categorized probable features [10].

Their article [11] used CNNs to detect and categorize mango leaf diseases. Deep learning extracted
attributes from mango leaf images to classify diseases accurately. This research contributes to the
advancement of automated systems for the early and precise detection of mango leaf diseases,
facilitating effective disease management strategies and enhancing crop yield.

The study’s authors published as [12] looked into the feasibility of applying machine learning,
particularly CNNs, to disease detection and diagnosis in mango leaves. This research compared and
contrasted various machine learning algorithms to determine which performed best. The outcomes
demonstrated the usefulness of CNNs in correctly categorizing mango leaf diseases. This study
illuminates the potential of machine-learning algorithms for speedy and accurate mango leaf disease
diagnosis, advancing mango disease management tools.

The research study introduced a deep learning method to automate mango leaf disease detection
and categorization [13]. The training dataset was expanded using data augmentation techniques, while
Convolutional Neural Networks (CNNs) served as the central architecture. The accuracy of disease
detection and classification was improved through their tests, which is cause for optimism. This
research showed that CNNs are a promising tool for automatic disease detection and classification
in mango leaves, which could improve disease control in mango farming.

To detect and categorize mango leaf illnesses, the study’s authors titled [14] transfer learning with
deep CNNs. Using their mango leaf dataset, the authors refined pre-trained CNN models. They were
able to successfully classify diseases by using transfer learning. This research emphasizes the utility of
mango leaf disease categorization with transfer learning, demonstrating its potential to enhance the
speed and accuracy with which diseases are identified in mango crops.

The work [15] presented a deep learning-based method for detecting and categorizing mango
tree leaf diseases. To extract useful and distinguishing information from photographs of leaves,
the authors used Convolutional Neural Networks (CNNs). The results of their tests demon-
strated the usefulness of deep learning methods for accurately categorizing diseases. This research
indicates the promise of Convolutional Neural Networks (CNNs) to aid in effective disease control in
mango crops by automating the identification and categorization of mango leaf diseases.
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Kumar et al. [16] study classifies mango leaves with Anthracnose. A classification model for
Anthracnose-infected mango leaves was created using Convolutional Neural Networks (CNNs).
Training a CNN model using mango leaf photos enabled the network to extract features and patterns
automatically. Deep learning proved effective for early detection and efficient control of Anthracnose
in mango crops by demonstrating its efficacy in accurately recognizing and classifying mango leaves
afflicted by the disease. This study contributes significantly to plant pathology by demonstrating the
utility of deep learning approaches for tackling the difficulties of disease diagnosis and categorization
in farming.

Research conducted in 2020 used a Radial Basis Function (RBF) Neural Network to create
a web-based method for segmenting Anthracnose disease from mango tree leaves. By automating
the segmentation process, the study provided a convenient and efficient tool for plant pathologists
and farmers to detect and monitor Anthracnose disease in mango trees. This research contributes
to agricultural technology by introducing a novel approach for disease segmentation using neural
networks, which can help diagnose and treat Anthracnose disease in mango crops.

Various innovative methods were introduced in a series of studies focusing on enhancing the
detection and prevention of plant diseases and pests. The convolutional ensemble network Es-
MbNet, utilizing a two-stage training strategy with three lightweight CNNs [17], achieved remarkable
accuracy in identifying plant lesions. Another study introduced a two-part method using a hybrid
segmentation algorithm and convolutional neural network, achieving significantly higher validation
accuracy than conventional methods for detecting leaf diseases [18]. Further research led to the
creation of SE-MobileNet, a fusion of MobileNet with squeeze-and-excitation block, that showed
substantial efficiency in identifying rice disease types [19]. A novel approach was also proposed
for automatically identifying plant diseases, using enhanced artificial neural networks and CNNs,
achieving impressive performance in experimental analyses [20]. Finally, a CNN-based method with an
attention mechanism and two-stage transfer learning was introduced to identify insect pests, achieving
excellent accuracy even in heterogeneous background conditions [21]. These innovative approaches
represent significant advancements in agricultural technology, contributing to improved crop yield
and food security.

The goal of the 2020 study [2] was to use SVM(Support Vector Machine) and Neural Networks to
create a system to identify mango leaf diseases. They made a dataset of mango leaf images representing
various disease conditions and used it to train and evaluate the models [22]. Neural Network and
SVM algorithms were employed to classify mango leaf diseases accurately. The study showcased
the effectiveness of these techniques in diagnosing and managing leaf diseases, benefiting mango
farmers and plant pathologists by improving crop health and yield. This study advances agricultural
technology in the field of mango cultivation.

In their 2020 study [7], the researchers developed a system for early disease classification in mango
leaves. They collected a dataset of mango leaf images, extracted relevant features, and applied a hybrid
metaheuristic feature selection algorithm. The study demonstrated the effectiveness of this approach
in achieving early disease classification, enabling timely interventions for disease management in
mango orchards, and minimizing crop losses. This research contributes to agricultural technology by
providing a valuable tool for farmers to detect and address mango leaf diseases [23] early. Table 1
presents the summary of the various deep learning models’ outcomes on mango leaf detection and
classification.



CMC, 2023, vol.77, no.3 3599

Table 1: Summary of various machine learning and deep learning models outcome on mango leaf
detection and classification

Ref-
erence

Year Types of leaves and
disease

Techniques or
mechanism used

Remarks

[1] 2020 Mango leaves with
multiple diseases

Radial basis function
(RBF)
Neural network

Increased sensitivity and
specificity, ease of use, and
intuitive design issues with
over-segmentation and noise make
it unusable in industrial settings.

[2] 2020 Mango leaves with
multiple diseases

Neural network models Risk of over-fitting; not used in
industrial applications; inferior
classification accuracy.

[3] 2020 Mango leaves with
multiple diseases

CNN model Lower detection accuracy.

[6] 2017 Mango leaves with
multiple diseases

Modified rotational
kernel transform features

Lowered sensitivity, specificity,
and false-positive rate; cannot be
used in manufacturing.

[7] 2020 Mango leaves with
multiple diseases

FFNN and hybrid
Metaheuristic feature
Selection

Computationally expensive and
time-consuming complexity
increased.

[12] 2020 Mango leaves with
multiple diseases

Machine learning and
hybrid learning
algorithms

Attains high accuracy on
well-processed datasets.

[15] 2018 Mango leaves with
multiple diseases

CNN models High false positive rate and
precision and suffers with an
improperly processed dataset.

[16] 2021 Mango leaves with
multiple diseases

CNN Less accurate recognition and
classification and higher
misclassification.

[22] 2022 Multiple leaves and
multiple diseases

Decision tree, support
vector machine, ANN,
and CNN algorithms

Models suffer from the scalability
of the dataset.

These related works demonstrate the growing interest in leveraging deep learning techniques,
specifically CNNs, for leaf disease detection and classification in mango trees. They highlight the
potential of deep CNNs in achieving accurate and automated disease identification, which can
significantly benefit the agricultural sector in South India by enabling timely interventions and
improved crop management practices.

3 Customized Deep CNN for Mango Leaf Disease Detection and Classification

Mango leaf disease detection and classification involves a collection of mango leaf images, pre-
processing, image processing, and classification. This section elaborates on implementing customized
deep CNN for Mango leaf disease detection and classification.
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Deep learning methods have been extensively researched to identify and categorize leaf diseases.
However, these methods come with several complications, including the potential for misdiagnosis
due to variations in diseases, varieties, and environmental factors. Early identification and treatment
of leaf diseases are crucial, but the lack of agricultural expertise in rural areas can be time-consuming
and hindered. With autonomous feature selection and reduced reliance on labor-intensive picture pre-
processing, Convolutional Neural Networks (CNNs) have proven effective in image-based recognition
tasks. However, one of the challenges is the availability of large and diverse datasets to train these
models effectively. Acquiring such datasets remains a difficult task. Fig. 2 depicts the suggested
method’s flowchart.

Training set Testing set

Construction of Customied 
Deep CNN Model

Model training

Mango Leaf Disease 
Prediction and classification

Performance 
Evaluation

Mango Leaf 
Images 

Image Pre-processing and
Augmentation

Class Labelling

Data Splitting

Figure 2: Flowchart for the proposed customized deep CNN model for mango leaf disease detection
and classification

3.1 Dataset Description and Augmentation

A collection of high-quality pictures of diverse mango plant leaves with various diseases is
collected from different locations in the south Indian region. The dataset includes healthy and sick
leaf photos, including those with rust, bacterial spots, and powdery mildew. The dataset contains a
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complete 1275 images with 14 different types of diseases. The ratio between training, validation, and
testing is 80:20.

To address the data imbalance, we have performed augmentation to increase the images in each
class. The augmentation is a complex data preprocessing task specifically geared towards augmenting
a dataset containing images of various plants and their corresponding diseases. It utilizes Keras’s
‘ImageDataGenerator’ class to define a sequence of on-the-fly transformations, including a 30-degree
rotation range, width and height shifts of 20%, shear transformation of 20%, zooming by 20%, and
horizontal flipping, filling missing pixels using the “nearest” neighbor method.

Each image is read, checked for validity, resized to 256 × 256 pixels, and appended to a list after
being converted to an array using the. These images are then normalized to the range [0,1] by dividing
by 255.0. After preprocessing, the images are augmented using the specified transformations. For each
disease type, a total of 320 images including original images are generated and saved to a specified
directory, retaining the hierarchical structure of plants and diseases. The original and augmented image
counts are printed to monitor the progress. Fig. 3 displays the variety of leaf images after augmentation
from each of the 14 categories.

Figure 3: The distribution of mango leaf images across the 14 classes after augmentation

3.2 Image Processing

Image processing is vital for mango leaf disease detection in deep learning. Techniques like pre-
processing and enhancement of raw leaf images improve model accuracy [24], while compression
methods reduce image size without losing crucial information. Our work used Lossless [25] and Hybrid
compression [26] to create low-resolution images, aiding efficient storage, transmission, and faster
processing for deep-learning applications.

At first, the training and test photos underwent pre-processing to improve contrast and resize
them to a 300 × 300 pixel resolution. For resizing the images, nearest neighbor interpolation (Eq. (1))
and for rescaling, the traditional method (Eq. (2)) and (Eq. (3)) are used along with image crop.
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NewPixelValue(x′, y′) = PixelValue(round(x), round(y)) (1)

NewWidth = ScaleFactor ∗ OriginalWidth (2)

NewHeight = ScaleFactor ∗ OriginalHeight (3)

By incorporating image processing techniques into the pipeline of deep learning for mango leaf
disease detection, the models can benefit from enhanced image quality, improved feature representa-
tion, and better generalization capabilities, leading to more effective and accurate disease classification.

3.3 Deep Convolutional Neural Networks to Detect and Classify Mango Leaf Diseases

The literature on deep learning approaches has many issues, such as misdiagnosis of leaf illnesses,
variety in diseases, varieties, and environmental influences. Early identification and treatment of
such diseases are therefore helpful. However, doing such is challenging. A time-consuming process,
agricultural expert knowledge is unavailable in rural locations. Convolutional neural networks have
recently achieved significant advancements in picture-based recognition by eliminating requirements
for image pre-processing and enabling built-in feature selection [4]. Finding massive datasets for
such challenges is another quite challenging issue. To handle data with a grid-like structure, like
photographs, CNNs were developed [3]. The pixels in an image are arranged in a grid, and the
value of each pixel determines its hue and luminance. Likewise, each neuron in a CNN processes
information within its receptive field. Like how the human brain processes visual information, CNN
layers detect simpler patterns first, then more complex ones as the layer progresses. Convolutional
neural networks have input, hidden, and output layers. Convolution, normalization, pooling, and
fully-connected layers lie between the output and input layers [3]. The convolutional layer’s filters
create classification feature maps. Image processing uses ReLU [27]. An enhanced fine-grained robust
CNN model is proposed for this study’s classification of leaf diseases. At the first level, pre-processing
techniques are used to reduce the size of the leaf image. To detect diseases from photos of leaves, a
customized deep CNN learning model has been created at the second level utilizing a convolutional
neural network [28]. Fig. 4 shows the implementation of the customized deep CNN model for mango
leaf disease detection and classification.

Figure 4: Architecture of the proposed customized deep CNN model for mango leaf disease detection
and classification
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The description of the proposed model visualizes each layer type with a specific color. The
Conv2D, activation, and batch normalization layers are denoted in blue, signifying these stages’
feature extraction and normalization operations. The yellow color represents the max-pooling layers,
indicating the down-sampling process. Dropout layers are marked in violet, essential for reducing
overfitting by randomly dropping out neurons. The Flatten layer, which prepares the data for the fully
connected layers, is shown in black. Following the Flatten layer, there is a Dense layer represented in
blue. An activation function (ReLU) follows, shown in orange, which introduces non-linearity to the
model. Afterward, another batch normalization layer is presented in yellow, and a Dropout layer in
green. Finally, the last Dense layer and a Softmax activation function are depicted in blue and red,
respectively, marking the classification stage of the model.

Deep CNN models have numerous convolutional, pooling, and fully linked layers. Because of
its high complexity, a deep neural network can develop hierarchical representations of the input data,
which are crucial for achieving precise categorization. Algorithm 1 presents a detailed pseudo code for
the proposed customized deep CNN model for mango leaf disease detection and classification. The
deep Convolutional Neural Network (CNN) model consists of multiple layers, including Conv2D,
Batch Normalization, Max Pooling, and Activation functions. Here is a description of the model
architecture:

3.3.1 Conv2D Layers

The convolutional operation distinguishes a CNN from other neural networks. The basic form of
convolution consists of two functions that take real numbers as arguments. To explain convolution, we
can pretend that it is possible to track where a car is using a laser that gives an output: x(t), where x is
the car’s position in time step t. Several measurements can be taken to reduce possible noise during the
measurements, and an average value can be used as the measurement value. Later measurements have
more excellent value than the older ones; therefore, a weight function, w(a), is used, where a represents
how old a measurement is. The weight function w must be a valid density function. If these weighted
average measurements are performed every time step, it can be described with a function, s known as
the Convolution function.

s (t) =
∫

x (a) w (t − a) (4)

In CNN terminology, the first argument in the convolution function is called the input, and the
second is called the kernel; what is returned is called the feature map.

s (t) = (x ∗ w) (t) (5)

For the example with the car above to be realistic, the data cannot be collected in each time step
when the amount had become too large, but in regular intervals, for example, every second or minute.
In such a case, the time variable t would only be of integer type. Likewise, the variables x and w, then
the mathematical discrete convolution can be defined as,

s (t) = (x ∗ w) (t) =
∑∞

a=∞
x(a)w(t − a) (6)

The model includes 5 Conv2D layers. Conv2D performs convolution operations on the input
image to extract features. Each Conv2D layer consists of a set of learnable filters that scan the input
image and s (t) = ∫

x(a)w(t − a)da produce feature maps. These filters capture different patterns and
features at different scales.
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3.3.2 Batch Normalization Layers

The batch normalized activation is +
xi = xi − μB√

σ 2
B + e

(7)

where μB = 1
m

∑m

i=1 xi is the batch Mean value, and σ2B = 1
m

∑m

i=1(xi − μB)2 is the batch variance.

Batch Normalization is applied after each Conv2D layer. Adjusting the mean and variance helps
normalize the previous layer’s output. This helps stabilize the training process and improve the model’s
overall performance.

3.3.3 Max Pooling Layers

Max Pooling is performed after each Conv2D layer. It reduces the spatial dimensions of the feature
maps by selecting the maximum value within a defined pool size. Max Pooling helps down-sampling
the feature maps and extract the essential features while reducing computational complexity.

hl
xy = maxi=0..s j=0..sh

l−1
(x+i)(y+i) (8)

3.3.4 Activation Functions

The model utilizes 7 activation functions throughout its layers. Activation functions introduce
non-linearity to the model, enabling it to learn complex patterns and make non-linear decisions. ReLU ,
sigmoid, and tanh activation functions are frequently employed in CNNs—the layer’s output before it
is fed into the following activation function, element by element.

ReLU(xi) = max (0, xi) (9)

Combining Conv2D layers, Batch Normalization, Max Pooling, and Activation functions helps
the deep CNN model extract and learn intricate features from the input data. This allows the model
to capture the information for accurate classification or detection tasks, such as mango leaf disease
identification.

The proposed model is a Convolutional Neural Network (CNN) comprising several layers
arranged sequentially. The output of one layer serves as the input to the next, creating a chain-like
interconnection. The description of the phase wised interconnections is described as,

1) Input and First Convolutional Layer: The model begins by taking an input of shape (height,
width, depth), which corresponds to the dimensions of the image and the color channels. This is then
passed through the first Conv2D layer, which applies 32 filters of size (3, 3) to the input, where each
filter detects specific features in the image. The padding is set to “same,” meaning the output size
matches the input size, preserving the spatial dimensions of the input. The ReLU activation function
is applied element-wise to introduce non-linearity to the model.

2) Batch Normalization and Pooling: The output is then normalized using Batch Normalization to
stabilize learning and reduce training time. The MaxPooling2D layer reduces the spatial dimensions of
the output, effectively summarizing the presence of features in the image and reducing computational
complexity. A Dropout layer is added to randomly set 25% of the input units to 0 at each update during
training time to prevent overfitting.

3) Additional Convolutional Layers: This pattern repeats with more Conv2D layers, each having
an increasing number of filters (64, 128), with each filter extracting more complex features. Batch
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Normalization and MaxPooling2D layers follow each convolution operation, repeating the normal-
ization and dimension reduction process. Dropout layers are interspersed to prevent overfitting.

4) Flattening and Fully Connected Layer: After the convolutions, normalizations, poolings, and
dropouts, the high-dimensional output is flattened into a 1D array before passing into a Dense
(fully connected) layer with 1024 neurons. The Dense layer learns non-linear combinations of features
extracted from the previous layers.

5) Final Classification: A final Dropout layer is included before the last Dense layer, which outputs
probability scores for each class via the softmax activation function.

Algorithm 1: Customized deep CNN model for mango leaf disease detection and classification
1: Input: Mango Leaf Disease Dataset
2: Output: Leaf Disease prediction and classification
3: Step 1: Acquire real-time images of the Mango trees containing different diseases
4: Step 2: Loading the data (X_train,y_train), (X_test,y_test)=mango.load_data()
5: Step 3: Image- Pre-processing
6: • Reshaping the data X_train = X_train.reshape((X_train.shape [0],

X_train.shape [1], X_train.shape [2], 1))
X_test = X_test.reshape((X_test.shape [0],X_test.shape [1],X_test.shape [2],1))

• Normalizing the pixel values
X_train=X_train/255
X_test=X_test/255

7: Step 4: Assign the class labels to the mango images.
8: Step 5: Categorize the images among the training and testing datasets, selecting from all the class

labels.
9: Step 6: Initialize the parameters image_width, image_height, num_channels=3, num_classes=14,

num_epochs, Batch_size, new_images, train_images, train_labels, test_images, test_labels.
10: Step 7: Initialize customized deep CNN model architectures with parameters
11: deep CNN_model = tf.keras.models.Sequential([

tf.keras.layers.Conv2D(256, 32, (3, 3), activation=‘relu’, input_shape=(image_width,
image_height, num_channels)),
#adding convolution layer
model.add(Conv2D(85, 42, 21,(3,3),acti>vation=‘relu’,input_shape=(image_height,
image_width, 1)))
#adding pooling layer
model.add(MaxPool2D(2,2))
#adding a fully connected layer
model.add(Flatten())
model.add(Dense(1024,activation=‘relu’))
#adding output layer
model.add(Dense(14,activation=‘softmax’)
repeatedly added different blocks of convolution layers of size 42 and 21 with
different activation, batch normalization, pooling, and dropout layers.

12: Step 8: train the customized deep CNN with the training dataset and initialized parameters
model.compile(optimizer=‘adam’,

(Continued)
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Algorithm 1 (continued)
loss=‘categorical_crossentropy’,
metrics=[‘accuracy’])
model.fit(training_images, training_labels, epochs=num_epochs, batch_size=batch_
size)

13: Step 9: Test the customized Deep CNN with the help of the test dataset.
test_loss, test_accuracy = model.evaluate(test_images, test_labels)

14: Step 10: Validate the performance of the proposed model and compare the results with
other CNN models. Make predictions on new data
predictions = model.predict(new_images)

3.4 Training, Testing, and Validation Description

The dataset was divided into training and test sets. The test dataset tested the proposed model’s
performance, whereas the training dataset fine-tuned CNN models. As a result, we segmented the
datasets into three categories: training, validation, and testing, into equal halves of 80%, 10%, and 10%,
respectively. Backpropagation was carried out in the opposite direction in the event of an incorrect
forecast. As a result, the current research used the backpropagation technique to update the model
weights for a better prognosis appropriately. One epoch was the collective term for forwarding and
backpropagation. For the investigation, the model made use of the Adam optimizing algorithm. The
training images for the current study were obtained while retaining the 80% image. Each dataset was
examined using the remaining 20% of unaltered photos [22].

3.5 Performance Measures

The performance of the proposed model is evaluated using multiple metrics, including accuracy,
precision, recall, and F-measure, calculated with standard formulas involving true positive (TP), false
positive (FP), true negative (TN), and false negative (FN). These metrics comprehensively assess the
model’s performance [14].

Accuracy: Classification Accuracy is determined by the correct prediction ratio to total
predictions [29].

Accuracy = Number of Correct Predictions
Total number of Predictions

(10)

Precision: Precision [14] determines with what precision the network places images in the positive
category. Precision is calculated as follows:

Precision = TP
TP + FP

(11)

Recall: Recall [14] indicates how many positive images the network recorded. The recall is
calculated as follows:

Recall
TP

TP + FN
(12)
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F-measure: F-measure [14] is a combination of Precision and Recall. The calculation is as follows:

F1 − score = 2 ∗ Precision ∗ Recall
Precision + Recall

(13)

4 Results and Discussion

Python libraries are used to implement the proposed research and TensorFlow [30], and Keras
[30] are used for the optimized CNN model experiments presented. It employed the Adam optimizer
for training, which possessed a learning rate and a built-in loss function.

4.1 Dataset Description

A dataset of 1275 high-quality images of various mango plant leaves, both healthy and diseased,
was assembled from the South Indian region. The collection includes images of leaves affected by
diseases such as rust, bacterial spots, and powdery mildew. Utilizing different image processing
techniques, the pictures were thoroughly pre-processed. The images were then categorized into 14
distinct groups based on the type of disease and the plant species, with 127 images set aside specifically
for validation purposes.

The augmentation is performed using Keras’s ‘ImageDataGenerator’ class defines a sequence
of on-the-fly transformations, including a 30-degree rotation range, width and height shifts of 20%,
shear transformation of 20%, zooming by 20%, and horizontal flipping, filling empty pixels with the
“nearest” neighbor approach. After being transformed to an array using each image is read, validated,
scaled to 256 × 256 pixels, and appended to a list. Images are transformed after preprocessing. 320
images, including original images, are generated for each disease kind and saved to a directory to
maintain plant and disease hierarchies. Printing original and augmented image counts tracks progress.

4.2 Pre-Processing the Data

The objective is to learn how to pre-process images for Convolutional Neural Networks. Tensors
can be considered multi-dimensional arrays simply because they are meant to hold knowledge rather
than actual data. Load the dataset after importing the required libraries. Every data analysis procedure
must include this step. Images come in a variety of sizes and shapes. Data pre-processing starts
with uniformly sizing all of the images. With the help of ImageDataGenerator in Keras [30], several
enhancing techniques are used to the collected photos, creating new images with a resolution of
300 × 300 pixels. Fig. 5 represents the pre-processed image with a resolution of 300 × 300.

4.3 Performance of the Proposed Customized Deep CNN Model on Dataset

The performance measures, such as accuracy and loss, of a deep CNN model trained on the South
Indian Mango Tree Leaf Disease Dataset may be examined with the number of epochs used in the
training process. Mango leaf disease detection customized deep CNN model parameters are shown
in Table 2. During training, the deep CNN model is exposed to the dataset and iteratively updates
its internal parameters to improve performance. As the training progresses through multiple epochs,
the model learns to extract relevant features and make accurate predictions for classifying mango
tree leaf diseases. Monitoring the accuracy and loss values at each epoch provides insights into the
model’s performance. Accuracy measures the percentage of correctly classified instances, while loss
quantifies the dissimilarity between the predicted outputs and the actual labels. Figs. 6–8 represents
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the accuracy of the proposed deep CNN model and basic CNN model on mango leaf disease detection
and classification.

Figure 5: Represents the pre-processed image with a resolution of 300 × 300

Table 2: Parameters used in the customized deep CNN model

S. No. Parameter used Value

1 Model architecture Custom CNN
2 Training epochs 10 and 50
3 Optimizer Adam
4 Learning rate 0.0001
5 Batch size 32
6 Drop out 0.25
7 Image size 256 × 256
8 Image depth 3
9 Loss Binary cross-entropy
10 Activation function ReLU (Rectified linear unit)

Each parameter in this table has a significant role in the model. The model is a custom
Convolutional Neural Network (CNN) designed for this task. We trained our model for both 10 and
50 epochs to compare performance. Adam Optimizer was utilized because it efficiently handles sparse
gradients on noisy problems. A relatively low learning rate 0.0001 was set to ensure gradual and stable
learning. We employed a batch size of 32, balancing the need for stochastic gradient approximation
and computational efficiency.

A Dropout rate of 0.25 was applied to prevent overfitting by reducing the complexity of the model.
The input images were resized to 256 × 256 pixels and were composed of three color channels (Red,
Green, and Blue). The Binary Cross-Entropy loss was utilized due to the nature of our problem being
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a binary classification task. Finally, the ReLU activation function was used because of its efficiency
and effectiveness in deep learning models.

Fig. 6 demonstrates the deep CNN model’s accuracy over 50 epochs using the South Indian
Mango Tree Leaf Disease Dataset after augmentation. The model appears to be getting better in the
beginning as both training and validation accuracy increase and the corresponding losses decline.
However, there are notable variations in the accuracy and validation loss as the epochs advance,
notably after about Epoch 15. These variations include some sizable spikes in the validation loss. These
are caused by gummosis, the initial Weaver Ant and Good Leaves photos are less than the batch size,
and even when augmentation is used and the image count rises, a slight amount of overfitting may be
seen throughout the model training process. The validation loss begins to stabilize somewhat toward
the conclusion of training, although there are still significant variances that could lead to overfitting
of the model. A training accuracy of roughly 94.73% and a validation accuracy of roughly 91.43% are
obtained in the last epoch.

Figure 6: Shows the accuracy of a customized deep CNN model on the South Indian Mango Leaf
Disease Dataset for 50 epochs after augmentation

Fig. 7 shows model performance over ten epochs after augmentation. The model’s training
accuracy gradually increases throughout training, going from 89.48% in the first epoch to 92.42%
in the tenth, demonstrating that the model is picking up new information from the training data.
Although the validation accuracy is consistently around 91%, the validation loss fluctuates and rises
generally from 0.5125 to 0.4358. As the validation performance does not regularly increase along with
the training performance, this may suggest that the model may have overfitted the training data. The
model may be learning patterns particular to the training data and may not generalize well to unknown
data, according to the rising validation loss and varying validation accuracy.

In comparison, a standard CNN model, which typically has a shallower architecture with fewer
layers, achieves an accuracy of 85.80% as shown in Fig. 8. While still respectable, the lower accuracy
suggests that the standard CNN model may need help to capture the complexity of the dataset
and accurately differentiate between different types of mango tree leaf diseases. The significant
difference in accuracy between the customized deep CNN model and the standard CNN model
highlights the importance of model depth and complexity in achieving higher accuracy. The more
profound architecture of the customized deep CNN model allows it to learn more intricate data
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representations, leading to improved classification performance. It is worth noting that accuracy
is just one performance metric and should be considered to understand the models’ performance
comprehensively. Nonetheless, the reported accuracy values of 93.34% for the customized deep CNN
model and 85.80% for the standard CNN model indicate that the customized deep CNN model
outperforms the standard CNN model in accurately classifying the South Indian Mango Tree Leaf
Disease Dataset.

The results of both the CNN and customized deep CNN architectures on the mango leaf are
compared in Table 3. Convolutional Neural Networks (CNNs) and Deep Convolutional Neural
Networks (Deep CNNs) were tested for their ability to classify mango leaves. This research aimed
to compare and contrast the performance of these architectures to several metrics, such as training
accuracy, test accuracy, loss, and the number of epochs needed for convergence. Both models were
trained on a mango leaf image dataset and evaluated using separate test datasets. The results revealed
that the customized deep CNN architecture outperformed the CNN architecture in terms of both
training and test accuracy. The customized deep CNN model achieved higher accuracy scores,
indicating its ability to learn and generalize from the training data better. The customized deep CNN
architecture also exhibited lower loss values, demonstrating its superior capability in minimizing
prediction errors during training. Furthermore, the customized deep CNN model required fewer
epochs to converge, indicating its faster learning and convergence rate than the CNN architecture.
These findings highlight the superior performance of customized deep CNN architectures in mango
leaf classification tasks, showcasing their potential for accurate and efficient disease identification and
classification.

Figure 7: The accuracy of a customized deep CNN model on the South Indian Mango Leaf Disease
Dataset for 10 epochs after augmentation

The values in Table 3, are updated after training the model with the augmented and fully balanced
dataset. The performance measures are significantly improved due to augmentation. From Table 3, it
is evident to note that little overfitting persists due to the original image falling below the ideal batch
size. Due to this, the model average TPR is 81%, which correctly classified the positive instances. Also,
the FPR, rate is high on Multi disease and Red Rust, where the model is misclassified with the original
instances.
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Figure 8: The accuracy of a standard CNN model on South Indian mango tree leaf disease for 10
epochs without augmentation

Table 3: Analysis of CNN and customized deep CNN’s mango leaf performance

Model Training Acc (%) Test Acc (%) Epochs Loss

Customized deep CNN (proposed) 94.73 91.43 50 0.1618
Customized deep CNN (proposed) 92.42 90.2 10 0.23
CNN [11] 85.80 53.54 10 0.3544
CNN [31] 89 – – –
Deep CNN+GAN [32] 86.1 64.04 100 –

4.4 Model Performance on Correctly Predicted Images

The model performance on correctly predicted images refers to how well the customized deep
CNN model correctly classifies images of healthy and diseased leaves. In this case, a correctly predicted
image is one where the model accurately classifies an image of a vigorous or sickly plant leaf. The
model’s performance on correctly predicted images is typically evaluated using accuracy. These metrics
provide a measure of how well the model is performing in terms of classifying images correctly. The
performance of correctly predicted images is important because it indicates how well the model can
detect healthy and diseased plant leaves in real-world scenarios. Additionally, it assists in identifying
areas where the model may be functioning well and areas where it may require improvement. Fig. 9
demonstrates The effectiveness of a customized deep CNN model for accurately predicted images.

4.5 Model Performance on Incorrectly Predicted Images

Model performance on incorrectly predicted images can provide valuable insights into the
limitations of the model and areas that require improvement. The incorrectly predicted images are
the ones where the model has predicted a wrong class label. By analyzing these images, we can identify
the patterns or features that need to be included in the model, leading to an incorrect prediction. This
analysis can help improve the model architecture to capture the missed patterns or features. Fig. 10
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shows The effectiveness of a Deep CNN model on incorrectly predicted images. Table 4 represents the
most confused mango leaf disease detection and classification predictions.

In deep learning, models are trained to make predictions based on complex patterns and
relationships in the input data. While deep learning models have achieved remarkable success in
various domains, they are flexible and sometimes produce confused or erroneous predictions. It is
due to the Out-of-distribution data, Lack of representative training data, Noisy or ambiguous input,
and Overfitting. Table 4 represents some of the most confusing predictions while training the Deep
CNN model. Due to the data set, the mango leaf images were collected from a real environment from
the south Indian region. There is a need to adhere to the standardization of the dataset to minimize
confused predictions.

Figure 9: The effectiveness of a customized deep CNN model for accurately predicted images

4.6 Performance Measures on Individual Diseases Prediction and Classification

When evaluating the performance of prediction and classification models for individual diseases
of mango leaves, performance measures Precision, Recall, and F1-score are used to assess the accuracy
and effectiveness of the customized deep CNN Model. These performance measures provide insights
into the prediction and classification accuracy of individual diseases of mango leaves. Different mea-
sures may be prioritized depending on the specific goals and requirements of the study. Considering
these metrics collectively is essential to understand the model’s performance comprehensively. Table 5
shows the performance measures of individual disease classes on mango leaves. Table 5 shows that
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a few diseases, like good leaves, Nutrition deficiency, and Phoma, are not predicted accurately due
to Out-of-distribution data, Lack of representative training data, Noisy or ambiguous input, and
Overfitting. Few diseases are predicted more accurately with the customized Deep CNN model. Fig. 11
shows the confusion matrix for the proposed deep CNN model on incorrectly predicted individual
disease classes.

Figure 10: The Performance of a customized deep CNN model on incorrectly predicted images

Table 4: Most confused predictions of customized deep CNN on mango dataset

S. No. Original Predicted Count

1 ‘Multi disease’ ‘Multi disease’ 43
2 ‘Sooty’ ‘Sooty’ 31
3 ‘Red rust’ ‘Powdery’ 13
4 ‘Red rust’ Red rust’ 12
5 ‘Powdery’ ‘Red rust’ 11
6 ‘Powdery’ ‘Phoma’ 5
7 ‘Scale insect’ ‘Scale insect’ 5
8 ‘Nutrition deficiency’ ‘Phoma’ 4
9 ‘Phoma’ ‘Powdery’ 3

(Continued)
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Table 4 (continued)

S. No. Original Predicted Count

10 ‘Powdery’ ‘Nutrition deficiency’ 3
11 ‘Multi disease’ ‘Powdery’ 3

Table 5: Performance measures of individual disease classes on mango leaves

S. No. Disease Precision (%) Recall (%) F1-score (%)

1 Anthracnose 87.00 54.00 92.00
2 Apoderus 84.00 100.00 90.00
3 Good leaves 67.00 69.00 81.00
4 Leaf webber 78.00 86.00 79.00
5 Mango sooty 78.00 85.00 89.00
6 Nutrition deficiency 69.00 79.00 80.00
7 Phoma 47.00 74.00 61.00
8 Powdery 53.00 87.00 52.00
9 Red rust 71.00 79.00 84.00
10 Scale insects 61.00 81.00 88.00
11 Sooty 72.00 87.00 79.00
12 Weaver ant 100.00 63.00 76.00
13 Gummosis 100.00 100.00 100.00
14 Multi-disease 79.00 89.00 90.00

4.7 Discussion

The experiment results show that the customized deep CNN model achieved an accuracy of
94.73% on the South Indian Mango Tree Leaf Disease Dataset. In comparison, the standard CNN
model achieved an accuracy of 85.80%. These accuracy values provide insights into the performance
of the two models and their ability to accurately classify mango tree leaf diseases. The higher accuracy
of the customized deep CNN model suggests that its deeper architecture and increased complexity
enable it to learn more intricate and representative features from the dataset. This allows the model to
make more accurate predictions and precisely distinguish between different types of mango tree leaf
diseases.

On the other hand, the standard CNN model, with its shallower architecture and fewer layers,
achieves a lower accuracy of 85.80%. This indicates that the model may need help to capture the
dataset’s complexity and cannot extract the distinguishing features required for accurate classification.
The significant difference in accuracy between the two models emphasizes the importance of model
depth and complexity in achieving higher accuracy. The customized deep CNN model’s ability to
learn hierarchical representations and capture intricate patterns in the data contributes to its superior
performance compared to the standard CNN model.
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Figure 11: Confusion matrix for the customized deep CNN model on incorrectly predicted individual
disease classes

These results suggest that employing deeper architectures and increasing model complexity can
positively impact the accuracy of mango leaf disease classification. The customized deep CNN model
demonstrates its effectiveness in accurately identifying and classifying different types of leaf diseases
in South Indian Mango Trees. In conclusion, the experimental results highlight that the superior CNN
model performance for classifying South Indian mango tree leaf diseases was 94.73%, while that
of a regular CNN model was 85.80%. The findings support using deep architectures and increased
complexity to improve the accuracy of mango leaf disease detection and classification.

5 Conclusion

Our study shows that when classifying South Indian mango tree leaf diseases accurately, the
customized deep CNN model is superior to the regular CNN model. The customized deep CNN
model outperformed the baseline CNN model by a significant margin of 94.73% against 85.80%.
The significant difference in accuracy between the two models suggests that the deeper architecture
and increased complexity of the customized deep CNN model enable it to learn more intricate and
representative features from the dataset, allowing for a more precise and accurate classification of
different types of mango tree leaf diseases. The results highlight the importance of leveraging deep
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learning techniques, such as customized deep CNNs, for improved accuracy in mango leaf disease
detection and classification. The higher accuracy of the customized deep CNN model indicates its
potential for assisting in the early detection and effective management of diseases in South Indian
mango trees. These results have real-world applications in agriculture, as correct diagnosis of diseases
aids farmers in taking preventative steps to boost mango tree health and yields. The higher accuracy of
the customized Deep CNN model suggests its suitability for deployment in real-world scenarios, where
accurate and efficient disease detection is crucial. Expanding the dataset to include photos of a wider
variety of diseases and exploring transfer learning techniques to utilize pre-trained CNN models are
potential avenues for further study. Integrating other advanced technologies like hyperspectral imaging
can enhance disease detection capabilities. Overall, our research supports using customized Deep CNN
models for accurately classifying South Indian Mango Tree Leaf Diseases, providing valuable insights
for developing effective disease management strategies in the agricultural sector.
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